数据挖掘知识
- 格式:pptx
- 大小:1.47 MB
- 文档页数:60
1、数据库与数据仓库的对比数据库 数据仓库面向应用 面向主题数据是详细的 数据是综合和历史的保持当前数据 保存过去和现在的数据数据是可更新的 数据不更新对数据的操作是重复的 对数据的操作是启发式的操作需求是事先可知的 操作需求是临时决定的一个操作存取一个记录 一个操作存取一个集合数据非冗余 数据时常冗余操作比较频繁 操作相对不频繁查询基本是原始数据 查询基本是经过加工的数据事务处理需要的是当前数据 决策分析需要过去和现在的数据很少有复杂的计算 有很多复杂的计算支持事务处理 支持决策分析2、OLTP与OLAP,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁联机事物处理(On Line Transaction Processing的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。
OLTP OLAP数据库数据 数据仓库数据细节性数据 综合性数据当前数据 历史数据经常更新 不更新,但周期刷新对响应时间要求高 响应时间合理用户数量大用户数量相对较小面向操作人员,支持日常操作 面向决策人员,支持决策需要面向应用,事务驱动面向分析,分析驱动3、数据字典和元数据:数据字典:是数据库中各类数据描述的集合,它在数据库设计中具有很重要的地位。
由:数据项;数据结构;数据流;数据存储;处理过程5部分组成。
元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。
数据仓库的元数据除对数据仓库中数据的描述(数据仓库字典)外,还有以下三类元数据 :(1) 关于数据源的元数据(2) 关于抽取和转换的元数据(3) 关于最终用户的元数据4、数据从数据库到知识的流程:DB-->DW-->OLAP-->DM-->KDD-->DSS-->AI5、数据挖掘的含义:知识发现(KDD):从数据中发现有用知识的整个过程。
数据挖掘(DM):KDD过程中的一个特定步骤,它用专门算法从数据中抽取知识。
知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
大数据挖掘基础知识解析随着互联网和物联网的迅速发展,各种形式的数据不断涌现,大数据时代已经到来。
如何从海量数据中找到有用的信息,并为企业和个人决策提供依据,已经成为当今社会所关注和追求的问题。
而大数据挖掘作为从数据中发掘规律和知识的一种重要手段,正在被广泛应用。
本文将对大数据挖掘的基础知识进行解析。
一、什么是大数据挖掘?大数据挖掘是指在大数据集中发现新的、有价值的、难以被发现的知识和信息的过程,它是通过挖掘数据的内在联系和规律来获得有用的信息。
大数据挖掘需要结合多个学科的理论和技术,如企业决策分析、机器学习、数据库管理、高性能计算等。
二、大数据挖掘的应用领域(1)金融领域。
通过大数据挖掘,可以对金融市场的趋势和风险进行分析和预测,以便制定有效的投资策略。
(2)医疗领域。
医疗数据是一个重要的大数据源,大数据挖掘可以帮助医生和医院进行患者诊治方面的决策,判断病情的严重性,诊断疾病,对医疗资源进行优化调配。
(3)市场营销。
大数据挖掘可以分析和预测消费者的购物行为和购买趋势,以便制定更加精准的市场营销策略和增加销售额。
(4)社交媒体。
大数据挖掘可以对社交媒体数据进行分析,帮助企业了解和掌握用户的需求和喜好,以便进行更有针对性的产品研发和服务。
三、大数据挖掘的主要技术与方法(1)数据集成。
大数据挖掘需要从各个数据源中搜集数据,并将其进行整合和清洗,以便于后续的处理与分析。
(2)数据预处理。
数据预处理是大数据挖掘中的一个重要步骤,它包括数据采样、数据过滤、数据转换、数据标准化等。
通过对数据进行预处理,可以确保数据的质量和可信度。
(3)数据探索性分析。
数据探索性分析可以帮助挖掘潜在的模式和知识。
它主要包括可视化和统计分析两个方面。
(4)分类预测。
分类预测是大数据挖掘中的一项重要任务,它可以将数据集中的对象分为几个不同的类别,以便于后续的决策分析。
(5)聚类分析。
聚类分析是大数据挖掘中的一种无监督学习方法,它可以将数据集中的对象分为若干个不同的簇,以便于挖掘簇内的规律和知识。
数据挖掘基础知识要点梳理数据挖掘是一项通过发现和分析大量数据以提取有用信息的过程。
这项技术广泛应用于商业、金融、医疗和其他领域,以帮助组织做出更明智的决策。
为了更好地理解数据挖掘的基础知识和要点,本文将梳理数据挖掘的重要概念和技术。
1. 数据挖掘的定义和目标数据挖掘是从大量数据中自动发现模式、关联、异常和趋势的过程。
其目标是提取出对于业务决策有意义的信息,并根据这些信息进行预测和优化。
2. 数据挖掘的步骤数据挖掘通常包括以下步骤:a) 数据清洗:清理数据并处理缺失值、重复值和异常值。
b) 数据集成:将多个数据源整合到一个统一的数据集中。
c) 数据转换:将数据转换成合适的格式和表示形式,以便进行分析。
d) 数据挖掘:使用各种技术和算法来发现模式、关联和趋势。
e) 模式评估:评估挖掘结果的有效性和可行性。
