SPSS两个独立样本秩和检验操作步骤
- 格式:docx
- 大小:465.77 KB
- 文档页数:4
---------------------------------------------------------------最新资料推荐------------------------------------------------------
SPSS学习之——两独立样本的非参数检验
(Mann-Whitney U
SPSS 学习笔记之两独立样本的非参数检验( Mann-Whitney U 一、概述Mann‐WhitneyU 检验是用得最广泛的两独立样本秩和检验方法。
简单的说,该检验是与独立样本 t 检验相对应的方法,当正态分布、方差齐性等不能达到 t 检验的要求时,可以使用该检验。
其假设基础是:
若两个样本有差异,则他们的中心位置将不同。
二、问题为了研究某项犯罪的季节性差异,警察记录了 10 年来春季和夏季的犯罪数量,请问该项犯罪在春季和夏季有无差异。
下面使用Mann‐WhitneyU 检验进行分析。
SPSS 版本为 20。
三、统计操作SPSS 变量视图:
SPSS 数据视图:
进入菜单如下图:
点击进入如下的界面,目标选项卡不需要手动设置进入字段选项卡,将报警数量选入检验字段框,将季节选入组框中。
再进入设置选项卡,选中自定义检验单选按钮,选择Mann‐WhitneyU(二样本)检验。
1 / 2
点击运行即可。
四、结果解读这是输出的主要结果,零假设是报警数量的分布在季节类别上相同,其 P=0.0090.05,故拒绝原假设,认为报警数量在季节上有统计学差异。
双击该表格,可以得到更多的信息,不再叙述。
SPSS两个独立样本秩和检验步骤例表:
分组动物数病变
组织
各组病变严重程度分级/动物数(只)
数字
评分病变不明显病变轻度
病变中度病变显着
正常组14 心
11 2 0 1 5 肝
14 0 0 0 0 脑
14 0 0 0 0 主动脉
14 0 0 0 0
模型组16 心
4 7
5 0 17 肝 1 3 9 3 30 脑10
6 0 0 6 主动脉8 4 1 3 15
对正常组及模型组各脏器病变差异进行统计分析:
1、打开SPSS,点变量视图,进行定义,注意都选择数值类型。
2、点数据视图,组别以1、2代替,病变程度0(不明显)、1(轻度)、2(中度)及3(显着),例数以模型及正常组心脏例数为例填上。
3、点数据→加权个案,频率变量选择例数,点确定,弹出输出数据对话框,可以选择不保存。
4、点击分析→非参数检验→2个独立样本,检测变量列表选择病变,分组变量选择组别,点定义组,写上1和2,再选择Mann-Whitney U检验,点确定。
5、分析结果看双侧P值,示例结果为,P<,具有显着性差异。
秩和检验前面介绍的均数的区间估计及假设检验,都是要求个体变量值服从正态分布,或根据中心极限定理,当样本较大时,样本均数服从正态分布。
这种要求样本来自总体分布型是已知的,在此基础上对总体参数进行估计或检验,称为参数统计(parametric statistics)。
但在医学研究中,许多数据不符合参数统计的要求,这时有两种处理的方法。
一是,进行数据转换,使其符合参数统计方法的要求。
二是,选择非参数检验方法,非参数检验(non-parametric test)方法是对样本来自的总体分布不作要求(如不要求样本来自正态分布)的一类假设检验方法。
非参数检验的主要优点是对样本的总体分布不作要求,适用的范围广,尤其是当变量中有不确定数值时,如<0.5mg,可用非参数检验。
同时,非参数检验方法存在其致命的缺点,其检验功效低于相应的参数统计方法。
因此,如果数据符合参数统计的要求首选参数统计方法;如果数据不符合参数统计的要求有两个选择,一是选择非参数检验方法。
下面介绍了属于非参检验的两种秩和检验(rank sum test)方法。
二是,将数据经过变换使其符合参数统计方法,再选择参数统计方法,本节介绍了几种数据变换方法。
应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。
⑤数据的一端或两端是不确定数值,如“>50mg”等。
一、配对资料的Wilcoxon符号秩和检验(Wilcoxon signed-rank test)例1对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg/l)样品号(1)离子交换法(2)蒸馏法(3)差值(4)=(2) (3)秩次(5)1 0.5 0.0 0.5 22 2.2 1.1 1.1 73 0.0 0.0 0.0 —4 2.3 1.3 1.0 65 6.2 3.4 2.8 86 1.0 4.6 -3.6 -97 1.8 1.1 0.7 3.58 4.4 4.6 -0.2 -19 2.7 3.4 -0.7 -3.510 1.3 2.1 -0.8 -5T+=+26.5T-=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。
