含氮化合物
- 格式:doc
- 大小:630.50 KB
- 文档页数:17
含氮化合物汇总范文化学中的含氮化合物主要包括以下几类:氨基化合物、亚胺类化合物、腈类化合物、土马散类、阿托品类、α-氨基酸等。
这些化合物在医药、农药、染料、合成材料等领域具有广泛的应用。
以下是一些常见的含氮化合物的汇总:1.氨基化合物:-氨气:化学式为NH3,是最简单的氨基化合物,广泛应用于农业和化工领域。
-氨水:化学式为NH4OH,是氨和水混合后形成的溶液,常用于家庭清洁和实验室等领域。
-氨基酸:由氨基和羧基组成,是生命体内重要的组成部分,包括天冬酰胺、赖氨酸、精氨酸等。
2.亚胺类化合物:-丁二胺:化学式为C4H10N2,是一种无色液体,广泛用作溶剂、合成原料等。
-乙二胺:化学式为C2H8N2,也是一种无色液体,用途类似于丁二胺。
-咪唑:化学式为C3H4N2,是一种含有芳香环的亚胺类化合物,广泛应用于药物合成和电解质材料等。
3.腈类化合物:-丙腈:化学式为C3H3N,是一种无色液体,常用于有机合成反应中。
-苯腈:化学式为C6H5CN,是一种终端腈类化合物,广泛用于有机合成、染料和农药等。
-丁腈:化学式为C4H5N,也是一种常用的腈类化合物,可用于溶剂和聚合物合成等。
4.土马散类:-土马散:化学式为C14H10N4S,是一种含氮的芳香化合物,广泛用于染料和荧光增白剂等。
-三氯土马散:化学式为C15H9Cl3N2S,是一种含氮的有机合成中间体,常用于染料合成和电子材料等。
5.阿托品类:-阿托品:化学式为C17H23NO3,是一种含氮的生物碱,具有广泛的药理作用,常用于心脑血管疾病的治疗。
-托吡酯:化学式为C21H24N2O4,也是一种阿托品类似物,常用于治疗消化系统疾病。
6.α-氨基酸:-赖氨酸:化学式为C6H14N4O2,是一种含氮的α-氨基酸,是构成蛋白质的基本组成单元之一-苯丙氨酸:化学式为C9H11NO2,也是一种重要的α-氨基酸,广泛存在于蛋白质中。
以上只是一些常见的含氮化合物的汇总,实际上含氮化合物还包括许多其他类别,如吡啶、嗪类、胺碱类等。
含氮与化合物含氮化合物是指分子中包含氮原子的化合物。
氮(N)是地壳中第七大元素,占地壳质量的四分之三。
氮在生物体中起着重要的作用,是构成氨基酸、DNA、RNA和许多其他生物分子的必需元素。
含氮化合物在生物学、化学、医学等领域具有广泛的应用。
含氮化合物可以分为无机和有机两类。
无机含氮化合物包括氨气(NH3)、硝酸(HNO3)、一氧化氮(NO)、氮氧化物(N2O)等。
这些化合物在农业、化肥生产、工业生产等方面具有重要的用途。
例如,氨气广泛用于农业中作为植物的氮源,硝酸被用作肥料和爆炸物的制造原料,一氧化氮在医学上被用作一种重要的信号分子。
而氮氧化物则是大气中的主要污染物之一,对环境和人类健康产生不良影响。
有机含氮化合物则是指分子中含有碳氮键的化合物。
有机含氮化合物包括氨基酸、胺类化合物、腺嘌呤和嘧啶等。
这些化合物在生物体内起着重要的生物活性和功能。
氨基酸是构成蛋白质的基本单元,可以通过碳氮键连接起来形成多肽链或蛋白质。
胺类化合物包括一度胺、二度胺和三度胺等,它们在生物体内担任着重要的信号传递和代谢调节的功能。
腺嘌呤和嘧啶是DNA和RNA的组成部分,它们在遗传信息的传递和蛋白质合成中起着重要的作用。
含氮化合物在医学上也具有重要的应用。
许多药物和药物候选化合物中含有氮原子。
