2015数据挖掘技术试卷A卷-参考答案
- 格式:doc
- 大小:110.00 KB
- 文档页数:3
数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。
答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。
避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。
2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。
答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。
它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。
3. 描述“特征选择”在数据挖掘中的作用。
答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。
通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。
#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。
答案:首先,我会使用聚类分析来识别不同的用户群体。
然后,通过关联规则挖掘来发现不同用户群体的购买模式。
接着,利用分类算法来预测用户可能感兴趣的产品。
大学课程《数据挖掘》试题参考答案范围:∙ 1.什么是数据挖掘?它与传统数据分析有什么区别?定义:数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。
数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
区别:(1)数据挖掘的数据源与以前相比有了显著的改变;数据是海量的;数据有噪声;数据可能是非结构化的;(2)传统的数据分析方法一般都是先给出一个假设然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来。
即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。
在缺乏强有力的数据分析工具而不能分析这些资源的情况下,历史数据库也就变成了“数据坟墓”-里面的数据几乎不再被访问。
也就是说,极有价值的信息被“淹没”在海量数据堆中,领导者决策时还只能凭自己的经验和直觉。
因此改进原有的数据分析方法,使之能够智能地处理海量数据,即演化为数据挖掘。
∙ 2.请根据CRISP-DM(Cross Industry Standard Process for Data Mining)模型,描述数据挖掘包含哪些步骤?CRISP-DM 模型为一个KDD工程提供了一个完整的过程描述.该模型将一个KDD工程分为6个不同的,但顺序并非完全不变的阶段.1: business understanding: 即商业理解. 在第一个阶段我们必须从商业的角度上面了解项目的要求和最终目的是什么. 并将这些目的与数据挖掘的定义以及结果结合起来.2.data understanding: 数据的理解以及收集,对可用的数据进行评估.3: data preparation: 数据的准备,对可用的原始数据进行一系列的组织以及清洗,使之达到建模需求.4:modeling: 即应用数据挖掘工具建立模型.5:evaluation: 对建立的模型进行评估,重点具体考虑得出的结果是否符合第一步的商业目的.6: deployment: 部署,即将其发现的结果以及过程组织成为可读文本形式.(数据挖掘报告)∙ 3.请描述未来多媒体挖掘的趋势随着多媒体技术的发展,人们接触的数据形式不断地丰富,多媒体数据库的日益增多,原有的数据库技术已满足不了应用的需要,人们希望从这些媒体数据中得到一些高层的概念和模式,找出蕴涵于其中的有价值的知识。
数据挖掘计算题考试题库1. 数据挖掘中的“分类”任务是用来做什么的?A. 识别数据集中的异常值B. 将数据集分成不同的类别C. 预测数值型数据D. 找出数据集中的相关性答案: B2. 下面哪种算法不是分类算法?A. 决策树B. K-均值聚类C. 随机森林D. 支持向量机(SVM)答案: B3. 在数据挖掘过程中,“数据清洗”指的是什么?A. 删除重复的记录B. 提取关键特征C. 创建可视化D. 选择重要的数据子集答案: A4. 下面哪个是关联规则学习中的一个常见算法?A. AprioriB. AdaBoostC. 梯度提升机D. 主成分分析甮案: A5. 在数据挖掘中,“过拟合”指的是什么?A. 模型在新数据上的表现很差B. 模型没有捕捉到数据的关键特征C. 模型在训练集上的表现过于完美D. 模型参数过于简单答案: C6. “集成学习”在数据挖掘中指的是什么?A. 使用一个单一的模型进行预测B. 结合多个模型的预测以提高性能C. 对数据进行分层抽样D. 应用一个算法在不同的数据集上答案: B7. 哪个度量标准经常用来评估分类器的性能?A. 均方误差(MSE)B. 精确率和召回率C. 相关系数D. K-均值答案: B8. 下面哪个不是数据预处理的一部分?A. 归一化B. 主成分分析(PCA)C. 数据编码D. 计算数据均值答案: D9. 下面哪个算法适合于处理大量未标记数据?A. 监督学习B. 半监督学习C. 无监督学习D. 强化学习答案: C10. 下面哪个不是异常检测的算法?A. Local Outlier Factor (LOF)B. One-Class SVMC. Isolation ForestD. Linear Regression答案: D11. 在数据挖掘中,“特征选择”是为了什么?A. 减少数据的维度B. 增加更多的数据特征C. 创建数据的可视化D. 计算数据的主成分答案: A12. 下面哪个是决策树算法的一种?A. C4.5B. K-最近邻(K-NN)C. 随机森林D. 线性判别分析(LDA)答案: A13. 在聚类问题中,"轮廓系数"是用来做什么的?A. 评估聚类的紧密度和分离度B. 计算每个点到其最近的聚类中心的距离C. 确定最佳的聚类数D. 预测新数据点的类别答案: A14. 下面哪个技术用于减少过拟合?A. 正则化B. 增加更多的特征C. 使用更复杂的模型D. 删除数据集中的一些样本答案: A15. 支持向量机(SVM)的主要目的是什么?A. 最大化分类器的边界B. 最小化预测误差C. 找到数据的最佳表示D. 减少计算成本答案: A16. 数据挖掘中的“回归分析”用于什么?A. 预测数值型的目标变量B. 分类数据C. 数据的可视化D. 数据的归一化处理答案: A17. 下面哪个算法是基于概率的分类算法?A. 决策树B. 朴素贝叶斯C. 支持向量机(SVM)D. K-最近邻(K-NN)答案: B18. “梯度提升机”(Gradient Boosting Machine)主要用于什么?A. 数据预处理B. 特征选择C. 优化模型性能D. 聚类分析答案: C19. 在K-最近邻(K-NN)算法中,K代表什么?A. 选择的特征数B. 数据点将考虑的最近邻居的数量C. 聚类的数量D. 数据维度的数量答案: B20. 下面哪个不是数据挖掘任务?A. 预测B. 聚类C. 分类D. 数据录入答案: D21. 数据挖掘中的“提升”技术是用来做什么的?A. 减少模型的计算复杂度B. 减小数据集的规模C. 增强模型的预测能力D. 清洗数据集答案: C22. 下面哪个算法通常用于文本数据的分类?A. 朴素贝叶斯B. 线性回归C. K-均值聚类D. 随机森林答案: A23. 时间序列分析在数据挖掘中用于什么?A. 识别数据中的异常点B. 预测未来的数据点C. 分类数据点D. 查找数据集的子集答案: B24. 下面哪个方法不适用于缺失数据的处理?A. 使用均值填充缺失值B. 删除包含缺失值的记录C. 使用模型预测缺失值D. 增加更多的数据特征答案: D25. “维度的诅咒”指的是什么?A. 数据越多越好B. 数据维度增加导致分析变得更加困难C. 低维度数据不足以解释现象D. 高维度数据易于可视化答案: B26. 在数据挖掘中,下面哪个是一个常见的数据变换方法?A. 数据归一化B. 数据扩充C. 数据删除D. 数据复制答案: A27. 什么是数据挖掘中的“支持”?A. 一个数据集的所有数据点B. 关联规则中项集出现的频率C. 分类算法的准确率D. 聚类质量的度量答案: B28. 决策树中的“节点”代表什么?A. 数据特征的一个可能值B. 一个分类规则C. 数据集的一个子集D. 一个概率分布答案: B29. “随机森林”算法中的“森林”是由什么组成的?A. 决策树B. 数据集C. 神经网络D. 聚类答案: A30. 在数据挖掘中,“基于实例的学习”通常指什么?A. 构建一般化模型B. 用大量的数据实例来做决策C. 用少量的代表性实例来做决策D. 仅使用单个实例进行训练答案: C31. 在数据挖掘中,什么是“过度拟合”?A. 模型不能适应新数据B. 模型在训练数据上表现不佳C. 模型对训练数据的噪声也进行了学习D. 模型过于简化,丢失了重要信息答案: C32. 