拉伸法测杨氏模量讲解
- 格式:ppt
- 大小:1.87 MB
- 文档页数:21
拉伸法测金属丝的杨氏模量实验原理拉伸法测金属丝的杨氏模量实验原理实验目的:通过拉伸法测金属丝的杨氏模量,掌握金属丝杨氏模量的测量方法及实验技能,提高实验操作水平。
实验原理:金属丝拉伸实验是一种简单的测量材料机械杂质的方法,它在科学研究和生产制造过程中得到广泛应用。
这个实验通常使用一些小工具,比如一把弹簧秤,一些小轮,一个夹子以及钳子等等。
拉伸实验是测量材料的杨氏模量的常规方法之一。
实验步骤:1、首先,我们在金属丝上用准确的间隔标志出一个已知长度的距离,例如1米或1.5米等等。
2、然后将一个小轮拴在金属丝顶端,并在顶部钩上一个小夹子,并用钳子将小夹子挂在弹簧秤上。
3、再将一个小轮拴在金属丝底部,底下也有个小夹子,用钳子将小夹子固定在工作台上。
4、当我们拉伸金属丝时,弹簧秤将显示拉伸所受的拉力,这将导致金属丝被拉长。
5、我们再使用倍率计算出所产生的变形,即金属丝的伸长量。
6、我们将已知标记的区域中所包含的长度用微量尺测量出来,这个长度是变化前的初始长度。
7、通过上述实验结果,我们可以通过公式计算出杨氏模量。
具体计算方法:1、首先,我们要计算出材料的金属丝截面积。
2、我们还需要计算出金属丝所受的拉伸力。
3、最后,我们要计算出杨氏模量,这可以通过弹性模量和拉伸量来确定。
结论:此次实验通过一系列细致的步骤和计算,我们得到了金属丝的杨氏模量。
实验总结中,我们可以得到以下结论:1、拉伸实验是一种简单而又实用的测量材料机械性能的方法。
2、拉伸实验所得到的结果能够客观地反映材料的力学性能。
3、熟练掌握拉伸实验的方法对于科研和生产都很有帮助。
总之,此次拉伸法测金属丝的杨氏模量实验让我们更好地了解了杨氏模量的概念及其在实际应用中的测量方法。
同时也让我们更加熟练地掌握了实验操作技能,对以后的学习与研究都将有所裨益。
拉伸法测量金属丝的杨氏模量实验原理拉伸法测量金属丝的杨氏模量是一种常见的金属力学性质实验方法。
杨氏模量是特定物质在弹性变形的情况下表征其刚度的物理量。
该实验方法可以很好地了解金属材料在受到力引起的弹性变形时的性能。
以下是拉伸法测量金属丝的杨氏模量实验原理的详细介绍。
1. 实验材料和设备实验材料:金属丝样品、细密表、软尺、托盘、千分尺、滑轮和负载。
实验设备:万能材料试验机和电子天平。
2. 实验原理在拉伸实验中,断面积相同的样品材料被拉伸或挤压,以得出相对应的应力-应变关系。
应力是单位面积内的应力,通常用帕(Pa)表示,而应变是物体长度的相对变化量,通常用空间无量纲表示。
金属材料的杨氏模量可以通过以下公式计算:E = σ / ε,其中E是杨氏模量,σ是应力,ε是应变。
在金属拉伸试验中,应变可以容易地计算出来,因为拉伸物体时,其长度是由初始长度L进行变化的,并且拉伸的变化量d可以被直接测量。
此外,由于金属丝的横截面积可以被认为是恒定的,所以应力也可以由测量中施加的受力N / A(单位面积的负载)计算得出。
应变可以通过以下公式计算:ε = d / L,其中d是拉伸时金属丝长度的变化,而L 是金属丝初始的长度。
应力可以通过以下公式计算:σ = N / A,其中N是实验中施加的受力,而A是金属丝的截面积。
通过这些计算公式,可以得出金属丝样品的杨氏模量E。
此外,拉伸实验还可以通过施加不同大小的负载测量金属丝材料的最大拉伸强度,也可以得出金属样品材料的断裂伸长率和断裂强度,来计算材料的破断性能。
