数据挖掘知识点归纳
- 格式:docx
- 大小:29.69 KB
- 文档页数:9
1、数据库与数据仓库的对比数据库 数据仓库面向应用 面向主题数据是详细的 数据是综合和历史的保持当前数据 保存过去和现在的数据数据是可更新的 数据不更新对数据的操作是重复的 对数据的操作是启发式的操作需求是事先可知的 操作需求是临时决定的一个操作存取一个记录 一个操作存取一个集合数据非冗余 数据时常冗余操作比较频繁 操作相对不频繁查询基本是原始数据 查询基本是经过加工的数据事务处理需要的是当前数据 决策分析需要过去和现在的数据很少有复杂的计算 有很多复杂的计算支持事务处理 支持决策分析2、OLTP与OLAP,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁联机事物处理(On Line Transaction Processing的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。
OLTP OLAP数据库数据 数据仓库数据细节性数据 综合性数据当前数据 历史数据经常更新 不更新,但周期刷新对响应时间要求高 响应时间合理用户数量大用户数量相对较小面向操作人员,支持日常操作 面向决策人员,支持决策需要面向应用,事务驱动面向分析,分析驱动3、数据字典和元数据:数据字典:是数据库中各类数据描述的集合,它在数据库设计中具有很重要的地位。
由:数据项;数据结构;数据流;数据存储;处理过程5部分组成。
元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。
数据仓库的元数据除对数据仓库中数据的描述(数据仓库字典)外,还有以下三类元数据 :(1) 关于数据源的元数据(2) 关于抽取和转换的元数据(3) 关于最终用户的元数据4、数据从数据库到知识的流程:DB-->DW-->OLAP-->DM-->KDD-->DSS-->AI5、数据挖掘的含义:知识发现(KDD):从数据中发现有用知识的整个过程。
数据挖掘(DM):KDD过程中的一个特定步骤,它用专门算法从数据中抽取知识。
数据挖掘基础一、数据挖掘的概念和基本流程数据挖掘是指从大量数据中提取出有价值的信息和知识的过程,是一种自动化的发现模式和规律的方法。
其基本流程包括:数据预处理、特征选择、建立模型、模型评估和应用。
二、数据预处理1. 数据清洗:去除重复值、缺失值和异常值等。
2. 数据集成:将多个数据源中的数据合并成一个整体。
3. 数据变换:对原始数据进行转换,如归一化、离散化等。
4. 数据规约:对原始数据进行压缩,如抽样等。
三、特征选择特征选择是指从原始特征中选取一部分对分类或回归有用的特征。
其目的是减少维度,提高模型效率和精度。
四、建立模型建立模型是指根据已选取的特征,使用各种算法构建分类或回归模型。
常用算法包括决策树、神经网络、支持向量机等。
五、模型评估模型评估是指通过交叉验证等方法对建立好的模型进行评估,以确定其预测效果是否良好。
六、应用应用是指将建立好的模型应用到实际问题中,进行预测和决策。
七、数据挖掘的应用领域1. 金融:如信用评估、风险管理等。
2. 医疗:如疾病预测、药物研发等。
3. 零售业:如销售预测、客户细分等。
4. 航空航天:如飞机维修优化、航班调度等。
5. 电信业:如用户行为分析、网络优化等。
八、数据挖掘的常用算法1. 决策树算法:通过对数据进行分类和回归,构建决策树模型,可用于分类和预测。
2. 神经网络算法:通过模拟人类神经系统,构建神经网络模型,可用于分类和预测。
3. 支持向量机算法:通过寻找最大间隔超平面,构建支持向量机模型,可用于分类和回归。
4. 聚类算法:将数据分成若干个类别,常见的聚类算法包括K-Means 和层次聚类等。
5. 关联规则挖掘算法:通过寻找频繁项集和关联规则,发现数据中隐藏的关联关系。
九、数据挖掘的发展趋势1. 大数据时代:随着数据量的增加,数据挖掘将更加重要。
2. 人工智能:机器学习和深度学习等技术将广泛应用于数据挖掘中。
3. 可视化分析:通过可视化技术,更好地呈现和理解数据。
知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
数据挖掘:是从大量数据中发现有趣(非平庸的、隐含的、先前未知、潜在实用)模式,这些数据可以存放在数据库,数据仓库或者其他信息存储中。