f) 结果解释:解释挖掘结果并将其应用于实际业务问题。
3. 数据挖掘的应用数据挖掘可以应用于各个领域,例如:a) 市场营销:通过分析客户数据来识别潜在消费者群体和需求趋势。
b) 银行和金融:用于信用评估、客户关系管理和欺诈检测。
c) 医疗保健:用于疾病预测、生物信息学和药物研发等。
d) 社交网络:用于社交推荐、用户行为分析和关系网络挖掘等。
4. 常用的数据挖掘技术和算法a) 分类算法:用于将数据集分类为已知类别。
b) 聚类算法:用于将数据集分为相似组。
c) 关联规则挖掘:用于发现数据项之间的关联关系。
d) 预测建模:用于根据历史数据进行未来趋势预测。
e) 异常检测:用于识别与正常模式不符的异常数据。
5. 数据挖掘的挑战和限制进行数据挖掘时,还会面临一些挑战和限制,例如:a) 数据质量问题:包括数据缺失、数据错误和噪声干扰等。
b) 高维数据:随着数据维度增加,挖掘和分析变得更复杂。
c) 隐私和安全问题:在处理敏感数据时需要保护隐私和数据安全。
d) 解释性问题:模型的黑盒性可能使解释结果变得困难。
总结:数据挖掘是从大量数据中发现有用信息的过程,通过清洗、集成、转换、挖掘和评估等步骤来实现。
数据挖掘:是从大量数据中发现有趣(非平庸的、隐含的、先前未知、潜在实用)模式,这些数据可以存放在数据库,数据仓库或者其他信息存储中。
挖掘流程:(1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类) (6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过 (1) 数据特征化:目标类数据的普通特性或者特征的汇总; (2) 数据区分:将目标类数据的普通特性与一个或者多个可比较类进行比较; (3)数据特征化和比较来得到。
关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起浮现的条件,通常要满足最小支持度阈值和最小置信度阈值。
分类:找出能够描述和区分数据类或者概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。
导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、含糊集)。
预测:建立连续值函数模型,预测空缺的或者不知道的数值数据集。
孤立点:与数据的普通行为或者模型不一致的数据对象。
聚类:分析数据对象,而不考虑已知的类标记。
训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或者分组,从而产生类标号。
第二章数据仓库数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。
从一个或者多个数据源采集信息,存放在一个一致的模式下,并且通常驻留在单个站点。
数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。
面向主题:排除无用数据,提供特定主题的简明视图。
集成的:多个异构数据源。
时变的:从历史角度提供信息,隐含时间信息。
非易失的:和操作数据的分离,只提供初始装入和访问。
联机事务处理OLTP:主要任务是执行联机事务和查询处理。
联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或者‘知识工人’提供服务。
数据挖掘导论知识点总结数据挖掘是一门综合性的学科,它涵盖了大量的知识点和技术。
在本文中,我将对数据挖掘的导论知识点进行总结,包括数据挖掘的定义、历史、主要任务、技术和应用等方面。
一、数据挖掘的定义数据挖掘是从大量的数据中发掘出有价值的信息和知识的过程。
它是一种将数据转换为有意义的模式和规律的过程,从而帮助人们进行决策和预测的技术。
数据挖掘能够帮助我们从海量的数据中找到潜在的关联、规律和趋势,从而为决策者提供更准确和具有实际意义的信息。
二、数据挖掘的历史数据挖掘的概念最早可追溯到20世纪60年代,当时统计学家和计算机科学家开始尝试使用计算机技术来处理和分析大量的数据。
随着计算机硬件和软件技术的不断发展,数据挖掘逐渐成为一门独立的学科,并得到了广泛应用。
三、数据挖掘的主要任务数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据划分为多个类别的过程,其目的是帮助我们将数据进行分组和识别。
聚类是将数据划分为多个簇的过程,其目的是发现数据中的潜在模式和规律。
关联规则挖掘是发现数据中的关联规则和频繁项集的过程,其目的是发现数据中的潜在关联和趋势。
异常检测是发现数据中的异常值和异常模式的过程,其目的是发现数据中的异常现象。
预测是使用数据挖掘技术对未来进行预测的过程,其目的是帮助我们做出更准确的决策。
四、数据挖掘的技术数据挖掘的技术包括统计分析、机器学习、人工智能、数据库技术和数据可视化等。
统计分析是数据挖掘的基础技术,它包括描述统计、推断统计和假设检验等方法。
机器学习是一种使用算法和模型来识别数据模式和规律的技术,常见的机器学习算法包括决策树、神经网络、支持向量机和朴素贝叶斯等。