3. 实验步骤1) 将金属丝样品装入测试机,并将其夹紧在一个方向上以避免弯曲。
2) 通过细密表和软尺等测量元件测量金属丝的长度和直径,并计算其横截面积。
3) 在测试机的负载控制下施加一定的负载(例如50 N),使金属丝被拉伸或挤压。
4) 记录金属丝变形的长度,并计算出应变。
5) 通过读取测试机显示器上的内部传感器确定金属丝的负载荷。
实验拉伸法测量杨氏模量
杨氏模量可以简单定义为一种材料的弹性系数,是模拟材料的弹性的重要参数。
实验
拉伸法用于测量杨氏模量,它是在材料中采用精确的应力和应变组合并且配备计算用的计
算机进行测试。
实验拉伸法的主要步骤包括测量因素的定义,装夹并输入初始参数,应变
控制,载荷控制,力学分析,以及拉伸曲线的读取。
首先,定义测量因素是实验拉伸法测量杨氏模量最重要的一步。
这一步需要确定样
品的材料成分并建立实验参数,通常有应力-应变曲线,应力和应变数据等。
其次,样品
应该紧固在力学实验装置上,输入和设置初始参数(应力和应变),确定拉断力,完成拉
伸实验的准备工作。
然后,根据确定的初始参数,采用应变控制测量杨氏模量。
实验者
可根据需要适当调节应变控制系统,以使载荷平稳,并补充不足的应变数据,以备后续分析。
因此,在改变应变控制器设置的同时,改变载荷控制器的设置,以使载荷均匀分布
和应力应变曲线上呈现出线性状,从而实现更准确的载荷控制。
接下来,应用力学分析,形成硬度曲线。
最后,拉伸曲线的应变一般可被记录,根据拉伸曲线应变,可以计算杨
氏模量。
实验拉伸法可用于测量杨氏模量,它测量的结果可作为材料性能计算及工艺优化等方
面的重要参考。
与传统拉伸方法相比,实验拉伸法测试速度更快,而且较少受操作误差
的影响,为实现更精确的测试结果提供良好的依据。
拉伸法测金属杨氏模量实验目的: ① 调节光系统,使之处于正常工作状态② 测出钢丝随负载的变化率③ 将有关参量代入公式求出杨氏模量实验原理:根据胡克定律有εσE =,其中E 为比例系数,若金属原长为L ,直径为d,截面积为241d S π=,在拉力F ∆作用下,长度伸长L ∆,因此Ld FLE ∆∆=24π。
因为F ∆,L,d 。
比较容易测量,但是L ∆十分微小,不易测量,因此可以利用光杠杆系统来测量。
光杠杆系统主要有平面镜,T 刑支架以及前后支脚,设钢丝为伸长时标尺的读数为1n ,钢丝伸长L ∆时标尺的读数为钢丝夹下降L ∆,平面镜法线偏转θ角2n 刻度为12n n n -=,综上nm bd LBgE ∆∆⨯=28π。
实验仪器:光杠杆、带小平台的立柱、带钢丝夹的砝码的被测钢丝、游标卡尺、千分尺、望远镜及标尺实验步骤:㈠ 选择测量工具其中l 和B 用卷尺,d 用千分尺,b 用游标卡尺测量,△m 用标准砝码,△n 用尺读望远镜测量,前四个量是直接测量的,后两个是双变量测量,目的是要m 对n 的变化率,根据上述内容绘制数据表。
㈡根据几何光学的原理来调节望远镜,光杠杆和标尺之间的位置。
1 望远镜、平面镜、标尺的位置要自习调节,使标尺在平面镜的像处在望远镜的视场中,以变能在望远镜中看到标尺的像。
2 望远镜的光轴与平面镜的法线平行,标尺要竖直。
㈢对望远的调节1调节目镜,看清划板。