挖掘流程:(1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类) (6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过 (1) 数据特征化:目标类数据的普通特性或者特征的汇总; (2) 数据区分:将目标类数据的普通特性与一个或者多个可比较类进行比较; (3)数据特征化和比较来得到。
关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起浮现的条件,通常要满足最小支持度阈值和最小置信度阈值。
分类:找出能够描述和区分数据类或者概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。
导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、含糊集)。
预测:建立连续值函数模型,预测空缺的或者不知道的数值数据集。
孤立点:与数据的普通行为或者模型不一致的数据对象。
聚类:分析数据对象,而不考虑已知的类标记。
训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或者分组,从而产生类标号。
第二章数据仓库数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。
从一个或者多个数据源采集信息,存放在一个一致的模式下,并且通常驻留在单个站点。
数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。
面向主题:排除无用数据,提供特定主题的简明视图。
集成的:多个异构数据源。
时变的:从历史角度提供信息,隐含时间信息。
非易失的:和操作数据的分离,只提供初始装入和访问。
联机事务处理OLTP:主要任务是执行联机事务和查询处理。
联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或者‘知识工人’提供服务。
知识点归纳数据挖掘中的聚类分析与分类算法数据挖掘中的聚类分析与分类算法数据挖掘是指从大量数据中自动发现有用的模式、关系或规律的过程。
在数据挖掘过程中,聚类分析和分类算法是两个常用且重要的技术。
本文将对这两个知识点进行归纳总结。
一、聚类分析聚类分析是将一组无标签的数据对象进行分组或聚类的数据挖掘技术。
其目标是通过对象之间的相似性将它们划分为若干个簇,使得同一簇内的对象相似度高,不同簇之间的相似度低。
聚类分析广泛应用于市场分割、社交网络分析、图像处理等领域。
常用的聚类算法有以下几种:1. K-means算法:K-means是一种基于距离度量的聚类算法。
它通过逐步迭代,将数据集分为K个簇,使得每个数据对象与本簇内的其他对象的相似度最高。
2. 层次聚类算法:层次聚类算法是一种通过计算不同类别之间的相似性,并逐步合并相似度高的类别的方式进行数据聚类的方法。
Hierarchical Agglomerative Clustering(HAC)是层次聚类的一种常见算法。
3. 密度聚类算法:密度聚类算法是一种通过计算对象的密度来确定簇的方法,常见的算法有DBSCAN和OPTICS算法。
这类算法可以有效地发现具有不同密度分布的聚类。
二、分类算法分类算法是将带有标签的数据集按照类别或标签进行划分的数据挖掘技术。
通过学习已有数据集的特征和类别标签,分类算法能够对新的未标记数据进行分类预测。
分类算法广泛应用于垃圾邮件过滤、文本分类、风险评估等领域。
常用的分类算法有以下几种:1. 决策树算法:决策树算法是一种基于树形结构的分类算法。
它通过对数据集进行递归分割,使得每个子节点具有最佳的纯度或信息增益,从而实现对数据的分类。
2. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于条件概率的分类算法。
它假设特征之间相互独立,并通过计算条件概率来进行分类预测。
3. 支持向量机算法:支持向量机算法是一种通过寻找最优分割超平面将数据划分为不同类别的算法。
数据挖掘导论知识点总结数据挖掘是一门综合性的学科,它涵盖了大量的知识点和技术。
在本文中,我将对数据挖掘的导论知识点进行总结,包括数据挖掘的定义、历史、主要任务、技术和应用等方面。
一、数据挖掘的定义数据挖掘是从大量的数据中发掘出有价值的信息和知识的过程。
它是一种将数据转换为有意义的模式和规律的过程,从而帮助人们进行决策和预测的技术。
数据挖掘能够帮助我们从海量的数据中找到潜在的关联、规律和趋势,从而为决策者提供更准确和具有实际意义的信息。
二、数据挖掘的历史数据挖掘的概念最早可追溯到20世纪60年代,当时统计学家和计算机科学家开始尝试使用计算机技术来处理和分析大量的数据。