例如,含氮杂环化合物如吡啶、咪唑、吡嗪和吡咯等具有广泛的生物活性,它们在抗菌、抗病毒和抗肿瘤等方面发挥着重要的作用。
含氮杂环化合物还可以用作荧光探针,用于细胞成像和疾病诊断。
此外,含氮化合物还具有广泛的应用于化学合成、材料科学和环境科学等领域。
例如,含氮杂环化合物可以用于有机合成中的催化反应和键形成反应。
含氮杂环高分子化合物具有诸如导电性、光学性能等特殊性质,被广泛应用于电子器件和光电器件的制备。
含氮杂环化合物还可以用于催化剂的设计和制备,改善化学工业的效率和减少环境污染。
综上所述,含氮化合物在生物学、化学、医学和工业领域具有重要的应用。
含氮化合物的概念和存在
含氮化合物是指化学式中至少含有一个氮原子的化合物。
氮是地球上最丰富的元素之一,它在自然界中以气体的形式存在,占据了大气中的78%。
氮也存在于许多生物体中,如植物、动物和微生物。
含氮化合物在自然界中广泛存在,包括有机氮化合物和无机氮化合物。
有机氮化合物是由碳和氮原子组成的化合物,如蛋白质、核酸、氨基酸和酮胺。
无机氮化合物包括氨、硝酸盐和亚硝酸盐等,它们在环境中起着重要的生物地球化学作用。
含氮化合物在生物体中起着重要的作用。
它们是构成生物体的基本组成部分,如蛋白质是由氨基酸组成的,核酸是由核苷酸组成的。
含氮化合物还参与到生物体的代谢过程中,如氨基酸的转化、尿素循环等。
此外,含氮化合物还具有重要的生物活性,如药物和农药中常含有含氮结构。
然而,含氮化合物也可能对环境和健康造成负面影响。
例如,氮肥的过度使用可能导致土壤和水体中的氮过剩,造成水体富营养化和生态系统的破坏。
此外,一些含氮化合物也具有毒性,如亚硝酸盐可与氨基化合物反应生成亚硝胺,被认为是一种潜在的致癌物质。
综上所述,含氮化合物是一类广泛存在于自然界和生物体中的化合物,它们在生物体的构成、代谢和生物活性中起着重要作用,但也可能对环境和健康产生负面
影响。
含氮化合物的性质与反应含氮化合物是指分子中至少含有一个氮原子的化合物。
它们在化学反应中展现出多样性质与反应行为。
本文将讨论含氮化合物的性质以及其常见的反应类型。
一、含氮化合物的性质1. 氮气(N2)是自然界中最常见的氮化物。
它具有无色、无味、不可燃的性质。
氮气是空气中最主要的组成成分之一,约占78%。
由于氮气的惰性,它在一般条件下不会发生反应。
2. 氨(NH3)是含氮化合物中最简单的一种。
它具有刺激性气味,能溶于水,并可形成碱性溶液。
氨是一种重要的原料,广泛用于制造化学肥料以及合成其他氮化合物。
3. 硝酸盐是常见的含氮化合物。
它们具有强氧化性,并在许多反应中发挥重要作用。
硝酸盐广泛应用于炸药、火箭推进剂等领域。
4. 腈是含氮化合物的一类。
它们含有一个或多个氰基(-CN),具有特殊的物理和化学性质。
腈常用于有机合成中作为重要的中间体。
二、含氮化合物的反应类型1. 氧化还原反应:含氮化合物在氧化还原反应中表现出重要的特性。
例如,含氮有机化合物可以通过氧化还原反应转化为不同的氮氧化物,同时伴随着化学键的变化。
2. 加成反应:许多含氮化合物能够参与加成反应,特别是双键的加成反应。
在正电荷或亲电试剂的作用下,氮原子和其他原子形成新的化学键。
3. 取代反应:含氮化合物可以发生取代反应,其中氮原子或氮气可以被其他原子或基团所取代。
这类反应在有机合成中非常常见,可以产生不同结构和性质的化合物。
4. 氨解反应:氮化合物中的氮氢键可以发生氨解反应,生成氨气和其他有机或无机产物。