下面哪个是数据挖掘中的一种特征提取方法?A. 主成分分析(PCA)B. 决策树分析C. 线性回归D. 逻辑回归答案: A33. “聚类”在数据挖掘中的目的是什么?A. 找出数据集中的异常值B. 预测数据点的值C. 将数据集分组成相似的子集D. 减少数据维度答案: C34. 数据挖掘中,“神经网络”主要用于什么?A. 数据预处理B. 特征选择C. 复杂模式识别和预测建模D. 数据压缩答案: C35. “深度学习”在数据挖掘中通常用来处理哪些问题?A. 只有小规模数据集的问题B. 高维度和复杂结构的数据问题C. 简单线性问题D. 无需特征工程的问题答案: B36. 关联规则分析中的“置信度”是指什么?A. 规则中的项集出现的频繁程度B. 一条规则被证实为真的次数C. 给定前件时后件出现的条件概率D. 数据集中项集的独立概率答案: C37. 数据挖掘中的“决策树”算法主要用于解决哪类问题?A. 聚类B. 分类和回归C. 关联规则学习D. 数据预处理答案: B38. “模型评估”在数据挖掘中的目的是什么?A. 选择最好的数据预处理方法B. 确定最合适的特征集C. 选择合适的算法D. 评价模型的预测性能答案: D39. 下面哪个是数据挖掘中的一种无监督学习方法?A. 逻辑回归B. 线性判别分析C. 聚类D. 决策树答案: C40. “文本挖掘”通常用于处理什么类型的数据?A. 数值型数据B. 类别数据C. 文本数据D. 时间序列数据答案: C41. 数据挖掘中的“关联分析”用于发现什么之间的关系?A. 数据特征和预测变量之间B. 不同数据库之间C. 数据项之间的频繁模式、关联或相关性D. 模型和算法之间答案: C42. 在数据挖掘中,哪种方法通常用于异常值检测?A. 分类B. 聚类C. 关联规则学习D. 神经网络答案: B43. 数据挖掘中的“Apriori”算法用于解决哪一类问题?A. 分类B. 聚类C. 关联规则挖掘D. 回归分析答案: C44. “数据归约”在数据挖掘中指的是什么?A. 减少数据集的大小,同时尽量保持数据的完整性B. 通过算法提高数据的质量C. 删除数据集中的重复项D. 对数据进行加密保护答案: A45. 在数据挖掘中,什么是“多层感知器”?A. 一种基于规则的分类方法B. 一种数据预处理技术C. 一种基于神经网络的学习算法D. 一种数据可视化工具答案: C46. 下面哪种技术不是用来处理不平衡数据集的?A. 过采样少数类B. 欠采样多数类C. 生成合成样本D. 使用回归分析答案: D47. 在数据挖掘中,“bagging”是用来做什么的?A. 减少模型的偏差B. 增加模型的方差C. 减少模型的方差D. 增加模型的偏差答案: C48. 下面哪个算法适合于大规模数据集?A. 支持向量机B. 朴素贝叶斯C. 线性回归D. K-最近邻答案: B49. “分层聚类”和“K-均值聚类”有什么不同?A. 分层聚类需要预先指定聚类数目B. K-均值聚类是一种分层聚类方法C. 分层聚类不需要预先指定聚类数目D. K-均值聚类可以处理任何形状的数据集答案: C50. 在数据挖掘中,下面哪个是评估聚类质量的指标?A. 准确率B. 召回率C. 轮廓系数D. 均方误差答案: C51. “逻辑回归”通常用于解决哪类数据挖掘问题?A. 聚类B. 分类C. 回归D. 关联规则学习答案: B52. 数据挖掘中的“时间序列分析”通常用于分析什么类型的数据?A. 空间数据B. 文本数据C. 时间相关的数据D. 图像数据答案: C53. 数据挖掘中的“特征工程”包括哪些任务?A. 特征选择、特征提取、特征构造B. 模型选择、模型评估、模型部署C. 数据清洗、数据集成、数据转换D. 模型训练、模型测试、模型优化答案: A54. “随机森林”是什么类型的数据挖掘算法?A. 聚类算法B. 分类和回归算法C. 关联规则挖掘算法D. 异常检测算法答案: B55. 数据挖掘中的“神经网络”可以用于处理哪些问题?A. 仅分类B. 仅回归C. 分类和回归D. 仅聚类答案: C56. 下面哪个不是数据挖掘中的关键挑战?A. 数据质量B. 数据量的大小C. 数据的可视化D. 选择打印机答案: D57. 数据挖掘中的“假设检验”用于什么?A. 验证模型的预测准确性B. 确定数据样本中观察到的模式是否具有统计意义C. 预测未来的数据趋势D. 检测数据集中的异常值答案: B58. 在数据挖掘中,“K-均值聚类”算法的主要缺点是什么?A. 无法处理非线性数据B. 需要预先确定聚类的数量C. 无法处理大规模数据集D. 只能用于二维数据答案: B59. 下面哪个术语描述了一个数据挖掘算法在未见过的数据上的泛化能力?A. 过拟合B. 训练误差C. 模型容量D. 泛化误差答案: D60. 数据挖掘中的“集成方法”通常包括哪些类型?A. Bagging、Boosting和StackingB. 分类、回归和聚类C. 关联、序列模式和预测D. 决策树、神经网络和支持向量机答案: A61. 下面哪个不是在数据挖掘中常用的数据变换技术?A. 平滑B. 聚合C. 泛化D. 分类答案: D62. 在数据挖掘中,如果一个数据集很“稀疏”,这意味着什么?A. 数据集中有很多缺失值B. 数据集非常小C. 数据集分布非常广泛D. 数据点非常接近答案: A63. 数据挖掘中的“朴素贝叶斯”分类器是基于什么原理?A. 支持向量机B. 贝叶斯定理C. 决策树D. 神经网络答案: B64. 下面哪个参数在决策树算法中非常关键?A. 学习率B. 聚类数量C. 树的深度D. 特征数量答案: C65. 数据挖掘中的“支持向量机”算法主要解决什么类型的问题?A. 聚类B. 分类和回归C. 时间序列分析D. 数据预处理答案: B66. 数据挖掘中的“模型选择”是基于什么原则?A. 模型的复杂度B. 训练时间的长短C. 预测的准确性D. 所有上述因素答案: D67. 在数据挖掘中,什么是“抽样”?A. 从一个大的数据集中选出一个代表性的子集B. 收集新的数据点C. 数据的分类D. 数据的排序答案: A68. 数据挖掘中的“关联规则”用于发现数据中的哪种模式?A. 预测模式B. 时间序列模式C. 频繁项集和它们之间的关联D. 回归线答案: C69. 下面哪个是度量分类模型性能的方法?A. 均方误差B. 准确率C. 轮廓系数D. 平均绝对误差答案: B70. 数据挖掘中的“深度学习”通常需要什么?A. 小量的标记数据B. 强大的计算资源C. 一维数据D. 无监督的学习方法答案: B71. 数据挖掘中的“过拟合”通常如何解决?A. 增加更多的数据B. 简化模型C. 增加模型的复杂度D. A和B都是答案: D72. 数据挖掘中的“主成分分析”(PCA)主要用于什么?A. 数据分类B. 降维C. 数据预测D. 数据清洗答案: B73. 在数据挖掘中,哪种算法适合处理文本挖掘?A. K-均值聚类B. 随机森林C. 支持向量机D. 朴素贝叶斯答案: D74. 数据挖掘中的“决策树”通常在哪个阶段剪枝?A. 在构建树的过程中B. 构建树之后C. 选择模型之前D. 在数据预处理阶段答案: B75. 下面哪个不是评价回归模型的指标?A. 均方误差(MSE)B. 决定系数(R²)C. 准确率D. 平均绝对误差(MAE)答案: C76. 在数据挖掘中,什么是“集成学习”?A. 单个模型的学习过程B. 一个学习算法的集合C. 多个模型的组合,用于提高预测性能D. 数据集的集合答案: C77. 数据挖掘中的“神经网络”中的“隐藏层”有什么作用?A. 直接处理输入数据B. 对输入数据进行分类C. 提取输入数据的特征D. 输出预测结果答案: C78. 下面哪个算法是基于树的模型?A. 逻辑回归B. 支持向量机C. 随机森林D. 主成分分析答案: C79. 数据挖掘中的“无监督学习”与“监督学习”有什么不同?A. 无监督学习不需要任何数据B. 监督学习不使用数据标签C. 无监督学习不使用数据标签D. 监督学习用于聚类分析答案: C80. 数据挖掘中,下面哪个方法适合于特征选择?A. 递归特征消除B. K-均值聚类C. 主成分分析D. 线性回归答案: A81. 数据挖掘中的“特征缩放”主要用于什么目的?A. 转换特征到相同的尺度B. 增加数据集的特征数量C. 减少每个特征的值域D. 创建新的特征组合答案: A82. 下面哪个方法通常用于减少一个模型的方差?A. 增加更多特征B. 增加数据点C. 减少模型复杂度D. 进行特征选择答案: B83. 在数据挖掘中,哪种算法可以处理非线性问题?A. 线性回归B. 朴素贝叶斯C. 决策树D. 主成分分析答案: C84. 数据挖掘中的“异常检测”主要用于发现什么?A. 频繁项集B. 数据集中的主要趋势C. 数据中的奇异点D. 数据集中的相关性答案: C85. 在数据挖掘中,“相似性度量”用于什么?A. 比较不同模型的性能B. 确定数据点之间的相似度C. 测量数据集的大小D. 评价算法的运行时间答案: B86. 数据挖掘中的“集群分析”是用来做什么的?A. 预测数据点的类别B. 将数据点分为不同的组C. 分析数据中的基本模式D. 评估分类模型的性能答案: B87. 下面哪个是数据挖掘中的一种预测建模技术?A. K-均值聚类B. Apriori算法C. 线性回归D. 主成分分析答案: C88. 