随着计算机硬件和软件技术的不断发展,数据挖掘逐渐成为一门独立的学科,并得到了广泛应用。
三、数据挖掘的主要任务数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据划分为多个类别的过程,其目的是帮助我们将数据进行分组和识别。
聚类是将数据划分为多个簇的过程,其目的是发现数据中的潜在模式和规律。
关联规则挖掘是发现数据中的关联规则和频繁项集的过程,其目的是发现数据中的潜在关联和趋势。
异常检测是发现数据中的异常值和异常模式的过程,其目的是发现数据中的异常现象。
预测是使用数据挖掘技术对未来进行预测的过程,其目的是帮助我们做出更准确的决策。
四、数据挖掘的技术数据挖掘的技术包括统计分析、机器学习、人工智能、数据库技术和数据可视化等。
统计分析是数据挖掘的基础技术,它包括描述统计、推断统计和假设检验等方法。
机器学习是一种使用算法和模型来识别数据模式和规律的技术,常见的机器学习算法包括决策树、神经网络、支持向量机和朴素贝叶斯等。
人工智能是数据挖掘的前沿技术,它包括自然语言处理、图像识别和智能决策等方面。
数据库技术是数据挖掘的技术基础,包括数据存储、数据检索和数据管理等技术。
数据可视化是数据挖掘的重要技术,它能够帮助我们将数据呈现为可视化的图表和图形,从而更直观地理解数据。
知识点归纳数据挖掘中的关联规则挖掘与异常检测知识点归纳数据挖掘中的关联规则挖掘与异常检测数据挖掘是一门涉及大数据分析和处理的学科,旨在从大量的数据中发现隐藏的模式、关联和趋势。
关联规则挖掘和异常检测是数据挖掘中的两个重要任务。
本文将对这两个知识点进行归纳和讨论。
一、关联规则挖掘关联规则挖掘是指在大规模数据集中寻找项集之间的相关性。
在关联规则挖掘中,项集是一个或多个项目的集合。
关联规则则是指在一个项集中出现的某个项目,能够关联到另一个项集中的其他项目。
关联规则挖掘的典型应用包括超市购物篮分析、推荐系统和生物信息学等。
它不仅可以帮助企业了解产品之间的关联性,还可以为用户提供个性化的推荐服务。
关联规则挖掘的常用算法有Apriori算法、FP-Growth算法等。
Apriori算法是一种基于候选生成和剪枝的经典算法。
它通过迭代发现频繁项集,然后生成关联规则。
FP-Growth算法是一种基于频繁模式树的算法,它通过构建一棵FP树来加速频繁项集的发现过程。
二、异常检测异常检测是指在数据集中寻找与其他样本不同的异常样本。
在异常检测中,异常样本通常被认为是不符合预期或规范的数据点,它们具有与其他样本不同的统计特性。
异常检测在许多领域中都有广泛的应用,如欺诈检测、网络入侵检测和工业生产中的故障检测等。
通过及时发现和处理异常,可以提高系统的安全性和可靠性。
异常检测的常用算法有基于统计方法的Z-Score算法、基于距离的KNN算法和基于聚类的LOF算法等。
Z-Score算法通过计算数据点与其均值之间的差异来判断是否为异常值。
KNN算法通过计算数据点与其最近邻之间的距离来确定是否为异常值。
LOF算法则通过计算数据点与其周围邻域之间的密度差异来判断是否为异常值。
三、关联规则挖掘与异常检测的联系尽管关联规则挖掘和异常检测是两个独立的任务,但它们在某些应用场景中可以相互协作。
首先,在关联规则挖掘中,异常样本可能作为离群项出现。
数据挖掘与机器学习复习资料数据挖掘和机器学习是当今信息技术领域中极为重要的两个分支,它们在处理和分析大量数据、发现隐藏模式、做出预测和决策等方面发挥着关键作用。
对于学习者来说,掌握这两个领域的知识至关重要。
以下是为大家整理的一份关于数据挖掘与机器学习的复习资料。
一、数据挖掘概述数据挖掘,简单来说,就是从大量的数据中提取出有用的信息和知识的过程。
它不仅仅是数据的收集和存储,更重要的是通过一系列的技术和方法,对数据进行深入分析和挖掘,以发现潜在的规律和趋势。
数据挖掘的主要任务包括数据分类、聚类、关联规则挖掘、异常检测等。
在数据分类中,我们根据已知的类别标签,将新的数据划分到相应的类别中。
聚类则是将数据按照相似性进行分组,而无需事先知道类别信息。
关联规则挖掘用于发现数据中不同属性之间的关联关系,例如购买了商品 A 的顾客往往也会购买商品 B。
异常检测则是识别出与大多数数据不同的异常值。
数据挖掘的过程通常包括数据准备、数据探索、模型建立、模型评估和模型部署等阶段。
在数据准备阶段,需要对原始数据进行清理、转换和集成,以确保数据的质量和一致性。
数据探索阶段则通过可视化和统计分析等方法,对数据的特征和分布有一个初步的了解。