这是一种重要的反应类型,通常用于合成新的化合物或分离纯化化学物质。
5. 缩合反应:含氮化合物的缩合反应是指两个或多个分子通过断裂某些化学键并形成新的化学键而结合。
这类反应在有机合成中非常有用,可以合成复杂的有机分子。
结论含氮化合物具有丰富的性质和多样的反应类型。
了解和掌握含氮化合物的性质和反应,对于理解氮化学在生物、工业和环境领域的应用具有重要意义。
生产生活中的含氮化合物简介含氮化合物是指化学物质中含有氮元素的化合物。
在生产和生活中,含氮化合物具有广泛的应用,包括肥料、药物、染料、塑料等多个领域。
本文将介绍一些常见的生产生活中的含氮化合物以及它们的应用和特点。
1. 氨和尿素1.1 氨氨(NH3)是一种无色气体,具有刺激性气味。
在生活中,氨常用于制冷剂、清洁剂和肥料等。
作为制冷剂,氨可以在低温下改变状态,并广泛应用于冷库等场合。
作为清洁剂,氨可以用于清洗玻璃、金属和塑料等表面,具有良好的去污能力。
作为肥料,氨可以提供植物所需的氮元素,促进作物的生长和发育。
1.2 尿素尿素(CO(NH2)2)是一种无色结晶体,可以溶于水。
尿素是一种常见的肥料,它可以提供植物所需的氮、磷、钾等养分元素,促进植物的生长。
此外,尿素还广泛用于化妆品、药物和树脂等领域。
在化妆品中,尿素可以充当保湿剂,帮助皮肤保持水分。
在药物中,尿素可以用作利尿剂和解热剂。
在树脂中,尿素可以增加树脂的柔韧性和耐久性。
2. 含氮药物2.1 抗生素抗生素是一类广泛应用于医药领域的含氮化合物。
它们通过抑制细菌的生长和繁殖来治疗感染性疾病。
常见的抗生素包括青霉素、头孢菌素和四环素等。
这些抗生素具有不同的作用机制和适应症,常用于感染性疾病的治疗。
2.2 兴奋剂兴奋剂是一类具有刺激性作用的含氮化合物,在医药领域被用作兴奋剂和神经系统刺激剂。
常见的兴奋剂包括咖啡因、苯丙胺和可卡因等。
这些兴奋剂可以提高人的警觉性和注意力,并具有一定程度的兴奋作用。
3. 染料和颜料3.1 染料染料是一类广泛应用于纺织、印刷和染色领域的含氮化合物。
染料可以通过吸附到纤维的方式将颜色转移到物体上。
不同类型的染料具有不同的颜色和染色机理。
常见的染料包括偶氮染料、酞菁染料和酸性染料等。
3.2 颜料颜料是一类用于绘画、涂料和墨水等领域的含氮化合物。
颜料不同于染料,它们可以通过分散在某种介质中来实现色彩的表现。
常见的颜料包括合成颜料、钛白粉和群青等。
含氮化合物知识点总结含氮化合物是指分子中含有氮原子的化合物。
氮是地壳中最丰富的元素之一,它在自然界中以气体的形式存在,占空气的78%。
氮在生物体中起着重要的作用,它是构成蛋白质、核酸和其他生物分子的基本组成部分。
含氮化合物在化学、医药、农业等领域具有广泛的应用。
以下是含氮化合物的一些重要的知识点总结。
一、氨基化合物1. 氨基化合物的命名:氨基化合物是一类带有氨基基团的有机化合物,其命名通常加在主链上,用前缀amino-表示。
例如,乙胺是乙烷的氨基衍生物,苯胺是苯的氨基衍生物。
2.氨基化合物的性质:氨基化合物中的氮原子带有孤对电子,因此具有碱性。
它们能与酸发生酸碱反应,生成盐。
另外,氨基化合物还可以通过援助氢键与其他分子发生相互作用,形成氢键键合。
氨基化合物也可以发生亲电取代反应。
二、腈1.腈的命名:腈是含有一个碳氮三键的有机化合物,命名时通常以-腈作为后缀。
例如,乙腈是乙烷的腈衍生物,苯腈是苯的腈衍生物。