数据挖掘中的“分类器的集成”指的是什么?A. 一个分类器的集合B. 多个分类器的组合用于提高整体性能C. 使用单个分类器进行多次训练D. 集成不同类型的数据挖掘算法答案: B89. 数据挖掘中的“数据压缩”有什么作用?A. 减少数据的存储空间B. 加快算法的运行速度C. 提高数据的质量D. A和B都是答案: D90. 在数据挖掘中,什么是“数据立方体”?A. 数据仓库中的一个三维数据模型B. 一个可视化工具C. 数据挖掘算法的一种D. 用于数据预处理的技术答案: A91. “梯度下降”在数据挖掘中用于什么?A. 数据分类B. 寻找最优的模型参数C. 数据的聚类D. 关联规则的挖掘答案: B92. 在数据挖掘中,“半监督学习”是什么?A. 使用未标记数据进行学习B. 使用一小部分标记数据和大量未标记数据进行学习C. 不使用任何标记数据进行学习D. 仅使用标记数据进行学习答案: B93. 下面哪个是数据挖掘中的一种分类算法?A. 主成分分析B. 决策树C. K-均值聚类D. 均方误差答案: B94. 数据挖掘中的“数据集成”有什么目的?A. 将来自不同源的数据合并在一起B. 分离数据集C. 创建数据的备份D. 增加数据的维度答案: A95. 数据挖掘中的“数据规约”技术包括哪些?A. 数据归一化和标准化B. 数据清洗和数据集成C. 数据压缩和特征提取D. 数据转换和数据平滑答案: C96. 下面哪个概念与“数据挖掘”最不相关?A. 数据可视化B. 大数据C. 数据加密D. 机器学习答案: C97. 数据挖掘中的“数据变换”可能包括哪些操作?A. 平滑、聚合、泛化B. 分类、回归、聚类C. 训练、测试、验证D. 编码、解码、压缩答案: A98. 数据挖掘中的“预处理”是为了什么?A. 提高算法的准确性B. 减少计算时间C. 提高数据的质量D. 所有上述答案: D99. 下面哪个不是数据挖掘中的挑战?A. 数据的多样性B. 数据的质量C. 数据的存储D. 数据的颜色答案: D100. 数据挖掘中的“模型部署”指的是什么?A. 选择合适的模型B. 构建数据挖掘模型C. 在实际环境中实施数据挖掘模型D. 评估数据挖掘模型答案: C101. 在数据挖掘中,“标准化”和“归一化”有什么区别?A. 标准化是缩放到0和1之间,归一化是缩放到特定的平均和标准差B. 标准化是缩放到特定的平均和标准差,归一化是缩放到0和1之间C. 标准化和归一化是同一个概念D. 标准化是数据清洗过程,归一化是数据转换过程答案: B102. 数据挖掘中的“偏差-方差权衡”是什么意思?A. 增加模型的偏差会减少方差B. 减少模型的偏差会增加方差C. 增加模型的方差会减少偏差D. 增加偏差和方差可以提高模型的准确率答案: A103. 下面哪个是时间序列数据挖掘中的一个关键任务?A. 分类B. 聚类C. 预测D. 关联规则挖掘答案: C104. 数据挖掘中的“聚类分析”和“分类”有什么不同?A. 聚类是监督学习,分类是无监督学习B. 聚类和分类都是监督学习C. 聚类是无监督学习,分类是监督学习D. 聚类和分类都是无监督学习答案: C105. 在数据挖掘中,“多维缩放”主要用于什么?A. 降维B. 特征提取C. 数据可视化D. 数据清洗答案: C106. 数据挖掘中的“熵”通常与哪个概念相关?A. 关联规则的强度B. 聚类的紧密度C. 决策树的信息增益D. 回归分析的系数答案: C107. 下面哪个不是构建数据挖掘模型时考虑的因素?A. 数据的质量B. 数据的数量C. 模型的颜色D. 算法的选择答案: C108. 数据挖掘中的“序列模式挖掘”主要用于发现什么?A. 数据中的异常值B. 时间序列数据中的重复模式C. 数据集中的分类标签D. 数据属性之间的相关性答案: B109. 下面哪个技术是处理缺失数据的有效方法?A. 数据删除B. 数据插补C. 数据变换D. A和B都是答案: D110. 数据挖掘中的“关联规则挖掘”用于解决哪类问题?A. 预测问题B. 分类问题C. 聚类问题D. 市场篮子分析答案: D111. 在数据挖掘中,“深度学习”主要用于处理哪种类型的数据?A. 小规模数据集B. 结构化数据集C. 非结构化或半结构化数据集D. 一维数据答案: C112. 下面哪个是度量聚类质量的指标?A. 支持度B. 置信度C. Davies-Bouldin指数D. 平均绝对误差答案: C113. 数据挖掘中的“决策树”用于哪些类型的数据?A. 仅数值型数据B. 仅分类数据C. 数值型和分类数据D. 时间序列数据答案: C114. 数据挖掘中的“神经网络”与“深度学习”有什么关系?A. 完全不相关B. 深度学习是神经网络的一个子集C. 神经网络是深度学习的一个子集D. 完全相同答案: C115. 在数据挖掘中,“梯度提升”算法主要用于什么?A. 数据预处理B. 特征选择C. 预测建模D. 数据可视化答案: C116. 下面哪个算法适用于大规模数据集的分类问题?A. 随机森林B. 支持向量机C. 神经网络D. 逻辑回归答案: A117. 数据挖掘中的“协同过滤”是用于推荐系统的哪个部分?A. 用户界面设计B. 数据存储C. 预测用户偏好D. 数据清洗答案: C118. 在数据挖掘中,什么是“文本挖掘”?A. 从文本数据中提取有用信息的过程B. 创建新文本数据C. 对文本数据进行归类D. 提高文本数据的质量答案: A119. 下面哪个是衡量数据挖掘模型泛化能力的方法?A. 交叉验证B. 决策树C. 特征选择D. 神经网络答案: A120. 数据挖掘中的“支持向量机”主要用于解决什么类型的问题?A. 数据可视化B. 数据预处理C. 分类和回归问题D. 聚类问题答案: C121. 在数据挖掘中,“项集”的概念最常用于哪种分析?A. 聚类分析B. 分类分析C. 关联规则分析D. 回归分析答案: C122. 数据挖掘中的“过采样”和“欠采样”技术用于处理什么问题?A. 缺失数据B. 高维数据C. 不平衡数据集D. 大规模数据集答案: C123. 在数据挖掘中,一条“规则”的“提升度”(lift)指的是什么?A. 规则的支持度与预期支持度的比值B. 规则的支持度与置信度的比值C. 规则的置信度与预期置信度的比值D. 规则的准确率答案: C124. 数据挖掘中的“属性选择”是什么意思?A. 从数据集中选取有用的属性进行分析B. 修改属性的类型C. 删除数据集中的某些属性D. 重命名属性答案: A125. 下面哪个算法是一种基于树的回归方法?A. 线性回归B. 逻辑回归C. 随机森林D. 支持向量机答案: C126. 在数据挖掘中,“模型过度复杂”可能导致什么问题?A. 欠拟合B. 过拟合C. 更快的训练时间D. 更好的用户体验答案: B127. 数据挖掘中的“自编码器”通常用于哪种任务?A. 分类B. 回归C. 数据降维D. 数据增强答案: C128. 在数据挖掘中,“分箱”技术用于什么?A. 数据分类B. 数据聚类C. 将连续变量转换为离散变量D. 预测模型的输出答案: C129. 数据挖掘中的“交叉售卖”是基于哪种分析?A. 聚类分析B. 分类分析C. 关联规则分析D. 时间序列分析答案: C130. 下面哪个是度量模型性能的时间复杂度的方法?A. AUC-ROC曲线B. 计算模型训练时间C. 均方误差D. 准确率答案: B131. 数据挖掘中的“Gini指数”用于评估什么?A. 回归模型的性能B. 关联规则的强度C. 决策树分裂的纯度D. 聚类的质量答案: C132. 在数据挖掘中,什么是“集合外估计”?A. 使用测试集以外的数据评估模型的方法B. 估计模型的准确率C. 使用模型预测集合中没有的数据D. 在数据集之外收集新数据答案: A133. 数据挖掘中的“学习曲线”展示了什么?A. 不同算法的性能比较B. 训练集大小对模型性能的影响C. 特征数量对模型性能的影响D. 不同参数设置对模型性能的影响答案: B134. 下面哪个是数据挖掘中的非线性模型?A. 线性回归B. 朴素贝叶斯C. 决策树D. 线性判别分析答案: C135. 在数据挖掘中,什么是“验证数据集”?A. 用来训练模型的数据集B. 用来测试模型的数据集C. 在模型训练过程中用来调整模型参数的数据集D. 用于最终评估模型性能的数据集答案: C136. 数据挖掘中的“层次聚类”有哪些类型?A. 顺序聚类和并行聚类B. 聚合聚类和分裂聚类C. K-均值聚类和谱聚类D. 监督聚类和无监督聚类答案: B137. 数据挖掘中的“ROC曲线”用于评估哪种类型的模型?A. 聚类模型B. 分类模型C. 回归模型D. 关联规则模型答案: B138. 下面哪个是评估数据挖掘模型“泛化能力”的好方法?A. 增加模型的复杂度B. 减少训练集的大小C. 使用多个测试集D. 使用交叉验证答案: D139. 在数据挖掘中,“强化学习”通常用于解决什么类型的问题?A. 数据分类B. 数据预处理C. 决策过程中的序列化问题D. 数据集成答案: C140. 数据挖掘中的“特征哈希”是用于什么?A. 减少数据的维度B. 加密数据C. 增强数据的特征D. 创建数据的哈希表答案: A141. 数据挖掘中的“时间序列分析”主要用于分析哪种类型的数据?A. 文本数据B. 图像数据C. 音频数据D. 有时间戳的数据答案: D142. 