模型建立阶段选择合适的算法和模型,并使用训练数据进行训练。
模型评估通过使用测试数据来评估模型的性能,如准确率、召回率、F1 值等。
最后,将性能良好的模型部署到实际应用中。
二、机器学习基础机器学习是让计算机通过数据自动学习和改进的一种方法。
它可以分为监督学习、无监督学习和强化学习三大类。
监督学习是在有标记的数据集上进行学习,常见的算法包括线性回归、逻辑回归、决策树、支持向量机等。
线性回归用于预测连续值,逻辑回归用于分类问题,决策树可以生成易于理解的规则,支持向量机在处理高维数据和非线性问题上有较好的表现。
无监督学习是在无标记的数据集中寻找模式和结构,例如聚类算法(如 KMeans 聚类、层次聚类)和主成分分析(PCA)等。
第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理和联机分析处理.4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP 实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发"的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则.10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据.2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。
数据挖掘与大数据分析数据挖掘与大数据分析是当今信息时代中非常重要的研究领域,它们在各个行业中都发挥着重要作用。
以下是关于这两个知识点的详细介绍:1.数据挖掘:–定义:数据挖掘是指从大量的数据中提取有价值的信息和知识的过程。
–目的:通过分析大量数据,发现数据之间的规律性、关联性和模式,从而为决策提供支持。
–方法:包括统计分析、机器学习、人工智能、模式识别等技术。
–应用领域:市场营销、金融、医疗、教育、社交网络等。
2.大数据分析:–定义:大数据分析是指对海量数据进行挖掘和分析,以获取有价值的信息和知识。
–特点:数据量庞大、数据类型多样、数据处理速度快。
–工具和技术:包括Hadoop、Spark、NoSQL数据库、数据挖掘算法等。
–应用领域:互联网、金融、零售、政府、医疗等。
3.数据挖掘与大数据分析的差异:–数据挖掘更注重从数据中提取有价值的知识,而大数据分析更注重对海量数据进行处理和分析。
–数据挖掘的方法和技术相对较为成熟,而大数据分析随着数据量的增加和数据类型的多样化,技术和工具也在不断发展和更新。
4.数据挖掘与大数据分析的相似之处:–都是从大量数据中提取有价值的信息和知识。
–都需要使用到计算机科学、统计学、机器学习等相关知识。
–都可以为各个行业提供决策支持和优化解决方案。
5.数据挖掘与大数据分析的发展趋势:–人工智能和机器学习的进一步发展,将使得数据挖掘与大数据分析更加智能化和自动化。
–大数据技术的不断创新,将推动数据挖掘与大数据分析在更多领域中的应用。
–数据安全和隐私保护将成为数据挖掘与大数据分析发展的重要关注点。
希望以上内容能够帮助您了解数据挖掘与大数据分析的相关知识点。
习题及方法:1.习题:数据挖掘的主要目的是什么?解题方法:数据挖掘的主要目的是从大量的数据中发现有价值的信息和知识,通过分析数据之间的规律性、关联性和模式,为决策提供支持。
2.习题:大数据分析与传统数据分析的主要区别是什么?解题方法:大数据分析与传统数据分析的主要区别在于数据量的大小和数据类型的多样性。
数据挖掘的常见技术数据挖掘是一种通过从大量数据中发现隐藏模式、关联和信息的过程。
它利用各种算法和技术来分析数据,并从中提取有价值的知识和见解。
在这篇文章中,我们将介绍一些常见的数据挖掘技术。
一、聚类分析聚类分析是一种将数据分组为具有相似特征的集合的技术。
它通过计算数据点之间的相似性来确定数据点的聚类。
聚类分析可以用于市场细分、社交网络分析等许多领域。
二、关联规则挖掘关联规则挖掘是一种寻找数据集中项之间关联关系的技术。
它通过识别频繁项集和关联规则来发现数据中的关联模式。
关联规则挖掘可以用于购物篮分析、推荐系统等。
三、分类和回归分析分类和回归分析是一种通过学习数据集中的样本来预测新数据的技术。
分类分析将数据分为不同的类别,而回归分析则预测数据的数值。
这些技术可以应用于信用评分、风险分析等。
四、异常检测异常检测是一种识别数据中异常或异常模式的技术。
它可以帮助发现潜在的欺诈行为、故障检测等。
异常检测可以使用统计方法、机器学习方法等。