秩和检验 spss中文版秩和检验在SPSS实现的操作步骤秩和检验:例两组受试者文化程度如下表,比较两组受试者文化程度有无差别。
小学1 初中2 高中3 大学4 组1 65 18 30 13 组2 42 6 23 11【操作过程】1、建立数据文件设定三个变量: 文化程度、group、频数。
文化程度:小学、初中、高中、大学,分别用1、2、3、4代表;group,组别,分组变量:组1 ,组2;频数,即对应每组数量。
文化程度 group 频数1.00 1.00 65.002.00 1.00 18.003.00 1.00 30.004.00 1.00 13.001.002.00 42.002.00 2.00 6.003.00 2.00 23.004.00 2.00 11.00 2、统计分析过程(1)数据, 加权个案 , 选中加权个案W 单选框,在频率变量E 框里选入:频数 , 单击确定;(2)分析==>非参数检验==>两独立样本(2)检验变量列表框:文化程度(3)分组变量框:group(分组);单击定义组钮在group1框和group2框中分别输入1和2单击继续钮(4)检验类型复选框组:选中Mann-Whitney U复选框(5) 单击确定钮【结果解释】Mann-Whitney 检验秩group N 秩均值秩和文化程度 1 126 102.82 12955.502 82 107.08 8780.50总数 208a检验统计量文化程度Mann-Whitney U 4954.500Wilcoxon W 12955.500Z -.543渐近显著性(双侧) .587a. 分组变量: group组1平均秩和为 102.82;组2平均秩和为:107.08。
u(Z值)=0.543,P(渐进显著性)=0.587。
尚不能认为两组文化程度有差别。
下面是赠送的团队管理名言学习,不需要的朋友可以编辑删除!!!谢谢!!!1、沟通是管理的浓缩。
秩和检验前面介绍的均数的区间估计及假设检验,都是要求个体变量值服从正态分布,或根据中心极限定理,当样本较大时,样本均数服从正态分布。
这种要求样本来自总体分布型是已知的,在此基础上对总体参数进行估计或检验,称为参数统计(parametric statistics)。
但在医学研究中,许多数据不符合参数统计的要求,这时有两种处理的方法。
一是,进行数据转换,使其符合参数统计方法的要求。
二是,选择非参数检验方法,非参数检验(non-parametric test)方法是对样本来自的总体分布不作要求(如不要求样本来自正态分布)的一类假设检验方法。
非参数检验的主要优点是对样本的总体分布不作要求,适用的范围广,尤其是当变量中有不确定数值时,如<0.5mg,可用非参数检验。
同时,非参数检验方法存在其致命的缺点,其检验功效低于相应的参数统计方法。
因此,如果数据符合参数统计的要求首选参数统计方法;如果数据不符合参数统计的要求有两个选择,一是选择非参数检验方法。
下面介绍了属于非参检验的两种秩和检验(rank sum test)方法。
二是,将数据经过变换使其符合参数统计方法,再选择参数统计方法,本节介绍了几种数据变换方法。
应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。
⑤数据的一端或两端是不确定数值,如“>50mg”等。
一、配对资料的Wilcoxon符号秩和检验(Wilcoxon signed-rank test)例1对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg/l)样品号(1)离子交换法(2)蒸馏法(3)差值(4)=(2) (3)秩次(5)1 0.5 0.0 0.5 22 2.2 1.1 1.1 73 0.0 0.0 0.0 —4 2.3 1.3 1.0 65 6.2 3.4 2.8 86 1.0 4.6 -3.6 -97 1.8 1.1 0.7 3.58 4.4 4.6 -0.2 -19 2.7 3.4 -0.7 -3.510 1.3 2.1 -0.8 -5T+=+26.5T-=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。
秩和检验前面介绍的均数的区间估计及假设检验,都是要求个体变量值服从正态分布,或根据中心极限定理,当样本较大时,样本均数服从正态分布。