在数据挖掘中,“正则化”用于解决什么问题?A. 缺失数据B. 不平衡数据集C. 过拟合D. 高维数据答案: C143. 下面哪个是数据挖掘中的一种用于减少特征数量的技术?A. 特征增强B. 特征提取C. 特征识别D. 特征映射答案: B144. 数据挖掘中的“聚类”方法通常用于什么?A. 为每个数据点分配一个类别标签B. 预测数值型的目标变量C. 发现数据中的自然分组D. 找出数据中的异常点答案: C145. 数据挖掘中“多元线性回归”主要用于解决什么类型的问题?A. 分类B. 聚类C. 回归D. 关联规则发现答案: C146. 下面哪个是数据挖掘中用于分类任务的算法?A. 主成分分析(PCA)B. K-均值聚类C. 决策树D. 相关系数分析答案: C147. 数据挖掘中的“模型融合”是什么意思?A. 使用不同类型的模型处理不同的数据集B. 将多个模型的预测结果结合起来以改善性能C. 在同一个数据集上训练多个模型D. 合并两个不同的数据集答案: B148. 下面哪个是用于在数据挖掘中评估聚类算法性能的指标?A. 准确率B. 召回率C. Jaccard指数D. F1分数答案: C149. 数据挖掘中的“AdaBoost”算法主要用于什么?A. 数据降维B. 异常检测C. 分类和回归任务D. 关联规则挖掘答案: C150. 在数据挖掘中,“文本预处理”可能包括哪些步骤?A. 词干提取B. 停用词去除C. 词袋模型创建D. 所有上述答案: D151. 数据挖掘中的“特征选择”和“特征提取”有什么区别?A. 特征选择是选择重要的特征,特征提取是创建新的特征B. 特征选择是创建新的特征,特征提取是选择重要的特征C. 它们是同一个概念的不同名称D. 它们都用于降低模型的复杂度答案: A152. 数据挖掘中的“决策边界”是用于哪种类型的任务?A. 聚类。
数据挖掘原理与应用 试题及答案试卷一、(30分,总共30题,每题答对得1分,答错得0分)单选题1、在ID3算法中信息增益是指( D )A、信息的溢出程度B、信息的增加效益C、熵增加的程度最大D、熵减少的程度最大2、下面哪种情况不会影响K-means聚类的效果?( B )A、数据点密度分布不均B、数据点呈圆形状分布C、数据中有异常点存在D、数据点呈非凸形状分布3、下列哪个不是数据对象的别名 ( C )A、样品B、实例C、维度D、元组4、人从出生到长大的过程中,是如何认识事物的? ( D )A、聚类过程B、分类过程C、先分类,后聚类D、先聚类,后分类5、决策树模型中应如何妥善处理连续型属性:( C )A、直接忽略B、利用固定阈值进行离散化C、根据信息增益选择阈值进行离散化D、随机选择数据标签发生变化的位置进行离散化6、假定用于分析的数据包含属性age。
数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70。
问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。
第二个箱子值为:( A )A、18.3B、22.6C、26.8D、27.97、建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?( C )A、根据内容检索B、建模描述C、预测建模D、寻找模式和规则8、如果现在需要对一组数据进行样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量,应该采取( A )A、聚类分析B、回归分析C、相关分析D、判别分析9、时间序列数据更适合用( A )做数据规约。
A、小波变换B、主成分分析C、决策树D、直方图10、下面哪些场景合适使用PCA?( A )A、降低数据的维度,节约内存和存储空间B、降低数据维度,并作为其它有监督学习的输入C、获得更多的特征D、替代线性回归11、数字图像处理中常使用主成分分析(PCA)来对数据进行降维,下列关于PCA算法错误的是:( C )A、PCA算法是用较少数量的特征对样本进行描述以达到降低特征空间维数的方法;B、PCA本质是KL-变换;C、PCA是最小绝对值误差意义下的最优正交变换;D、PCA算法通过对协方差矩阵做特征分解获得最优投影子空间,来消除模式特征之间的相关性、突出差异性;12、将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C )A、频繁模式挖掘B、分类和预测C、数据预处理D、数据流挖掘13、假设使用维数降低作为预处理技术,使用PCA将数据减少到k维度。
数据挖掘(练习)1、(单选,4分)以下哪项不属于知识发现的过程?( )A、数据清理B、数据挖掘C、知识可视化表达D、数据测试答案:D2、(单选,4分)以下哪些不属于数据挖掘的内容?()A、分类B、聚类C、离群点检测D、递归分析答案:D3、(单选,4分)以下哪个不是常见的属性类型?()A、A.标称属性B、数值属性C、高维属性D、序数属性答案:C4、(单选,4分)以下哪个度量属于数据散度的描述?()A、均值B、中位数C、标准差D、众数答案:C5、(单选,4分)以下哪个度量不属于数据中心趋势度描述?(D )A、A.均值B、中位数C、众数D、四分位数答案:D6、(单选,4分)对数据进行数据清理、集成、变换、规约是数据挖掘哪个步骤的任务?( )A、频繁模式挖掘B、分类和预测C、数据预处理D、噪声检测答案:C7、(单选,4分)聚类分析是数据挖掘的一种重要技术,以下哪个算法不属于聚类算法?( )A、K-MeansB、DBSCANC、SVMD、EM 答案:C8、(单选,4分)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?( )A、根据内容检索B、建模描述C、预测建模D、寻找模式和规则答案:C9、(单选,4分)当不知道数据所带标签时. 可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( )A、分类B、聚类C、关联分析D、隐马尔可夫链答案:B10、(单选,4分)在构造决策树时,以下哪种不是选择属性的度量的方法?( )A、信息增益B、信息增益率C、基尼指数D、距离答案:D11、(单选,4分)知识发现流程最核心的步骤是什么?( )A、数据挖掘B、数据预处理C、模式评估D、知识表示答案:A12、(单选,4分)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( )A、频繁模式挖掘B、分类和预测C、数据预处理D、数据流挖掘答案:C13、(单选,4分)以下哪个度量属于数据中心性的描述?()A、均值B、极差C、众数D、标准差答案:A14、(单选,4分)类分析是数据挖掘的一种重要技术,以下哪个算法不属于聚类算法?( )A、K-MeansB、DBSCANC、KNND、EM 答案:C15、(单选,4分)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?( ) A、关联规则发现B、聚类C、分类D、自然语言处理答案:A16、(单选,4分)以下哪些算法是分类算法?( ) A、DBSCAN B、C4.5 C、K-Mean D、EM 答案:B17、(单选,4分)K-means算法的缺点不包括?( ) A、K必须是事先给定的B、选择初始聚类中心C、对于“噪声”和孤立点数据是敏感的D、可伸缩、高效答案:D18、(单选,4分)机器学习中,下面哪些方法不可以避免分类中的过拟合问题?()A、增加样本数量B、增加模型复杂度C、去除噪声D、正则化答案:B19、(单选,4分)下面那个不属于知识发现过程。
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
数据分析与数据挖掘技术考试(答案见尾页)一、选择题1. 数据分析的主要目的是什么?A. 提取数据中的有用信息B. 存储和管理数据C. 改进数据挖掘算法D. 预测未来趋势2. 在进行数据分析时,以下哪个步骤不是必须的?A. 数据收集B. 数据清洗C. 数据转换D. 数据可视化3. 数据挖掘中常用的聚类算法有(多选)?A. K-meansB. DBSCANC. 线性回归D. 决策树4. 以下哪种数据格式通常用于数据挖掘项目?A. 文本文件B. Excel表格C. JSOND. SQL数据库5. 在数据挖掘中,用于评估模型性能的指标有(多选)?A. 准确率B. 召回率C. F1分数D. 平均绝对误差6. 数据挖掘过程中,如何确定哪些特征对预测目标变量最重要?A. 人工检查B. 使用统计方法C. 自动化特征选择算法D. 专家经验7. 在数据挖掘中,处理缺失值的方法有(多选)?A. 删除含有缺失值的记录B. 填充缺失值C. 使用均值、中位数等统计量填充D. 对缺失值进行建模预测8. 以下哪种图形工具常用于数据挖掘结果的展示?A. 折线图B. 柱状图C. 散点图D. 饼图9. 在数据挖掘中,分类算法的类型有(多选)?A. 决策树B. 支持向量机C. 随机森林D. 神经网络10. 数据挖掘项目完成后,通常需要进行哪些步骤来确保成果的可复现性和可扩展性?A. 代码备份B. 文档编写C. 数据备份D. 版本控制11. 数据分析的目的是什么?A. 提供决策支持B. 