五、文本挖掘文本挖掘是一种从大量文本数据中提取有用信息的技术。
它可以用于情感分析、主题建模等。
文本挖掘通常使用自然语言处理和机器学习技术。
六、时间序列分析时间序列分析是一种研究时间序列数据的技术。
它可以用于预测未来趋势、分析季节性变化等。
时间序列分析可以使用统计方法、神经网络等。
七、网络分析网络分析是一种研究网络结构和关系的技术。
它可以帮助发现社交网络中的关键人物、识别网络中的社群等。
网络分析可以使用图论、机器学习等方法。
八、决策树决策树是一种通过树状结构表示决策规则的技术。
它可以帮助做出分类和回归决策。
决策树可以使用信息增益、基尼指数等方法构建。
九、支持向量机支持向量机是一种通过构建超平面来做分类和回归的技术。
它可以处理高维数据和非线性问题。
支持向量机可以使用不同的核函数进行分类。
十、神经网络神经网络是一种模拟人脑神经元之间连接的技术。
它可以用于分类、回归等任务。
神经网络可以使用不同的层次和激活函数进行建模。
数据挖掘复习概论✔机器学习机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近 论、凸分析、计算复杂性理论等多门学科。
机器学习理论主要是设计和分析一些 让计算机可以自动“学习”的算法。
机器学习算法是一类从数据中自动分析获得规 律,并利用规律对未知数据进行预测的算法。
因为学习算法中涉及了大量的统计 学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。
算法设 计方面,机器学习理论关注可以实现的,行之有效的学习算法。
✔数据挖掘数据挖掘(英语:data mining)是一个跨学科的计算机科学分支。
它 是用人工智能、机器学习、统计学和数据库的交叉方法在相对较大型的数据集中发现模式的计算过程。
数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。
数据挖掘是 ”数据库知识发现“ 的分析步骤。
✔机器学习和数据挖掘的关系机器学习是数据挖掘的主要工具。
数据挖掘不仅仅要研究、拓展、应用一些机器学习方法,还要通过许多非机器学习技术解决数据存储、大规模数据、数据噪音等更为实际的问题。
机器学习的涉及面更宽,常用在数据挖掘上的方法通常只是“从数据学习”,然则机器学习不仅仅可以用在数据挖掘上,一些机器学习的子领域甚至与数据挖掘关系不大,例如增强学习与自动控制等。
大体上看,数据挖掘可以视为机器学习和数据库的交叉。
✔基本术语泛化能力机器学习的目标是使得学到的模型能很好的适用于“新样本”, 而不仅仅是训练集合,我们称模型适用于新样本的能力为泛化(generalization)能力。
通常假设样本空间中的样本服从一个未知分布 ,样本从这个分布中独立获得,即“独立同分布”(i.i.d)。
一般而言训练样本越多越有可能通过学习获得强泛化能力的模型。
监督学习即样本是有标签的。
分类问题回归问题标注问题监督学习目的是学习一个由输入到输出的映射,称为模型。
模式的集合就是假设空间(hypothesis space)半监督学习少量标注数据,大量未标注数据利用未标注数据的信息,辅助标注数据,进行监督学习较低成本主动学习机器主动给出实例,教师进行标注利用标注数据学习预测模型KNN工作原理存在一个样本数据集合,也称作训练样本集,样本集中每个数据都存在标签,即我们知道样本集中每个数据和所属分类输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签一般来说,只选择样本数据集中前 k 个最相似的数据。
数据挖掘概念随着数据量的不断增长,数据挖掘成为了一门越来越重要的技术。
数据挖掘可以帮助我们从大量数据中发现有意义的信息,提供决策支持和预测能力。
本文将介绍数据挖掘的基本概念、主要技术和应用领域。
一、数据挖掘的基本概念1. 数据挖掘的定义数据挖掘是从大量数据中自动发现模式、关系、趋势和异常的过程。
它是一种用于从数据中提取有价值信息的技术,可以帮助我们更好地理解和利用数据。
2. 数据挖掘的任务数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据分为不同的类别,聚类是将数据分为相似的组,关联规则挖掘是发现数据之间的关联关系,异常检测是发现数据中的异常值,预测是根据历史数据预测未来的趋势。
3. 数据挖掘的流程数据挖掘的流程包括数据准备、数据清洗、特征选择、模型构建、模型评估和模型应用等步骤。