这种要求样本来自总体分布型是已知的,在此基础上对总体参数进行估计或检验,称为参数统计(parametric statistics)。
但在医学研究中,许多数据不符合参数统计的要求,这时有两种处理的方法。
一是,进行数据转换,使其符合参数统计方法的要求。
二是,选择非参数检验方法,非参数检验(non-parametric test)方法是对样本来自的总体分布不作要求(如不要求样本来自正态分布)的一类假设检验方法。
非参数检验的主要优点是对样本的总体分布不作要求,适用的范围广,尤其是当变量中有不确定数值时,如<0.5mg,可用非参数检验。
同时,非参数检验方法存在其致命的缺点,其检验功效低于相应的参数统计方法。
因此,如果数据符合参数统计的要求首选参数统计方法;如果数据不符合参数统计的要求有两个选择,一是选择非参数检验方法。
下面介绍了属于非参检验的两种秩和检验(rank sum test)方法。
二是,将数据经过变换使其符合参数统计方法,再选择参数统计方法,本节介绍了几种数据变换方法。
应用条件①总体分布形式未知或分布类型不明;②偏态分布的资料:③等级资料:不能精确测定,只能以严重程度、优劣等级、次序先后等表示;④不满足参数检验条件的资料:各组方差明显不齐。
⑤数据的一端或两端是不确定数值,如“>50mg”等。
一、配对资料的Wilcoxon符号秩和检验(Wilcoxon signed-rank test)例1对10名健康人分别用离子交换法与蒸馏法,测得尿汞值,如表9.1的第(2)、(3)栏,问两种方法的结果有无差别?表1 10名健康人用离子交换法与蒸馏法测定尿汞值(μg/l)样品号(1)离子交换法(2)蒸馏法(3)差值(4)=(2) (3)秩次(5)1 0.5 0.0 0.5 22 2.2 1.1 1.1 73 0.0 0.0 0.0 —4 2.3 1.3 1.0 65 6.2 3.4 2.8 86 1.0 4.6 -3.6 -97 1.8 1.1 0.7 3.58 4.4 4.6 -0.2 -19 2.7 3.4 -0.7 -3.510 1.3 2.1 -0.8 -5T+=+26.5T-=-18.5差值先进行正态性及方差齐性检验,看是否可以做参数检验,其检验效能高于非参数检验。
根据相关文献,进行双样本T检验SPSS
操作步骤
双样本T检验是一种常用的统计方法,用于比较两组独立样本
的均值是否存在显著差异。
下面是使用SPSS进行双样本T检验的
操作步骤:
1. 导入数据:在SPSS软件中打开数据文件,确保包含两组独
立样本的变量。
2. 设定分组:将两组样本分别指定为不同的组别,在SPSS中
使用“Variable View”界面进行设置。
确保组别变量的取值分别对应
两组样本。
4. 设置变量:在弹出的“Independent-Samples T Test”对话框中,将需要比较的变量移至“Test Variables”框中。
同时,在“Grouping Variable”框中选择之前设定的组别变量。
5. 设置选项:可以根据需要,在对话框中选择一些额外的选项。
例如,可以指定显著性水平、置信区间等。
6. 运行分析:点击“OK”按钮,SPSS将自动执行双样本T检验
并生成结果。
7. 解读结果:查看SPSS输出结果中的统计量和显著性水平。
一般情况下,我们关注的是均值差异是否显著,即显著性水平是否
小于设定的显著性水平(通常为0.05或0.01)。
请注意,进行双样本T检验前需要满足一些基本假设,如两组
样本来自正态分布总体、具有相同的方差等。
在解读结果时,应考
虑是否满足这些假设。
以上是根据相关文献进行双样本T检验SPSS操作的基本步骤,希望对你有帮助!。
SPSS两个独立样本秩和检验步骤例表:
分组动物数病变
组织
各组病变严重程度分级/动物数(只)数字
评分病变不明显病变轻度病变中度病变显著
正常组14 心11 2 0 1 5 肝14 0 0 0 0 脑14 0 0 0 0 主动脉14 0 0 0 0
模型组16 心 4 7 5 0 17 肝 1 3 9 3 30 脑10 6 0 0 6 主动脉8 4 1 3 15
对正常组及模型组各脏器病变差异进行统计分析:
1、打开SPSS,点变量视图,进行定义,注意都选择数值类型。
2、点数据视图,组别以1、2代替,病变程度0(不明显)、1(轻度)、2(中度)及3(显著),例数以模型及正常组心脏例数为例填上。
3、点数据→加权个案,频率变量选择例数,点确定,弹出输出数据对话框,可以选择不保存。
4、点击分析→非参数检验→2个独立样本,检测变量列表选择病变,分组变量选择组别,点定义组,写上1和2,再选择Mann-Whitney U检验,点确定。
5、分析结果看双侧P值,示例结果为0.008,P<0.01,具有显著性差异。