改进数据存储C. 增强数据安全性D. 优化数据传输速度12. 数据挖掘技术中,以下哪种技术主要用于发现数据中的关联规则?A. 分类和预测B. 聚类分析C. 关联规则挖掘D. 回归分析13. 在聚类分析中,以下哪个指标是用来衡量聚类效果的?A. 误差平方和 (SSE)B. R方值 (R^2)C. K-means 距离D. DBSCAN 簇类中心14. 以下哪种方法通常用于数据预处理?A. 特征选择B. 数据降维C. 异常值检测D. 数据转换15. 在数据可视化中,以下哪种图表最适合展示分类数据的分布?A. 条形图B. 折线图C. 饼图D. 散点图16. 在数据挖掘中,以下哪个算法主要用于预测模型?A. KNN (K-最近邻)B. 决策树C. 聚类分析D. 关联规则挖掘17. 在进行回归分析时,以下哪个指标是用来衡量模型拟合优度的?A. R方值 (R^2)B. 模型复杂度C. 均方误差 (MSE)D. 平均绝对误差 (MAE)18. 在数据挖掘中,以下哪个技术可以用于发现数据中的异常或离群点?A. 分类和预测B. 聚类分析C. 关联规则挖掘D. 异常值检测19. 在数据可视化中,以下哪种图表可以帮助我们理解数据的趋势和模式?A. 条形图B. 折线图C. 饼图D. 散点图20. 数据挖掘主要依赖于哪种技术?A. 统计学B. 机器学习C. 数据库管理D. 计算机编程21. 在进行数据分析时,通常首先会进行哪种操作?A. 数据清洗B. 数据转换C. 数据可视化D. 数据挖掘22. 下列哪个工具不是常用的数据挖掘工具?A. ExcelB. PythonC. RD. SPSS23. 数据挖掘过程中,经常使用的算法类型有哪些?A. 分类和聚类B. 回归和关联规则学习C. 时间序列分析和异常检测D. 以上全部24. 在数据挖掘中,用于发现数据间潜在关系的方法有哪几种?A. 基于距离的方法B. 基于密度的方法C. 基于聚类的方法D. 基于关联规则的方法25. 数据挖掘中,评估模型性能的常用指标有哪些?A. 准确率B. 召回率C. F1分数D. 以上全部26. 在构建数据挖掘模型时,通常会使用哪种技术来减小过拟合的风险?A. 特征选择B. 正则化C. 数据降维D. 数据集成27. 数据挖掘中的特征工程包括哪些步骤?A. 特征提取B. 特征筛选C. 特征转换D. 特征规范化28. 在实际应用中,如何确定哪些特征对预测目标变量最重要?A. 使用统计测试B. 利用特征重要性评分C. 通过领域专家经验判断D. 以上全部29. 下列哪个过程属于数据分析?A. 数据清洗B. 数据转换C. 数据建模D. 数据存储30. 数据挖掘通常涉及哪些步骤?A. 数据收集B. 特征选择C. 模型训练D. 评估模型31. 在数据挖掘中,什么是关联规则?A. 两个或多个变量之间的关系B. 一组数据的统计特性C. 数据的分组D. 数据的聚合32. 以下哪种算法常用于聚类分析?A. 决策树B. 线性回归C. K-均值算法D. 支持向量机33. 数据可视化工具通常用于展示什么?A. 数据集的大小B. 数据的分布情况C. 数据的关系D. 数据的统计特性34. 在数据挖掘中,什么是分类算法?A. 用于预测离散值(如类别)的算法B. 用于预测连续值(如价格)的算法C. 用于发现数据中的模式和趋势的算法D. 用于数据清洗和预处理的算法35. 关联规则学习中的“支持度”是什么?A. 一组数据项在数据集中出现的频率B. 一组数据项之间的相关性C. 一组数据项之间的差异度D. 一组数据项的置信度36. 在聚类分析中,K-均值算法的目标是什么?A. 最小化所有数据点到其所属簇质心的距离之和B. 最大化所有数据点到其所属簇质心的距离之和C. 最小化所有数据点与其所属簇平均距离之和D. 最大化所有数据点与其所属簇平均距离之和37. 数据挖掘中常用的评估指标有哪些?A. 准确率B. 召回率C. F1分数D. 均方误差38. 在数据挖掘中,以下哪个过程是用来发现数据中的模式或关联的?A. 数据清理B. 数据集成C. 数据挖掘39. 数据挖掘任务通常不包括以下哪项?A.分类B.聚类C.回归D.数据合并40. 以下哪种图形工具常用于数据挖掘过程中的数据可视化?A. 折线图B. 柱状图C. 饼图D. 网络图41. 在数据挖掘中,聚类分析可以用于:A. 发现不同客户群体的特征B. 优化业务流程C. 预测股票价格D. 评估数据质量42. 数据分析中的“描述性统计”主要关注什么?A. 数据的分布情况B. 数据的极值C. 数据的复杂性D. 数据的生成过程43. 在数据挖掘中,决策树是一种常用的算法,它的基本思想是什么?A. 通过一系列规则对数据进行分类B. 通过逐步消除变量来简化数据集C. 通过计算数据的方差来评估数据质量D. 通过建立数据模型来预测未来44. 数据库系统工程师在数据分析与数据挖掘项目中主要负责哪些工作?B. 数据清洗C. 数据分析D. 数据可视化45. 数据挖掘中的“关联规则学习”主要用于发现数据项之间的什么关系?A. 对立关系B. 包容关系C. 依赖关系D. 无关关系二、问答题1. 什么是数据挖掘?请简要描述其过程。
数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。
答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。
答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。
答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。
数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。
2. 描述什么是关联规则挖掘,并给出一个例子。
答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。
例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。
四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。
(2) 计算规则A => B的置信度。
答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。
(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。
五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。
答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。
- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。
- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。
2014~ 2015学年 第二学期期末考试数据挖掘技术 试卷(A 卷)参考答案 使用班级 1250411/12/13/14 答题时间_120分钟_一、填空题 (共10空, 每空1分,共10分)1.数据挖掘的任务:分类、聚类、回归、关联分析、离群点监测、演化分析、序列模式。
2.数据集的三个重要特性:_维度、稀疏性、分辨率。
二、判断题 (共10小题, 每小题1分,共10分)判断下列3~7小题的描述是否正确?3.ID3算法不仅可以处理离散属性,还可以处理连续属性。
( F )4.决策树方法通常用于关联规则挖掘。
( F )5.先验原理可以表述为,一个频繁项集的任一子集也应该是频繁的。
( T )6.Clementine 是IBM 公司的专业级数据挖掘软件。
( T )7.具有较高的支持度的项集具有较高的置信度。
( F ) 判断下列8~12小题的描述是否属于数据挖掘任务?8.利用历史数据预测公司将来的股价。
( T )9.监测病人心率的异常变化 。
( F ) 10.监测地震活动的地震波 。
( F ) 11.提取声波的频率 。
( F )12.根据顾客喜好摆放商品位置。
( T )三、简答题(6个小题,每小题5分,共30分)13. 什么是信息熵?答:信息熵(entropy)是用来度量一个属性的信息量(1分)。
假定S 为训练集,S 的目标属性C 具有m 个可能的类标号值,C={C1,C2,…,Cm},假定训练集S 中,Ci 在所有样本中出现的频率为 (i=1,2,3,…,m),则该训练集S 所包含的信息熵定义为: (3分) 熵越小表示样本对目标属性的分布越纯,反之熵越大表示样本对目标属性分布越混乱。
(1分) 14.什么是文本挖掘?答:文本挖掘是一个对具有丰富语义的文本进行分析,从而理解其所包含的内容和意义的过程。
(2分)对其进行深入的研究可以极大地提高人们从海量文本数据中提取信息的能力,具有很高的商业价值。
(1分)包括分词、文本表示、文本特征选择、文本分类、文本聚类、文档自动摘要等内容。