数据准备是指从数据源中获取数据并进行预处理,数据清洗是指处理数据中的噪声和异常值,特征选择是指选择对数据分析有用的特征,模型构建是指使用算法构建数据模型,模型评估是指评估模型的准确性和可靠性,模型应用是指将模型应用于实际问题中。
二、数据挖掘的主要技术1. 分类分类是将数据分为不同的类别。
分类算法包括决策树、朴素贝叶斯、支持向量机等。
决策树是一种基于树形结构的分类方法,通过划分数据集来构建决策树。
朴素贝叶斯是一种基于贝叶斯定理的分类方法,它假设特征之间相互独立。
支持向量机是一种基于间隔最大化的分类方法,它可以处理高维数据和非线性分类问题。
2. 聚类聚类是将数据分为相似的组。
聚类算法包括K均值、层次聚类等。
K均值是一种基于距离的聚类方法,它将数据分为K个簇。
层次聚类是一种基于树形结构的聚类方法,它将数据层层聚合,形成层次结构。
3. 关联规则挖掘关联规则挖掘是发现数据之间的关联关系。
关联规则挖掘算法包括Apriori、FP-Growth等。
Apriori算法是一种基于频繁项集的关联规则挖掘方法,它通过扫描数据集来发现频繁项集。
知识点归纳数据挖掘中的关联规则与聚类分析数据挖掘是一种重要的技术,它可以帮助人们从大规模数据中发现关联性和规律性。
在数据挖掘的过程中,关联规则与聚类分析是两个常用的方法。
本文将对这两个知识点进行归纳总结。
一、关联规则关联规则是一种常见的数据挖掘技术,它可以用来描述数据集中的项目之间的相互关系。
关联规则通常采用 IF-THEN 形式的逻辑表达式来描述,其中 IF 部分称为前提(antecedent),表示规则的条件;THEN 部分称为结果(consequent),表示规则的结论。
关联规则挖掘的过程一般分为两个步骤:发现频繁项集和生成关联规则。
1. 发现频繁项集频繁项集指的是在数据集中经常一起出现的项目集合。
发现频繁项集的目的是为了找到具有一定频率出现的项集,这些项集可以作为生成关联规则的基础。
常用的发现频繁项集的算法包括 Apriori 算法和FP-growth算法。
2. 生成关联规则在发现了频繁项集之后,可以利用它们来生成关联规则。
关联规则的生成一般遵循以下两个原则:支持度和置信度。
- 支持度(support):指某个项集在数据集中出现的频率。
通常设置一个最小支持度阈值,只有满足该阈值的项集被认为是频繁项集。
- 置信度(confidence):指某个规则在数据集中成立的可信程度。
计算置信度时,通过统计包含前提和结果的项集的出现次数,从而得到规则的置信度。
关联规则在实际应用中有着广泛的应用,例如购物篮分析、市场推荐等领域。
二、聚类分析聚类分析是数据挖掘中的另一个重要技术,它可以将数据集中的对象划分为若干个组或簇,使得同一组内的对象相似度较高,而不同组之间的相似度较低。
聚类分析有助于我们发现数据中隐藏的结构和模式。
聚类分析的过程一般涉及以下几个步骤:1. 选择合适的相似性度量相似性度量可以衡量不同对象之间的相似程度。
对于不同类型的数据,选择合适的相似性度量十分重要。
常用的相似性度量包括欧氏距离、曼哈顿距离、余弦相似度等。
学习数据挖掘的基本知识第一章:数据挖掘的定义和概念数据挖掘是指通过使用计算机技术和算法,从大量数据中自动发掘并提取出有价值的信息和知识的过程。
它可以帮助人们发现隐藏在数据背后的模式、关联和趋势,以辅助决策和预测未来的趋势。
在数据挖掘中,需要重点关注几个基本概念。
首先是数据采集,它包括从各种来源获取数据的过程,如数据库、互联网、传感器等。
其次是数据预处理,即对原始数据进行清洗和整理,以去除噪声、缺失值和异常样本,并进行归一化、编码等处理。
接下来是特征选择和转换,通过选择最具代表性的特征和将数据转换到合适的表示形式,以提高挖掘的精度和效率。
最后是模型构建和评估,选择适当的挖掘算法和模型进行训练和测试,并通过评估指标来评价挖掘结果的质量。
第二章:常用的数据挖掘技术和算法数据挖掘涵盖了多个技术和算法,下面介绍几种常用的技术和算法。
1. 关联规则挖掘:通过挖掘不同项之间的关联关系,发现在一个项集中某些项的出现往往导致了另一些项的出现。
例如,购买尿布的人也往往同时购买啤酒。
2. 分类和预测:通过对已有数据的特征和标签进行训练,构建分类模型或预测模型,用于对新数据进行分类或预测。
例如,通过分析患者的病历数据和疾病结果,建立疾病预测模型。
3. 聚类分析:将数据集中的对象按照相似性进行分组,使得组内的对象相似度高,组间的相似度低。
例如,将顾客按购买行为进行分组,以便进行精准推荐。
4. 时间序列分析:对具有时间属性的数据进行分析和预测,揭示数据随时间变化的规律。
例如,通过分析过去几年的销售数据,预测未来几个季度的销售趋势。