人工智能是数据挖掘的前沿技术,它包括自然语言处理、图像识别和智能决策等方面。
数据库技术是数据挖掘的技术基础,包括数据存储、数据检索和数据管理等技术。
数据可视化是数据挖掘的重要技术,它能够帮助我们将数据呈现为可视化的图表和图形,从而更直观地理解数据。
数据挖掘的基础知识和应用案例数据是当今社会最宝贵的资源之一,而数据挖掘则是将这些数据转换为有价值的信息。
在互联网时代,我们每天都产生大量的数据,例如搜索记录、交易数据、社交媒体活动等,这些数据包含了丰富的信息,如果能够将其挖掘出来,就能为企业、政府和个人带来巨大的价值。
1.数据挖掘基础知识1.1 数据预处理在进行数据挖掘之前,需要对原始数据进行预处理。
这个过程包括数据清理、数据集成、数据变换和数据规约等,其目的是将原始数据转换为适合挖掘的数据。
数据清理是指对数据进行纠错、缺失值填补、异常值处理等操作,以确保数据的质量。
数据集成是将来自不同数据源的数据进行合并,并去除重复数据。
数据变换是指对数据进行归一化、降维、离散化等操作,以便于后续的算法处理。
数据规约是将数据集缩小到可以处理的大小,可以通过随机抽样、聚类等方式实现。
1.2 数据挖掘算法数据挖掘算法是指用于从数据中挖掘出模式和关系的数学方法和技术。
主要包括分类、聚类、关联规则和预测等四种常见算法。
分类算法是将数据进行分类,例如将邮件分类为垃圾邮件和非垃圾邮件。
聚类算法是将相似的数据进行分组,例如将顾客根据购买习惯分为不同的群体。
关联规则算法是用于寻找数据中的关联关系,例如购买商品A的人也有可能会购买商品B。
预测算法是根据已有的数据对未来进行预测,例如预测股票价格。
1.3 最佳实践数据挖掘的最佳实践包括选择合适的算法、确定特征、调整参数、评估模型等。
选择合适的算法要考虑数据的特征、目标和数据大小等因素。
确定特征是指选择重要的特征来进行挖掘,可以通过特征选择算法来实现。
调整参数是指对算法参数进行调整,以获得最佳性能。
评估模型是指对算法的结果进行评估,例如使用交叉验证和AUC等指标来评估分类算法的性能。
2.应用案例2.1 推荐系统推荐系统是利用用户的历史行为和其他信息来推荐相似的产品或服务,例如淘宝和京东的商品推荐。
推荐系统的实现需要大量的数据并使用复杂的算法,例如协同过滤、基于内容的过滤和深度学习等。
数据挖掘基础知识详细介绍数据挖掘是一种通过对大量数据的分析和建模来发现有用模式和规律的过程。
它可以帮助我们从海量数据中提取有意义的信息,并用于预测、决策分析和优化等领域。
本文将详细介绍数据挖掘的基础知识,包括数据预处理、数据挖掘任务、常用算法和评估方法等内容。
一、数据预处理数据预处理是数据挖掘的第一步,其目的是对原始数据进行清洗和转换,以便提高数据挖掘的准确性和可靠性。
常用的数据预处理方法包括数据清洗、数据集成、数据变换和数据规约。
1. 数据清洗:数据清洗是指通过处理异常值、缺失值和噪声等问题,使得数据变得更加干净和可靠。
常用的数据清洗方法有删除无效数据、插补缺失值和平滑噪声等。
2. 数据集成:数据集成是将来自不同数据源的数据整合成一个一致且可用的数据集。
数据集成过程需要解决数据冗余、一致性和主键匹配等问题。
3. 数据变换:数据变换是将原始数据通过一系列操作转换成适合数据挖掘的形式。
常用的数据变换方法包括标准化、归一化、离散化和属性构造等。
4. 数据规约:数据规约是通过压缩和抽样等方式减少数据集的大小,以提高数据挖掘的效率和可扩展性。
常用的数据规约方法有维度规约和数值约简等。
二、数据挖掘任务数据挖掘任务是指在数据集中发现隐藏的模式和规律。
常见的数据挖掘任务包括分类、聚类、关联规则挖掘和异常检测等。
1. 分类:分类是将事先定义好的类别标签分配给数据集中的样本。
分类算法通过学习已知样本的特征和标签之间的关系,可以用于预测未知样本的类别。
2. 聚类:聚类是将数据集中的样本划分为若干组,使得组内的样本相似度高,而组间的样本相似度低。
聚类算法可以帮助我们发现数据集中的潜在分组和簇结构。
3. 关联规则挖掘:关联规则挖掘是发现数据集中频繁出现的项集之间的关联关系。
常用的关联规则挖掘算法有Apriori算法和FP-growth 算法等。
4. 异常检测:异常检测是找出数据集中与其他样本不符合的异常样本。
异常检测算法可以帮助我们发现数据集中的异常点和离群值。
第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理和联机分析处理.4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP 实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发"的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则.10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据.2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。