数据挖掘测试题及答案一、单项选择题(每题2分,共10题,共20分)1. 数据挖掘中,用于发现数据集中的关联规则的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:B2. 以下哪个选项不是数据挖掘的步骤之一:A. 数据预处理B. 数据探索C. 数据收集D. 数据分析答案:C3. 在分类问题中,以下哪个算法属于监督学习:A. 聚类B. 决策树C. 关联规则D. 异常检测答案:B4. 数据挖掘中,用于发现数据集中的频繁项集的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree5. 在数据挖掘中,以下哪个选项不是数据预处理的步骤:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:D6. 以下哪个算法主要用于聚类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:A7. 在数据挖掘中,以下哪个选项不是数据挖掘的应用领域:A. 市场分析B. 医疗诊断C. 社交网络分析D. 视频游戏开发答案:D8. 以下哪个算法主要用于异常检测:A. K-meansB. AprioriC. Naive BayesD. One-Class SVM答案:D9. 在数据挖掘中,以下哪个选项不是数据挖掘的输出结果:B. 规则C. 趋势D. 软件答案:D10. 以下哪个算法主要用于分类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:D二、多项选择题(每题3分,共5题,共15分)1. 数据挖掘中,以下哪些算法可以用于分类问题:A. K-meansB. Decision TreeC. Naive BayesD. Logistic Regression答案:BCD2. 在数据挖掘中,以下哪些步骤属于数据预处理:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:ABC3. 以下哪些算法可以用于聚类问题:A. K-meansB. AprioriC. Hierarchical ClusteringD. DBSCAN答案:ACD4. 在数据挖掘中,以下哪些步骤属于数据探索:A. 数据可视化B. 数据摘要C. 数据分类D. 数据变换答案:AB5. 以下哪些算法可以用于异常检测:A. K-meansB. One-Class SVMC. Isolation ForestD. Apriori答案:BC三、简答题(每题5分,共3题,共15分)1. 简述数据挖掘中关联规则挖掘的主要步骤。
数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。
答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。
答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。
答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。
答案:划分属性5.支持向量机(SVM)算法适用于______问题。
答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。
答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。
数据挖掘及应用考试试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于数据挖掘的主要任务?A. 分类B. 聚类C. 关联规则挖掘D. 数据清洗答案:D2. 数据挖掘中,以下哪项技术不属于关联规则挖掘的方法?A. Apriori算法B. FP-growth算法C. ID3算法D. 决策树算法答案:C3. 以下哪个算法不属于聚类算法?A. K-means算法B. DBSCAN算法C. Apriori算法D. 层次聚类算法答案:C4. 数据挖掘中,以下哪个属性类型不适合进行关联规则挖掘?A. 连续型属性B. 离散型属性C. 二进制属性D. 有序属性答案:A5. 数据挖掘中,以下哪个评估指标用于衡量分类模型的性能?A. 准确率B. 精确度C. 召回率D. 所有以上选项答案:D二、填空题(每题3分,共30分)6. 数据挖掘的目的是从大量数据中挖掘出有价值的________和________。
答案:知识;模式7. 数据挖掘的主要任务包括分类、聚类、关联规则挖掘和________。
答案:预测分析8. Apriori算法中,最小支持度(min_support)和最小置信度(min_confidence)是两个重要的参数,它们分别用于控制________和________。
答案:频繁项集;强规则9. 在K-means聚类算法中,聚类结果的好坏取决于________和________。
答案:初始聚类中心;迭代次数10. 数据挖掘中,决策树算法的构建过程主要包括________、________和________三个步骤。
答案:选择最佳分割属性;生成子节点;剪枝三、判断题(每题2分,共20分)11. 数据挖掘是数据库技术的一个延伸,它的目的是从大量数据中提取有价值的信息。
()答案:√12. 数据挖掘过程中,数据清洗是必不可少的步骤,用于提高数据质量。
()答案:√13. 数据挖掘中,分类和聚类是两个不同的任务,分类需要训练集,而聚类不需要。
大学试卷学年第 1 学期;课号课程名称数据挖掘与数据分析(A卷; ,闭卷);适用班级(或年级、专业)(每位考生需要答题纸(8k)2 张、草稿纸(16k)1 张)一、选择题(20分, 2分*10题)1.数据挖掘基本任务不包括()A.分类与预测B.聚类分析C.关联规则D.战略分析2.聚类分析通常要求()A.类别内数据“差异性”尽可能小,类别间“差异性”尽可能小B.类别内数据“差异性”尽可能大,类别间“差异性”尽可能大C.类别内数据“差异性”尽可能小,类别间“差异性”尽可能大D.类别内数据“差异性”尽可能大,类别间“差异性”尽可能小3.数据挖掘建模过程不包括()A.数据取样、探索、预处理B.模式发现C.数据建模及模型评估D.数据存储空间4.数据标准化主要目的是()A.消除指标之间的量纲和大小不一的影响B.完全消除数据之间的差异C.有利于节省数据计算时间D.有利于减少数据计算存储空间5.数据规约包括()A.属性规约和数值规约B.属性规约和变量规约C.数值规约和变量规约D.属性规约与数值压缩6.关联分析主要任务包括()A.支持度分析B.关联规则的产生C.模式分析D.结构挖掘7.()表示分类模型中正确分类的样本数与样本总数的比值A.准确度(Accuracy)B.精确度(Precision)C.支持度D.置信度8.聚类算法不包括哪类()A.基于划分的方法B.基于层次的方法C.基于密度的方法D.基于智能的方法9.项集A、B同时发生的概率称为关联规则的()A.支持度B.置信度C. 可信度D.提升度10.离群点检测方法不包括()A.基于统计B.基于控制模型C.基于聚类D.基于邻近度二、判断题(20分,2分*10题,正确标记√,错误标记×)1. 数据挖掘基本任务包括利用分类与预测、聚类、关联规则等方法。
()2. Numpy包正确的安装命令如下:pip python install numpy。
()3.相关性分析是数据特征分析方法。
2014~ 2015学年 第二学期期末考试数据挖掘技术 试卷(A 卷)参考答案 使用班级 1250411/12/13/14 答题时间_120分钟_一、填空题 (共10空, 每空1分,共10分)1.数据挖掘的任务:分类、聚类、回归、关联分析、离群点监测、演化分析、序列模式。
2.数据集的三个重要特性:_维度、稀疏性、分辨率。
二、判断题 (共10小题, 每小题1分,共10分)判断下列3~7小题的描述是否正确?3.ID3算法不仅可以处理离散属性,还可以处理连续属性。
( F )4.决策树方法通常用于关联规则挖掘。
( F )5.先验原理可以表述为,一个频繁项集的任一子集也应该是频繁的。
( T )6.Clementine 是IBM 公司的专业级数据挖掘软件。
( T )7.具有较高的支持度的项集具有较高的置信度。
( F ) 判断下列8~12小题的描述是否属于数据挖掘任务?8.利用历史数据预测公司将来的股价。
( T )9.监测病人心率的异常变化 。
( F ) 10.监测地震活动的地震波 。
( F ) 11.提取声波的频率 。
( F )12.根据顾客喜好摆放商品位置。
( T )三、简答题(6个小题,每小题5分,共30分)13. 什么是信息熵?答:信息熵(entropy)是用来度量一个属性的信息量(1分)。
假定S 为训练集,S 的目标属性C 具有m 个可能的类标号值,C={C1,C2,…,Cm},假定训练集S 中,Ci 在所有样本中出现的频率为 (i=1,2,3,…,m),则该训练集S 所包含的信息熵定义为: (3分)熵越小表示样本对目标属性的分布越纯,反之熵越大表示样本对目标属性分布越混乱。
(1分) 14.什么是文本挖掘?答:文本挖掘是一个对具有丰富语义的文本进行分析,从而理解其所包含的内容和意义的过程。
(2分)对其进行深入的研究可以极大地提高人们从海量文本数据中提取信息的能力,具有很高的商业价值。