2调节物镜,是目标成像在分划板上,这里的“目标”是指钢丝再砝码盘上加载,测出m与n的对应关系数据处理:实验装置常数测量表根据以上的数据可以绘制如下的图像:直线的方程为2994.231158.5-=n m ,因此1158.5=∆∆nmcm n n n n n n 9654.0554321=∆+∆+∆+∆+∆=∆kg m 5=∆()()026.0155)()()()()(__2524_23_2221_=-⨯∆-∆+∆-∆+∆-∆+∆-∆+∆-∆=∆n n n n n n n n n n n S026.0)(=∆=-n S U A0577.03==∆insB u063.022=+=-∆B A nU U u11210649052278.38⨯=∆∆=nmb d lBg E π根据E 的不确定度传递公式可得:07.0)(()(2=∆=---nEE u unc14.0)(2==----EE E UUC E因此扩展不确定度为 111051.0⨯=EU综上结果表达式是 ()2111051.065.3mNE ⨯±=不确定度为1位有效数字-0.5分注意事项:Ⅰ加砝码,测出n 随m 的变化,然后减砝码,测出-m 与n ·的关系,n 与你n ·有可能不同,去二者的平均值即可,采用反正向测量取平均值的办法是为了消除弹性形变的滞后效应带来的系统误差,测量之前,砝码盘上需要加适量的砝码将钢丝拉直Ⅱ加减砝码时轻拿轻放,钢丝的晃动容易使光杠杆的位置变化。
用拉伸法测量杨氏模量实验报告用拉伸法测量杨氏模量实验报告引言:杨氏模量是描述材料在拉伸过程中的刚度和弹性的重要物理量。
测量杨氏模量的方法有很多种,其中一种常用的方法是拉伸法。
本实验旨在通过拉伸法测量杨氏模量,并分析实验结果。
一、实验原理拉伸法测量杨氏模量是通过施加外力使试样发生拉伸变形,根据胡克定律建立拉伸应力与应变之间的关系,从而计算得到杨氏模量。
二、实验装置和材料实验装置包括拉伸试验机、试样夹具、测量仪器等。
材料为金属试样,如铜、铁等。
三、实验步骤1. 准备试样:选择合适的金属试样,并按照规定尺寸制作成标准形状。
2. 安装试样:将试样夹具固定在拉伸试验机上,并将试样夹紧。
3. 调整参数:根据试样的材料和尺寸,调整拉伸试验机的参数,如加载速度、加载范围等。
4. 开始实验:启动拉伸试验机,施加外力使试样发生拉伸变形,同时记录加载力和试样的伸长量。
5. 终止实验:当试样发生断裂或达到设定的加载范围时,停止拉伸试验机。
6. 数据处理:根据实验数据计算拉伸应力和应变,并绘制应力-应变曲线。
7. 计算杨氏模量:根据应力-应变曲线的斜率,计算得到杨氏模量。
四、实验结果与讨论根据实验数据计算得到的应力-应变曲线如下图所示:[插入应力-应变曲线图]从图中可以看出,应力与应变呈线性关系,符合胡克定律。
根据斜率计算得到的杨氏模量为XXX GPa。
通过实验结果可以看出,不同材料的杨氏模量是不同的,这是由于材料的结构和组成不同所致。
杨氏模量越大,材料的刚度越高,即材料越难发生弹性变形。
在工程和科学领域中,杨氏模量的测量对于材料的选择和设计具有重要意义。
五、实验误差分析在实验中,可能存在一些误差,影响了实验结果的准确性。
主要误差来源包括:1. 试样制备误差:试样的尺寸和形状可能存在一定的误差,影响了实际应力和应变的计算。
2. 试样夹具固定误差:试样夹具的固定可能存在一定的松动,导致实验过程中试样的位移不准确。
3. 测量仪器误差:测量仪器的精度和灵敏度可能存在一定的误差,影响了实验数据的准确性。
实验七拉伸法测量金属杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL(为微小变化量)时,F/S叫应力,即金属丝单位截面积所受到的力;ΔL/L叫应变,即金属丝单位长度所对应的伸长量;应力与应变的比叫弹性模量。
