近红外基础知识
- 格式:ppt
- 大小:4.07 MB
- 文档页数:72
近红外光谱知识科普全文共四篇示例,供读者参考第一篇示例:近红外光谱是一种应用广泛的光谱学技术,它可以用来研究物质的结构和性质,同时也在很多领域发挥着重要作用。
本文将介绍近红外光谱的基本原理、应用领域以及未来发展方向,希望能够帮助读者更好地了解这一技术。
近红外光谱是一种利用近红外光(波长范围一般在700-2500纳米)与物质相互作用来获取信息的技术。
近红外光谱仪通常由光源、样品室、光学系统和检测器等部分组成。
在近红外光谱分析中,样品受到近红外光的照射后,会发生吸收、散射或反射,这些现象会导致光的强度或波长发生变化,通过检测这些变化可以获取样品的光谱信息。
近红外光谱在很多领域都有着广泛的应用。
在食品工业中,近红外光谱可以用来检测食品的成分、营养价值和品质,帮助生产商保证产品的质量。
在药物研发领域,近红外光谱可以用来分析药物的成分和结构,指导新药的设计和研发过程。
在环境监测和地质勘探领域,近红外光谱可以用来检测空气、水、土壤中的有害物质,帮助保护环境。
此外,近红外光谱还被广泛应用于农业、化工、医学等领域。
近红外光谱技术的发展一直在不断推进。
随着光谱仪器的不断改进和智能化技术的应用,近红外光谱分析的速度和精度得到了显著提高。
未来,近红外光谱技术有望在医疗诊断、生物医药领域得到更广泛的应用,为人类健康和生活质量的提升做出更大的贡献。
总结起来,近红外光谱是一种强大的光谱学技术,具有广泛的应用前景和发展潜力。
通过继续开展研究和技术创新,近红外光谱技术将在未来发挥更加重要的作用,为人类社会的发展带来更多的益处。
希望本文可以帮助读者更好地了解近红外光谱技术,促进其在不同领域的应用和发展。
【仅供参考】。
第二篇示例:近红外光谱(Near-Infrared Spectroscopy, NIR)是一种在近红外波段(波长约700-2500纳米)范围内进行光谱分析的技术方法。
近红外光谱技术广泛应用于农业、医药、食品工业、环境监测等领域,具有快速、准确、非破坏性、无需样品预处理等优点。
红外光谱分析及FTIR基础知识第⼀章红外光谱的基本原理l—1 光的性质光是⼀种电磁波,它在电场和磁场⼆个正交⾯内波动前进.⼆个波峰或波⾕之间的距离为波长,以“ λ”表⽰。
电磁波包括波长短⾄0.1纳⽶的x射线到长达106厘⽶的⽆线电波.其中波长为0.75微⽶到200微⽶,即从可见光区外延到微波区的⼀段电磁波称红外光.红外光通常以微⽶为单位(µm).1微⽶等于10-4厘⽶(1µm=10-4cm),因此,红外光波长以厘⽶为单位时,其倒数就是1厘⽶内的波数(ν),所以波数的单位ν是厘⽶-1(cm-1).红外光既可以波长(λ),也可以波数(cm-1)表⽰,⼆者关系如(1-1)式所⽰:ν(cm-1)=104/λ(µm) (1-1)由于光的能量与频率有关,因此红外光也可以频率为单位.频率(f)是每秒内振动的次数.频率、波长和波数的关系是,f=c/λ=ν*c (1—2)式中:c为光速,是常数(3×1010厘⽶秒); λ是波长(微⽶);f是频率(秒-1);ν是波数(厘⽶-1).由于波数是频率被⼀个定值(光速)除的商值,因此红外光谱中常将波数称为频率.光既有波的性质,⼜有微粒的性质.可将⼀束光看作⾼速波动的粒⼦流,最⼩单位为光⼦.根据爱因斯坦—普朗克关系式,⼀定波长或频率的单⾊光束中每个光⼦具有能量E,E=hf=hcν=hc/λ (1—3)式中:h为普朗克常量,等于6.63×10-34焦⽿·秒.按(1.3)式可以算出波长2µm(5000厘⽶-1)的红外光⼦能量为6.63×10-34 (焦⽿·秒)x3x1010/2x10-4厘⽶=9.95x10-20焦⽿.同理波长l0微⽶(1000厘⽶-1)的红外光⼦的能量仅1.99×10-20焦⽿.可见波长短,能量⼤.波长长,能量⼩.1-2 分⼦光谱的种类有机分⼦同其他物质⼀样始终处于不停的运动之中。
近红外光谱基本原理
近红外光谱是一种非常有用的分析技术,它利用近红外区域的光谱特征来识别和分析物质。
这种技术基于近红外区域波长范围内的光与样品相互作用的原理。
在近红外光谱中,样品通常处于固体、液体或气体的形态。
当近红外光照射到样品上时,样品中的分子会吸收或反射部分光线,产生特定的光谱图。
这个光谱图能够提供关于样品组成和结构的信息。
近红外光谱的基本原理是根据物质中的伸缩、弯曲和振动等分子振动模式来解释。
不同的化学物质具有不同的分子振动模式,因此它们会对近红外光产生不同的响应。