(1分)包括分词、文本表示、文本特征选择、文本分类、文本聚类、文档自动摘要等内容。
数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 序列模式B. 分类模式C. 频繁项集D. 聚类模式答案:C4. 以下哪个指标不是用于评估分类模型性能的?A. 准确率B. 召回率C. F1分数D. 马氏距离答案:D5. 在数据挖掘中,以下哪个算法是用于聚类的?A. K-meansB. 逻辑回归C. 随机森林D. 支持向量机答案:A6. 以下哪个选项不是数据挖掘过程中的步骤?A. 数据预处理B. 模式发现C. 结果评估D. 数据存储答案:D7. 在数据挖掘中,异常检测的主要目的是识别以下哪种类型的数据?A. 频繁出现的模式B. 罕见的模式C. 预测未来的数据D. 聚类的数据答案:B8. 以下哪个选项不是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据集成C. 数据变换D. 数据压缩答案:D9. 在数据挖掘中,以下哪个算法是用于特征选择的?A. 主成分分析B. 线性判别分析C. 支持向量机D. 决策树答案:D10. 以下哪个选项不是数据挖掘中常用的数据表示方法?A. 决策树B. 向量空间模型C. 邻接矩阵D. 频率分布表答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘中常用的聚类算法包括哪些?A. K-meansB. 层次聚类C. DBSCAND. 支持向量机答案:A、B、C12. 在数据挖掘中,以下哪些是关联规则挖掘的典型应用场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 社交网络分析答案:A、C13. 数据挖掘中,以下哪些是分类模型评估的常用指标?A. 准确率B. 召回率C. ROC曲线D. 马氏距离答案:A、B、C14. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征选择B. 特征提取C. 特征变换D. 数据清洗答案:A、B、C15. 数据挖掘中,以下哪些是数据预处理的常见任务?A. 缺失值处理B. 异常值检测C. 数据规范化D. 数据压缩答案:A、B、C三、简答题(每题10分,共30分)16. 请简述数据挖掘中分类和聚类的主要区别。
数据挖掘试题AB卷及参考答案课程名称: 数据挖掘(A卷) 考试时间: 姓名: 班级: 学号: 一、名词解释(每题5分,共20分)1、数据挖掘2、聚类3、关联规则4、分类二、数据挖掘方法应用题(每空20分,共60分)1、表一是痛风疾病病人的一些临床数据,现准备采用关联规则的挖掘方法对这些数据进行挖掘,请计算“发作部位”属性中各个值的“支持度”、“可信度”,并简要说明各个规则的意义。
表一痛风疾病病人临床数据序号性别年龄发作疼痛发病发作血尿诊断部位情况时间部位酸测结果皮色定1 男小于趾关频繁不定黯红高是50岁节2 男大于趾关频繁不定黯红极高是50岁节3 男大于指关不频不定偏红偏高是50岁节繁4 男大于指关频繁不定黯红高是50岁节5 男小于指关频繁不定黯红极高是50岁节6 男大于指关频繁不定黯红极高是50岁节7 男大于多关不频夜间正常偏高是50岁节繁加重8 男小于多关频繁夜间黯红高是50岁节加重9 男小于指关频繁不定正常高是50岁节10 男小于多关频繁不定正常高是50岁节11 男小于指关频繁不定黯红极高是50岁节12 男小于趾关不频不定正常高是50岁节繁2、表二是部分基因表达数据,请用K-Means方法对数据进行聚类分析,聚类分析时只需要考虑t0、t0.5、t2三项,将数据聚成二个类,且只需要计算一次质心即可。
质心计算公式如下:1centroid, m,X,inX,C ii欧几里德距离计算机公式如下:2dd(Xi,Xj),( )1/2 (x,x),ikjkk1,误差平方和计算机公式为:k2 J,|X,m|,,ei,,iXC1i表二基因表达数据2014.00 7.00 t0 t0.5 t2overcast 64 65 TRUE yesrainy 71 91 TRUE norainy 75 80 FALSE yessunny 75 70 TRUE yesovercast 72 90 TRUE yes3、表三是天气情况和外出运动情况的数据表,现准备使用ID3对数据进行挖掘分析,请用该算法对数据进行计算,并画出数据所对应的决策树(只给出第一次分类所对应的决策树)。
一、填空题:(每题6分, 共30分)1. 数据挖掘的主要问题包括:。
2. 数据挖掘的性能问题包括:。
3. 数据挖掘的分类方法有。
4. 数据挖掘的聚类方法有。
5.数据挖掘的基本步骤是。
二、问答题: (每题6分,共30分)1.对于类特征化,基于数据立方体的实现与诸如面向属性归纳的关系实现之间的主要不同是什么?讨论哪种方法最有效,在什么条件下最有效。
2.数据仓库和数据库有何不同?它们有那些相似之处?3.在现实世界的数据中,元组在某些属性上缺少值是常有的。
描述处理该问题的各种方法。
4. 试述对于多个异种信息源的集成,为什么许多公司宁愿使用更新驱动的方法,而不愿使用查询驱动的方法。
5.为什么说强关联规则不一定都是有趣的,举例说明。
三、证明题(10分)1.证明频繁集的所有非空子集必须也是频繁的。
2.Apriori的一种变形将事务数据库D中的事务划分为个不重叠的部分。
证明在D中是频繁的任何项集至少在D中的一个部分中是频繁的。
四、算法分析与扩展(15分)1 .描述判定树算法的思想。
2.写出比较易懂的算法伪代码3.指出算法的不足之处,应该从哪些方面增强算法的功能和性能。
五、计算题(15分)给定两个对象,分别用元组(22,1,42,10),(20,0,36,8)表示。
1.计算两个对象之间的欧几里德距离;2.计算两个对象之间的蔓哈坦距离;3.给定年龄变量的如下度量值18,22,25,42,28,43,33,35,56,28计算age的平均绝对偏差。
一、填空题:(每题6分, 共30分)1.数据挖掘是一个多学科领域,这些学科包括:数据库系统、统计学、机器学习、可视化、信息科学。
2.数据挖掘的功能有特征化和区分、关联分析、分类和预测、聚类分析、孤立点分析、演变分析。
3.数据挖掘的分类方法有判定树算法,贝叶斯方法,神经网络,K-最近邻分类,基于案例的推理,遗传算法,粗糙集方法,模糊集方法等。
4.数据挖掘的聚类方法有划分方法、层次的方法、基于密度的方法、基于网格的方法、基于模型的方法。
数据挖掘试题及答案### 数据挖掘试题及答案#### 一、选择题1. 数据挖掘的最终目标是什么?- A. 数据清洗- B. 数据集成- C. 数据分析- D. 发现知识答案:D2. 以下哪个算法不属于聚类算法?- A. K-means- B. DBSCAN- C. Apriori- D. Hierarchical Clustering答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现什么? - A. 异常值- B. 频繁项集- C. 趋势- D. 聚类答案:B4. 决策树算法中的剪枝操作是为了解决什么问题?- A. 过拟合- B. 欠拟合- C. 数据不平衡- D. 特征选择答案:A5. 以下哪个是时间序列分析的常用方法?- A. 逻辑回归- B. 线性回归- C. ARIMA模型- D. 支持向量机答案:C#### 二、简答题1. 简述数据挖掘中的分类和聚类的区别。
答案:分类是监督学习过程,它使用标记的训练数据来预测数据的类别。
聚类是无监督学习过程,它将数据分组,使得同一组内的数据点相似度较高,不同组之间的数据点相似度较低。
2. 解释什么是异常检测,并给出一个实际应用的例子。
答案:异常检测是一种识别数据集中异常或不寻常模式的方法。
它通常用于识别欺诈行为、网络安全问题或机械故障。
例如,在信用卡交易中,异常检测可以用来识别潜在的欺诈行为。
3. 描述决策树的工作原理。
答案:决策树通过一系列的问题(通常是二元问题)来对数据进行分类。
从根节点开始,数据被分割成不同的子集,然后每个子集继续被分割,直到达到叶节点,叶节点代表最终的分类结果。
#### 三、应用题1. 给定一组客户数据,包括年龄、收入和购买历史。
使用数据挖掘技术来识别哪些客户更有可能购买新产品。
答案:可以使用决策树或逻辑回归等分类算法来分析客户数据,识别影响购买行为的关键特征。
通过训练模型,可以预测哪些客户更有可能购买新产品。
2. 描述如何使用关联规则挖掘来发现超市中商品的购买模式。
2014~ 2015学年 第二学期期末考试数据挖掘技术 试卷(A 卷)参考答案 使用班级 1250411/12/13/14 答题时间_120分钟_一、填空题 (共10空, 每空1分,共10分)1.数据挖掘的任务:分类、聚类、回归、关联分析、离群点监测、演化分析、序列模式。
2.数据集的三个重要特性:_维度、稀疏性、分辨率。
二、判断题 (共10小题, 每小题1分,共10分)判断下列3~7小题的描述是否正确?3.ID3算法不仅可以处理离散属性,还可以处理连续属性。
( F )4.决策树方法通常用于关联规则挖掘。