2.腈的制备:腈可以通过卤代烃与氰化物反应制备,或通过醇的脱水反应制备。
3.腈的性质:腈具有极性分子相互作用,能够与水和极性溶剂发生氢键作用。
腈具有较低的沸点和熔点,可以溶于大多数有机溶剂。
腈还可以与酸或碱发生加成反应,生成酰胺或酰胺盐等化合物。
三、亚胺1.亚胺的命名:亚胺是含有一个亚胺基(R-NH-R')的有机化合物,其命名通常以-亚胺作为后缀。
例如,甲亚胺是甲醛的亚胺衍生物,苯亚胺是苯的亚胺衍生物。
2.亚胺的制备:亚胺可以通过醛或酮与胺反应制备。
3.亚胺的性质:亚胺具有极性分子相互作用,能够与水和极性溶剂发生氢键作用。
亚胺还具有较高的熔点和沸点,能够溶于大多数有机溶剂。
亚胺可以发生亲电取代反应。
四、胺1.胺的命名:胺是一类含有氨基基团(-NH2)的有机化合物。
根据氮原子与其他基团的数目和结构,胺可以分为一级胺、二级胺和三级胺。
胺的命名通常以-胺作为后缀,同时使用前缀表示氮原子所连接的碳原子数目。
含氮化合物(一)名词解释1.蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来含氨基酸数少的肽段,不同来源的蛋白酶水解专一性不同。
2.肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、二肽酶等。
3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况。
4.生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨的过程(N2 + 3H2→ 2 NH3)。
5.硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的过程,植物体内硝酸还原作用主要在叶和根进行。
6.氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程。
7.转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。
8.尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的过程,有解除氨毒害的作用。
9.生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸。
10.生酮氨基酸:在分解过程中能转变成乙酰辅酶A和乙酰乙酰辅酶A的氨基酸称为生酮氨基酸。
11.核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根据作用位置不同可分为核酸外切酶和核酸内切酶。
12.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶。
13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构相似,又称氨基叶酸。
14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生物分子的修饰。
第十四章含氮有机化合物一基本内容1.定义和分类分子中含有氮元素的有机化合物统称为含氮化合物,可看作烃类分子中的一或几个氢原子被各种含氮原子的官能团取代的生成物。