第三章:数据挖掘过程中的常见问题和挑战在进行数据挖掘的过程中,可能会遇到一些常见问题和挑战。
1. 维度灾难:随着数据维度的增加,计算和存储的成本呈指数级增长。
因此,如何进行特征选择和降维是一个关键问题。
2. 数据质量:原始数据中可能包含噪声、缺失值和异常样本,这会对数据挖掘结果的准确性造成影响。
如何进行数据清洗和整理是一个必须解决的问题。
第一章绪论1.数据挖掘要解决的问题:面对高维,复杂,异构的海量数据,如何集中获取有用的信息和知识。
2。
数据挖掘定义:·技术层面上:数据挖掘就是从大量数据提取有用信息的过程;·商业层面上:数据挖掘就是对大量业务数据进行抽取,转换和分析以及建模处理,从中提取辅助商业决策的关键性数据。
3。
数据挖掘的特征:先前未知,有效和实用。
4.数据挖掘对象:·关系数据库(借助集合代数等概念和方法来处理数据库中的数据)·数据仓库(数据集合,用于支持管理决策)·事务数据库(每个记录代表一个事务)·空间数据库·事态数据库和时间序列数据库·流数据·多媒体数据库·文本数据库·万维数据库5.数据挖掘任务:分类分析(按照某种规则),聚类分析(具有共性),回归分析,关联分析(具有关联规则),离群点检测(发现与众不同的数据),演化分析(随时间变化的数据对象的趋势),序列模式挖掘(分析前后序列模式)6。
数据挖掘过程:数据清洗,数据集成(考虑数据一致性和冗余),数据选择,数据转换,数据挖掘,模式评估,知识表示。
例题:1.1 数据挖掘处理的对象有哪些?请从实际生活中举出至少三种.答:数据挖掘处理的对象是某一专业领域中积累的数据,对象既可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。
数据形式和结构也各不相同,可以是传统的关系数据库,可以是面向对象的高级数据库系统,也可以是面向特殊应用的数据库,如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是Web 数据信息。
实际生活的例子:①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所开通的服务等,据此进行客户群体划分以及客户流失性分析.②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文学家发现其他未知星体。
互联网数据挖掘和知识管理一、互联网数据挖掘1.定义:互联网数据挖掘是指从互联网上大量的数据中,通过算法和统计学方法提取出有价值的信息和知识的过程。
2.数据来源:搜索引擎、社交媒体、在线新闻、电子商务网站等。
3.数据类型:结构化数据、半结构化数据、非结构化数据。
4.数据挖掘方法:–分类:根据已有数据训练分类器,对新数据进行分类预测。
–聚类:将相似的数据聚集在一起,形成有意义的群体。
–关联规则挖掘:找出数据中存在的关系和规律。
–序列挖掘:分析数据中的时间序列,发现有价值的模式。
–异常检测:识别出与正常数据不同的异常数据。
5.应用领域:互联网广告、搜索引擎优化、舆情分析、推荐系统等。
二、知识管理1.定义:知识管理是指通过有效地组织、存储、共享和应用知识,以提高个人、团队和组织的竞争力。
2.知识类型:显性知识、隐性知识、经验知识、理论知识等。
3.知识管理工具:–知识库:用于存储和检索知识的信息系统。
–搜索引擎:帮助用户快速找到所需知识的工具。
–知识地图:以图形化的方式展示知识之间的关系。
–在线协作工具:支持团队成员共同创作和分享知识的工具。
4.知识管理流程:知识获取、知识存储、知识共享、知识应用、知识创新。
5.应用领域:企业、教育、医疗、科研等。
三、互联网数据挖掘与知识管理的结合1.互联网数据挖掘为知识管理提供数据支持:通过挖掘互联网上的大量数据,获取有价值的信息和知识,为知识管理提供丰富的资源。
2.知识管理提高互联网数据挖掘的效率:通过对知识的组织、存储和共享,可以帮助用户更快速、准确地找到所需信息,提高数据挖掘的效率。
3.相互促进,共同发展:互联网数据挖掘和知识管理相互依赖,共同推动信息和知识的传播、应用和创新。
总结:互联网数据挖掘和知识管理是两个密切相关的研究领域,它们在许多应用场景中相互促进,共同为人类社会的发展做出贡献。
了解这两个领域的基本概念、方法和应用,对于中学生来说,有助于培养信息素养和创新能力,为未来的学习和工作奠定基础。
1.数据、信息和知识是广义数据表现的不同形式。
2.主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘4•一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、•数据挖掘以及模式评估等基本阶段。
