解析:|x-y|=|(x-a)+(a-y)|≤|x-a|+|y-a|<h+k.
答案:C
2
)
3
4
5
1
2
3
4
5
2已知h>0,a,b∈R,命题甲:|a-b|<2h;命题乙:|a-1|<h,且|b-1|<h,则甲
是乙的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
解析:显然a与b的距离可以很近,满足|a-b|<2h,但此时a,b与1的距离
同.
(4)根据定理及推论易得:||a|-|b||≤|a±b|≤|a|+|b|.
【做一做1-1】 已知实数a,b满足ab<0,则有 (
A.|a-b|<|a|+|b|
B.|a+b|>|a|-|b|
C.|a+b|<|a-b|
D.|a-b|<||a|-|b||
解析:∵ab<0,∴a,b异号,
∴|a-b|>|a+b|成立.
答案:C
)
【做一做1-2】 若|a-c|<b,则下列不等式不成立的是 (
)
A.|a|<|b|+|c| B.|c|<|a|+|b|
C.b>||c|-|a|| D.b<|a|-|c|
解析:由|a-c|<b,可知b>0,∴b=|b|.
∵|a|-|c|≤|a-c|,
∴|a|-|c|<b,则|a|<b+|c|=|b|+|c|,
答案:D
2.定理2(三个实数的绝对值的三角不等式)