含氮化合物的类型很多,主要有如下类型的化合物:(1)硝基化合物:烃分子中的氢原子被-NO2取代而成的化合物,其通式为R-NO2或Ar-NO2,如硝基甲烷、硝基苯等,其中芳香族硝基化合物较为重要。
(2)胺:氨分子中的部分或全部氢原子被烃基取代而成的化合物称为胺,根据分子中氮原子上所连烃基的数目,可分为伯、仲和叔胺;根据分子中氨基的数目,可分为一元胺、二元胺和多元胺。
根据烃基的种类,可分为脂肪胺和芳香胺等。
伯、仲和叔胺的通式可表示如下:RNH2R1R2NH R1R2R3N伯胺仲胺叔胺(3)烯胺:氨基直接与双键碳原子相连(也称α,β-不饱和胺)。
烯胺分子中氮原子上有氢分子时,容易转变为亚胺;若烯胺分子中氮原子上的两个氢都被烃基取代,则是稳定的化合物,在合成上很有用途。
(4)重氮化合物和重氮盐:重氮化合物是分子中含有重氮基(=N≡N)的化合物。
脂肪族重氮化合物的通式为R2C=N2,如重氮甲烷CH2=N≡N;芳香族重氮化合物符合Ar-N=N-X,如苯基重氮酸C6H5-N=N-OH。
重氮盐是重氮化合物的一类,以芳香族重氮盐较为重要,可用通式Ar-N+≡NX-表示,如氯化重氮苯C6H5-N2+Cl-等。
(5)偶氮化合物:分子中含有偶氮基-N=N-,并与两个烃基相连的化合物,通式为R-N=N-R1,如偶氮苯C6H5-N=N-C6H5。
(6)叠氮化合物:叠氮化合物的通式为RN3,纯粹的叠氮化合物,特别是烷基叠氮化合物容易爆炸,但却是有用的合成中间体。
(7)肟、腙、缩氨脲和脎:醛或酮与羟胺作用生成的具有>C=N-OH结构的化合物称为肟,如乙醛肟CH3CH=N-OH;醛或酮与肼(或取代肼)作用生成的具有>C=N-NH2结构的化合物称为腙,如丙酮苯腙(CH3)2C=N-NHC6H5;缩氨脲为醛或酮与氨基脲作用生成的具有>C=N-NHCONH2结构的化合物,如甲醛缩氨脲HCH=N-NHCONH2等。
脎是α-羟基醛、α-羟基酮或α-二酮与苯肼作用而生成的衍生物,如丁二酮脎。
(8)季铵盐和季铵碱:铵盐分子中四个氢分子都被烃基取代,则生成季铵盐,通式为R4N+Cl-(R是四个相同或不相同的烃基,X为卤原子或其他酸根,如氯化四甲基铵(CH3)4N+Cl-等;季铵碱是具有通式R4N+OH-的化合物(R是四个相同或不相同的烃基),如氢氧化四甲基铵(CH3)4N+OH-等。
2.反应含氮化合物的化学反应很多,本章主要对重要的几类含氮化合物的化学反应作总结。
(1)胺的反应:(ⅰ).胺的碱性:在脂肪胺中氮原子为SP 3杂化,氮原子上有一对未共享电子对占据在SP 3杂化轨道上,它可以接受质子而显碱性;芳胺分子中氮原子的杂化状态在SP 3与SP 2之间,孤对电子对的轨道具有更多的P 轨道成分,可以与苯环中π电子的轨道重叠而共轭,使部分电子云分布到苯环碳原子上,孤对电子接受质子的能力显著降低。
因此,芳胺的碱性比脂肪胺弱得多。
(ⅱ)烃化:胺容易与伯卤代烷起S N 2反应,反应很难停留在只生成仲胺或叔胺的一步;如用过量的伯卤代烷,可以得到季铵盐;胺与叔卤代烷主要生成消去反应产物;仲卤代烷、α-卤代酸、环氧化物也可以用来使胺烃化。
(ⅲ)酰化:伯、仲胺容易与酰氯或酸酐作用生成酰胺,大多数酰胺是固体,有一定的熔点,可以用于胺的鉴定;在有机合成中可以保护氨基,避免发生不需要的副反应。