杨氏模量(Young's modulus),又称拉伸模量(tensile modulus)是沿纵向的弹性模量(elastic modulus or modulus of elasticity)。
除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。
杨氏模量是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法属静态法,后一种属动态法)。
本实验是用拉伸法测定金属丝的杨氏模量,它提供了测量微小长度的方法,既有光杠杆法,也有显微镜法。
显微镜测量基本分2种:目镜分化测量和软件测量。
实验仪器兼具光杠杆法和显微镜法两种功能,后者采用软件测量方式,两种方法相互独立,实验时既可只采用其中一种方法,也可两种方法同时采用。
实验目的1. 学会用拉伸法测量金属丝的杨氏模量2. 理解光杠杆法测量微小伸长量的原理实验仪器ZKY-YM-3双法杨氏模量测量仪,主要包括实验架、光杠杆组件(含望远镜)、数码显微组件,以及数字拉力计、长度测量工具(包括卷尺、游标卡尺、螺旋测微器)、安装有专业测量软件的计算机,如图1所示。
1. 实验架实验架是待测金属丝杨氏模量测量的主要平台。
金属丝一端穿过横梁被上夹头夹紧,另一端被下夹头夹紧,并与拉力传感器相连,拉力传感器再经螺栓穿过下台板与施力螺母相连。
施力螺母通过旋转方式加力。
拉力传感器输出拉力信号通过数字拉力计显示金属丝受到的拉力值。
用拉伸法测金属丝的杨氏模量报告杨氏模量是用来描述固体材料在受力时的弹性特性的重要参数,可以描述材料在受力时的抗拉能力和变形能力。
拉伸法是测量材料杨氏模量的常用方法之一,本报告将详细介绍使用拉伸法测量金属丝的杨氏模量的实验步骤、仪器设备、数据处理和结果分析等内容。
一、实验目的:本实验的目的是通过拉伸法测量金属丝的杨氏模量,从而了解金属丝的力学性质。
二、实验原理:拉伸法是测量杨氏模量的常用方法之一,基本原理是通过测量金属丝在受拉力作用下的变形量与受力的关系,得到杨氏模量。
三、实验仪器设备:1.金属丝样品(材料:金属丝);2.拉力机;3.游标卡尺等测量工具;4.外力计。
四、实验步骤:1.准备工作:a.将金属丝剪成合适的长度,并用离心机清洗干净;b.按照实验要求,在拉力机上安装好金属丝样品,并调整好拉力机的参数。
2.实验测量:a.测量金属丝样品的初始长度和直径,并记录测量结果;b.在拉力机上施加一个逐渐增大的拉力,记录拉力和相应的伸长量。
3.数据处理:a.根据实验测量结果,计算金属丝的应变(单位长度的伸长量),并绘制应变-应力图;b.根据应变-应力图中线性部分的斜率,计算金属丝的杨氏模量。
五、结果分析:根据实验测量的数据和计算结果,可以得到金属丝的杨氏模量。
根据实验测量的应变-应力图中线性部分的斜率,可以计算出杨氏模量的数值。
六、实验注意事项:1.实验过程中需要注意安全,避免发生意外情况;2.测量金属丝的长度和直径时,要使用合适的测量工具进行准确测量;3.在实验过程中需要仔细记录实验数据,并及时进行数据处理;4.在数据处理过程中需要注意计算的准确性和可靠性。
七、实验总结:通过本次实验,成功使用拉伸法测量了金属丝的杨氏模量。
实验过程中,需要仔细操作测量仪器和记录实验数据,以提高实验的准确性和可靠性。
本次实验的结果可用于研究金属丝的力学性质和应用等方面,对进一步了解材料的性能和特性具有重要意义。