( F )5.先验原理可以表述为,一个频繁项集的任一子集也应该是频繁的。
( T )6.Clementine 是IBM 公司的专业级数据挖掘软件。
( T )7.具有较高的支持度的项集具有较高的置信度。
( F ) 判断下列8~12小题的描述是否属于数据挖掘任务?8.利用历史数据预测公司将来的股价。
( T )9.监测病人心率的异常变化 。
( F ) 10.监测地震活动的地震波 。
( F ) 11.提取声波的频率 。
( F )12.根据顾客喜好摆放商品位置。
( T )三、简答题(6个小题,每小题5分,共30分)13. 什么是信息熵?答:信息熵(entropy)是用来度量一个属性的信息量(1分)。
假定S 为训练集,S 的目标属性C 具有m 个可能的类标号值,C={C1,C2,…,Cm},假定训练集S 中,Ci 在所有样本中出现的频率为 (i=1,2,3,…,m),则该训练集S 所包含的信息熵定义为: (3分)熵越小表示样本对目标属性的分布越纯,反之熵越大表示样本对目标属性分布越混乱。
(1分) 14.什么是文本挖掘?答:文本挖掘是一个对具有丰富语义的文本进行分析,从而理解其所包含的内容和意义的过程。
(2分)对其进行深入的研究可以极大地提高人们从海量文本数据中提取信息的能力,具有很高的商业价值。
(1分)包括分词、文本表示、文本特征选择、文本分类、文本聚类、文档自动摘要等内容。
(2分) 15. 什么是主成份分析?答:主成份分析(PCA )是一种用于连续属性的线性变换技术,找出新的属性(主成份),(1分)这些新属性是原属性的线性组合,(1分)是相互正交的,(1分)使得原来数据投影到较小的集合中,并且捕获数据的最大变差。
(1分)PCA 通常揭示先前未曾觉察的联系,解释不寻常的结果。
(1分) 16. 简述k -最近邻算法过程。
答:KNN 分类算法的基本描述如下: 算法名:KNN输入:最近邻数目K ,训练集D ,测试集Z (1分) 输出:对测试集Z 中所有测试样本预测其类标号值 (1分) (1)for 每个测试样本 (1分) do(2) 计算z 和每个训练样本 之间的距离 (1分) (3) 选择离z 最近的k 最近邻集合 (1分) (4) 返回 中样本的多数类的类标号 (1分) (5)end for17. 简述Apriori 算法原理。
答:Apriori 性质:一个项集是频繁的,那么它的所有子集都是频繁的。
(1分)一个项集的支持度不会超过其任何子集的支持度。
(1分)该算法采用逐层的方法找出频繁项集,(1分)首先找出1频繁-项集,通过迭代方法利用频繁k-1-项集生成k 候选项集,(1分)扫描数据库后从候选k-项集中指出频繁k-项集,直到生成的候选项集为空。
(1分) 18. 什么是离群点?答:离群点是在数据集中偏离大部分数据的数据,(2分)使人怀疑这些数据的偏离并非由随机因素产生,(1分)而是产生于完全不同的机制。
(2分)四、计算题 (共2题, 每小题20分,共40分)1221()(,,...,)log mm i i i Entropy S Entropy p p p p p ===-∑(',')z x y Z =∈(,)x y D ∈z D D ⊆(',)d x x z D19.数据集如下表:以A1、B1、C1为初始簇中心,利用曼哈顿距离的k-means算法计算:(1) 第一次循环后的三个簇中心;(2) 最后的三个簇中心,以及各簇包含的对象。
(要有计算步骤)解:(1)计算其他7个数据点到三个中心的曼哈顿距离:M(A2,A1)=11 M(A2,B1)=7 M(A2,C1)=4M(A3,A1)=13 M(A3,B1)=3 M(A3,C1)=2M(B2,A1)=8 M(B2,B1)=10 M(B2,C1)=7M(B3,A1)=12 M(B3,B1)=2 M(B3,C1)=3M(B4,A1)=3 M(B4,B1)=7 M(B4,C1)=8M(C2,A1)=2 M(C2,B1)=10 M(C2,C1)=11M(C3,A1)=8 M(C3,B1)=8 M(C3,C1)=5经过本次循环,属于A1簇的数据点为(A1,B4,C2),(1分)中心为X1(1.67,2.33);(1分)属于B1簇的数据点为(B1,B3),(1分)中心为X2(5.5, 8.5);(1分)属于C1簇的数据点为(C1,A2,A3,B2,C3),(1分)中心为X3(8, 5.2);(1分)(2)计算10个点到三个新中心的距离:M(A1,X1)=1 M(A1,X2)=11 M(A1,X3)=10.2M(A2,X1)=10 M(A2,X2)=7 M(A2,X3)=1.2M(A3,X1)=12 M(A3,X2)=2 M(A3,X3)=4.8M(B1,X1)=9 M(B1,X2)=1 M(B1,X3)=5.8M(B2,X1)=7.66 M(B2,X2)=10 M(B2,X3)=4.2M(B3,X1)=11 M(B3,X2)=1 M(B3,X3)=5.8M(B4,X1)=2 M(B4,X2)=8 M(B4,X3)=7.2M(C1,X1)=10 M(C1,X2)=3 M(C1,X3)=2.8M(C2,X1)=1.66 M(C2,X2)=11 M(C2,X3)=10.2M(C3,X1)=7 M(C3,X2)=8 M(C3,X3)=2.2经过本次循环,属于X1簇的数据点为(A1,B4,C2),(1分)中心为Y1(1.67, 2.33);(1分)属于X2簇的数据点为(A3,B1,B3),(1分)中心为Y2(6, 8.67);(1分)属于X3簇的数据点为(A2,B2,C1,C3),(1分)中心为Y3(8.25, 4.25);(1分)再次计算10个数据点到三个新中心的距离:M(A1,Y1)=1 M(A1,Y2)=11.67 M(A1,Y3)=9.5M(A2,Y1)=10 M(A2,Y2)=6.67 M(A2,Y3)=1.5M(A3,Y1)=12 M(A3,Y2)=1.33 M(A3,Y3)=6M(B1,Y1)=9 M(B1,Y2)=1.67 M(B1,Y3)=7M(B2,Y1)=7.66 M(B2,Y2)=9.67 M(B2,Y3)=3M(B3,Y1)=11 M(B3,Y2)=0.33 M(B3,Y3)=7M(B4,Y1)=2 M(B4,Y2)=8.67 M(B4,Y3)=6.5M(C1,Y1)=9 M(C1,Y2)=2.67 M(C1,Y3)=4M(C2,Y1)=1.66 M(C2,Y2)=11.67 M(C2,Y3)=9.5M(C3,Y1)=7 M(C3,Y2)=7.67 M(C3,Y3)=1.5经过本次循环,属于Y1簇的数据点为(A1,B4,C2),(1分)中心为Y1(1.67, 2.33);(1分)属于Y2簇的数据点为(A3,B1,B3,C1),(1分)中心为Y2(6.25, 8.25);(1分)属于Y3簇的数据点为(A2,B2,C3),(1分)中心为Y3(8.67, 3.33);(1分)可以看到,已经不变了。
(2分)使用朴素Bayes算法预测气候状况为雨天,高温,湿度中等,微风时,是否适合户外运动?解:即求X={下雨,高,中等,微风}的户外运动为可以的后验概率P(Y=y|X)和X在户外运动为不可以的后验概率P(Y=n|X),其中概率最大者为X的预测值。
(3分)根据Bayes定理,P(Y=y|X)=P(X|Y=y) * P(Y=y)=P(x1|Y=y)* P(x2|Y=y)* P(x3|Y=y)* P(x4|Y=y)* P(Y=y) (2分)这里,P(x1|Y=y)=P(x1=下雨|Y=y)=3/6 (1分)P(x2|Y=y)=P(x2=高|Y=y)=1/6 (1分)P(x3|Y=y)=P(x3=中等|Y=y)=4/6 (1分)P(x4|Y=y)=P(x4=微风|Y=y)=5/6 (1分)P(Y=y)=6/10 (1分)因此,P(Y=y|X)=3/6*1/6*4/6*5/6*6/10=1/36 (1分)同理,计算P(Y=n|X)= P(X|Y=n) * P(Y=n)=P(x1|Y=n)* P(x2|Y=n)* P(x3|Y=n)* P(x4|Y=n)* P(Y=n) (1分)其中,P(x1|Y=n)= P(x1=下雨|Y=n)=1/4 (1分)P(x2|Y=n)= P(x2=高|Y=n)=2/4 (1分)P(x3|Y=n)= P(x3=中等|Y=n)=1/4 (1分)P(x4|Y=n)= P(x4=微风|Y=n)=2/4 (1分)P(Y=n)=4/10 (1分)因此,P(Y=n|X)=1/4*2/4*1/4*2/4*4/10=1/160 (1分)因为P(Y=y|X) > P(Y=n|X),故气候状况为雨天,高温,湿度中等,微风时,户外运动应为适合。
(2分)五、应用题(共1题,共10分)21.你作为银行信息中心工作人员,请阐述数据挖掘技术在银行业务中的应用,并写出相关的数据分析流程。
参考答案:利用数据预处理技术进行数据清洗、整理、集成等;(1分)利用分类方法对客户进行分类,预测客户需要的服务;(2分)利用聚类方法分析客户详细类别,有针对性地开展服务推广;(2分)利用关联分析分析客户相关服务,方便推介服务;(1分)利用离群点挖掘技术分析数据异常,防止入侵。
(1分)流程:原始数据→预处理→数据挖掘→结果模式→评估与表示→知识。
(3分)。