通过比较样品光谱与已知物质的光谱数据库,可以确定样品的成分。
近红外分析技术的优势在于它非常灵敏、快速和非破坏性。
由于近红外光具有较高的穿透能力,所以可以对样品进行非接触式的分析。
此外,近红外光谱还可以同时检测多个成分,大大提高了分析效率。
总的来说,近红外光谱是一种广泛应用于化学、生物、医药和食品等领域的分析技术。
它的基本原理是利用近红外光与样品相互作用的特性,通过分析样品的光谱图来确定样品的成分和结构。
这种技术具有灵敏、快速、非破坏性等优点,因此在实际应用中具有广泛的应用前景。
第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。
2、红外光谱的特点:特征性强、适用范围广。
红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。
红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。
(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。
(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。
4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。
5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。
通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。
(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。
这种方法指出了吸收峰的归属,带有图谱解析的作用。
近红外检测原理近红外(NIR)检测是一种非侵入式的光谱分析技术,广泛应用于农业、食品、制药等领域。
它通过检测物质在近红外光波段的吸收和散射特性,来获取物质的相关信息。
近红外检测原理基于光的相互作用和物质的分子结构。
1. 光的相互作用与近红外光谱光是由一系列电磁波组成的,包括可见光、紫外光、红外光等。
近红外光谱波段通常被定义为750-2500纳米(nm),相对于可见光而言,近红外光具有较高的穿透力和较弱的散射能力。
2. 分子的能级和跃迁分子在吸收光的过程中,会发生能级跃迁。
当分子吸收能量与能级间隔相等时,电子会从基态跃迁至激发态。
近红外光的能量正好位于分子能级间隔的范围,因此适用于近红外检测。
3. 物质的吸收特性不同物质在近红外光谱波段的吸收特性是由其分子结构和化学键决定的。
不同的化学键振动和伸缩会导致不同的吸收光谱。
通过测量物质在近红外光谱波段的吸收,可以了解其组成、浓度、质量等信息。
4. 光源、光谱仪和样品槽近红外检测系统由光源、光谱仪和样品槽等组成。
光源发出近红外光,经过样品后,被光谱仪接收并分析。
样品槽是将待测样品放置的空间,通常采用透明的玻璃或石英材料,以便光线穿透。
5. 数据处理和模型建立在近红外检测中,采集到的光谱数据需要进行预处理和分析。
预处理包括光谱校正、信号平滑和噪声滤波等步骤。
分析阶段则需要建立模型,将光谱数据与样品的性质进行关联,以实现定性或定量分析。
6. 应用领域近红外检测技术在农业、食品、制药等领域具有广泛应用。
例如,在农业领域,近红外检测可用于土壤分析、农作物品质评估和植物病害检测等;在食品领域,可用于食品成分分析、食品质量控制和食品安全检测等;在制药领域,可用于药品含量检测、药材鉴定和药品质量监控等。
近红外检测技术凭借其快速、无损、高效等优势,成为现代科学研究和工业生产中的重要工具。
在不断的研究和发展中,相信近红外检测技术将更加成熟和广泛应用于更多领域。
红外谱图解析基本知识基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动基团频率和特征吸收峰与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域(1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。
C-H的伸缩振动可分为饱和和不饱和的两种:饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。
如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。