RNH 2 + (CH 3CO)2O → RNHCOCH 3RNH 2 + p-CH 3C 6H 4SO 2Cl → p-CH 3C 6H 4SO 2NHR (溶于NaOH 溶液中) R 2NH + p-CH 3C 6H 4SO 2Cl → p-CH 3C 6H 4SO 2NR 2 (不溶于NaOH 溶液中) R 3N + p-CH 3C 6H 4SO 2Cl →不生成磺酰胺(ⅳ)亚硝化: RNH 2 + HX + NaNO 2 → R + + X - + N 2 (R +与H 2O 作用得ROH ) ArNH 2 + HX + NaNO 2 → ArN +≡NX - (芳香族重氮盐) R 2NH + HX + NaNO 2 → R 2N-N=O R 3N + HX + NaNO 2 → 无反应(pH<3)(ⅴ)叔胺氧化物的生成及消去:胺很容易被氧化,一般生成较复杂的混合物。
但叔胺在过氧化氢或过酸作用下生成叔胺氧化物。
后者在加热条件下与β-氢原子发生顺式消去。
例如:(ⅵ)作为亲核试剂与醛酮的反应:仲胺与醛或酮反应生成烯胺,通过烯胺与卤代烃起亲核取代反应,可在原有酮的α-位导入一烃基的酮;与酰卤反应则得到β-二酮;与α-卤代酮反应可以得到1,4-二羰基化合物;若与活泼烯键如α,β-不饱和羰基化合物作用,则起迈克尔加成反应,得到1,5-二羰基化合物。
如:(ⅶ)芳胺的亲电取代反应:氨基使芳环高度活化。
如苯胺溴时能立即得到2,4,6-三溴苯胺。
C 2H 5CH 3HH H 3C N(CH 3)222N(CH 3)2OH 3CHC 2H 5CH 3H_+H CH 3CH 3C 2H N+CH 2CHCOOCH 3OCH 2CH 2COOCH 3(2)重氮化合物的反应最简单的重氮化合物为重氮甲烷,以它为例对重氮化合物的主要反应归纳如下: (ⅰ)与酸的反应:重氮甲烷与羧酸作用,放出氮气而生成羧酸甲酯,是将贵重羧酸转变为甲酯的好方法。
RCO 2H + CH 2N 2 → RCO 2CH 3 + N 2(ⅱ)与醛或酮的反应:重氮甲烷与醛酮中的羰基进行亲核加成,然后,与羰基相连的一个烃基由羰基迁移到相邻的亚甲基上,同时脱去氮分子,得到多一个碳原子的化合物。
RCOR 1+ CH 2N 2 → RCOCH 2R 1(ⅲ)与酰氯反应:重氮甲烷与酰氯反应,生成α-重氮酮,同时放出氯化氢;放出的氯化氢使重氮酮分解成α-氯代酮。
α-重氮酮在氧化银存在下加热,重排而生成烯酮,称为Wolff 重排。
(ⅳ)生成碳烯:重氮甲烷或其他重氮化合物在光照或加热时产生碳烯,可立即与反应体系中的烯烃加成,生成环丙烷及其衍生物。
(3)芳基重氮盐(ⅰ)芳香族伯胺在亚硝酸钠和无机酸作用下,于低温很容易生成相应的芳香族重氮盐,后者在一定的条件下,发生重氮基被其他原子或原子团取代,生成相应的取代产物。
(ⅱ)还原反应:重氮盐可以被氯化亚锡、锡和盐酸、锌和盐酸、亚硫酸钠等还原成苯肼。
例如:ArN 2+X - + Sn + 4HCl → ArNHNH 2·HX + SnCl 4(ⅲ)偶联反应:RCOClCH N RCO CHNN-Ag 2O,RCOCH 2Cl RCH 2CO 2HCH2N 2:CH 2R 2CCR 2R 2C2CH 2N 2OHCNBrH N 2+Cl -+N N OH +H 2O+NaCl(弱酸和中性溶液) (4)硝基化合物(ⅰ)还原:若选用不同的还原试剂,可以使硝基化合物生成各种不同的中间还原产物,这些中间产物又在一定的条件下互相转变。
(ⅱ)与碱作用:RCH 2NO 2 + NaOH → (RCHNO 2)-Na + + H 2O 生成的盐是一种亲核试剂,可与羰基化合物发生缩合反应。
(ⅲ)硝基对苯环上取代基的影响:由于硝基具有强烈的-I 和-E 效应,使苯环的亲核取代反应性能增强。
3.制备(1)胺的制备:(ⅰ)氨或胺的直接烃化;(ⅱ)Gabriel 合成法;(ⅲ)还原法,包括硝基化合物的还原,酰胺、肟和腈的还原;(ⅳ)醛酮的还原胺化;(ⅴ)酰胺的Hofmann 重排。
(2)重氮化合物的制备:(ⅰ)重氮甲烷可以由R-N(NO)CH 3 型的化合物与碱反应得到,R 可以为烃基、酰基、磺酰基等;(ⅱ)酮腙用氧化汞去氢,生成相应的重氮化合物;(ⅲ)氨基乙酸酯与亚硝酸反应,生成重氮乙酸酯。
二.重点与难点本章的重点是各种含氮化合物的重要反应及其在有机合成中的应用、芳环上的亲核取代反应历程、Cope 消去和Hofmann 消去反应的机理和立体化学、活泼中间体碳烯和类碳烯的生成及其应用、烯胺的生成及其在有机合成中的应用等。
1. 芳环上的亲核取代反应芳环上拉电子取代基使环上的电子云密度降低,硝基是强的拉电子取代基,它使苯环上的亲电取代反应难于进行,但硝基邻位或对位上的卤原子容易被亲核试剂取代。
邻对位上的硝基数目增加,反应更容易进行。
离去基团不仅限于卤原子,烷氧基,氰基、硝基等也可以作为离去基团。
这类反应的速度与底物和亲核试剂的浓度成正比,可能是双分子反应,与S N 2相似,是芳环上的S N 2反应。
反应机理与饱和碳原子上的S N 2反应不同之处在于它是分步进行的。
底物先与亲核试剂生成加成物(Meisenheimer 络合物),然后离去基团再带着一对电子离去,即为加成-消去机理:N 2+Cl -N(CH 3)N NN(CH 3)2+RNO 22RNN +R O -[H]RN NR[H]RNHNHR在多数情况下,加成是决定反应速度的步骤,因此,离去基团的性质对反应速度的影响较小,例如:离去基团分别为-Cl ,-Br ,-I ,-SOC 6H 5,-SO 2C 6H 5时的反应速度差别不大。
值得注意的是,这种亲核取代反应有的是按照单电子转移机理进行的。
2. 烯胺常用的制备烯胺的方法是醛或酮与仲胺缩合,为了加速反应的进行,可以加苯、甲苯或二甲苯把生成的水带走,并加入对甲苯磺酸等为催化剂。
用来制备烯胺的仲胺常为环状化合物。
反应过程如下:由于每步反应都是可逆的,烯胺遇水能迅速水解而生成醛酮。
烯胺与卤代烃起亲核取代反应,可在原有酮的α-位导入一烃基的酮;与酰卤反应则得到β-二酮;与α-卤代酮反应可以得到1,4-二羰基化合物;若与活泼烯键如α,β-不饱和羰基化合物作用,则起迈克尔加成反应,得到1,5-二羰基化合物。
3.Hofmann 消去反应季铵盐在AgOH 作用下可以生成相应的季铵碱。
季铵碱在加热时与所连烃基上的β-氢原子发生E2的Hofmann 消去,生成烯烃、叔胺和水。
除β-碳原子上连有芳基外,通常生成双键碳原子上含烷基最少的Hofmann 烯烃,在多数情况下Hofmann 消去为反式共平面消去,。
如:L N O O +Nu -OLNuNO+N O O NuL -O+OH+HONHR 2++_HO NR 2+NR 2H 2O+_NR2+NR 2CH 3HHN(CH 3)3OH -+125C CH 3H+(CH 3)3N+H 2O但在反式消去不可能时,也可能发生顺式消去,但速度很慢。
三.精选题及其解14-1.把下列各胺,按碱性的强弱排列成序(在水溶液中):解 氮原子上有一对未共用电子,能接受质子,所以胺类化合物都具有一定的碱性。