5•数据库中的知识发现处理过程模型有:阶梯处理过程模型,螺旋处理过程模型,以用户为中心的处理结构模型,联机KDD模型,支持多数据源多知识模式的KDD处理模型6•粗略地说,知识发现软件或工具的发展经历了独立的知识发现软件、横向的知识发现工具集和纵向的知识发现解决方案三个主要阶段,其中后面两种反映了目前知识发现软件的两个主要发展方向。
7•决策树分类模型的建立通常分为两个步骤:决策树生成,决策树修剪。
8•从使用的主要技术上看,可以把分类方法归结为四种类型:a)基于距离的分类方法b)决策树分类方法c)贝叶斯分类方法d)规则归纳方法9•关联规则挖掘问题可以划分成两个子问题:a)发现频繁项目集:通过用户给定Minsupport,寻找所有频繁项目集或者最大频繁项目集。
b)生成关联规则:通过用户给定Minconfidence,在频繁项目集中,寻找关联规则。
10•数据挖掘是相关学科充分发展的基础上被提出和发展的,主要的相关技术:数据库等信息技术的发展统计学深入应用人工智能技术的研究和应用11.衡量关联规则挖掘结果的有效性,应该从多种综合角度来考虑:a准确性:挖掘出的规则必须反映数据的实际情况。
b实用性:挖掘出的规则必须是简洁可用的。
c新颖性:挖掘出的关联规则可以为用户提供新的有价值信息。
12.约束的常见类型有:单调性约束;反单调性约束;可转变的约束;简洁性约束.13.根据规则中涉及到的层次,多层次关联规则可以分为:同层关联规则:如果一个关联规则对应的项目是同一个粒度层次,那么它是同层关联规则。
层间关联规则:如果在不同的粒度层次上考虑问题,那么可能得到的是层间关联规14.按照聚类分析算法的主要思路,聚类方法可以被归纳为如下几种。
知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
11.频繁项集一般指频繁地在事务数据中一起出现的商品的集合12.频繁子序列就是一个频繁序列模式13.子结构涉及不同的结构,可以与项集和子项集一起出现14.挖掘频繁模式导致发现数据中有趣的关联和相关性15.包含单个谓词的关联规则称作单维关联规则。
多个谓词的关联规则叫做多维关联规则。
16.如果不能同时满足最小支持度阈值和最小置信度阈值是无趣的关联规则。
17.频繁模式挖掘的基础是频繁项集挖掘18.分类找出描述和区分数据类或概念的模型或者函数来预测类标号未知对象的类标号。
19.导出模型是基于训练数据集的分析,预测类标号未知对象的类标号。
形式有分类规则、决策树、数学公式或者神经网络20.决策树类似流程图的树结构,每一个结点代表一个属性上的测试,每一个分支代表测试的一个结果,树叶代表类或者类分布。
21.分类时,神经网络类似于神经处理单元,单元之间加权连接。
构造分类模型的方法还有朴素贝叶斯分类、支持向量机、K最近邻分类。
22.分类预测类别(离散的、无序的)标号,回归建立连续值函数模型来预测缺失的、难以获得的数据数据值23.术语预测指数值预测和类标号预测24.回归也包含基于可用数据的分布趋势识别25.相关分析在分类和回归之前进行,试图识别与分类和回归过程显著相关的属性26.聚类分析数据对象,产生数据组群的类标号,原则是最大类内相似性、最小化类间相似性。
所形成的每一个簇看做一个对象集,可以导出规则。
聚类便于分类法的形成,将观测组织成分层结构,把类似的事件组织在一起27.离群点指与数据的一般行为或模型不一致的数据对象,视为噪声或者异常舍弃。
离群点数据分析也叫离群点分析或异常挖掘,用统计监测或者距离度量、基于密度方法识别28.有趣的模式指易于被人理解、在某种确信度上对于新的或检验数据是有效的、潜在有用的、新颖的模式。
有趣的模式代表知识。
29.模式兴趣的度量包括客观度量和反映特特定用户需要和兴趣的主观度量。
客观度量基于所发现模式的结构和关于它们的统计量,比如规则的支持度、规则的置信度、分类规则的准确率与覆盖率。
主观度量基于用户对数据的信念,比如是出乎意料、提供重要信息(也叫可行动的)30.根据用户提供的约束和兴趣度度量对搜索聚焦,对某些任务而言能够保证算法的完全性31.模式兴趣度量根据模式的兴趣度对所发现的模式进行排位,可以通过减去模式空间中不满足预先设定的兴趣度约束的子集来指导和约束发现过程。
知识点三数据对象与数据属性1.数据集由数据对象组成,一个对象代表一个实体。
2.数据对象用属性描述,又叫样本、实例、数据点或对象。
存放在数据库中的数据对象叫做数据元组。
3.属性是一个数据字段,表示数据对象的一个特征,也叫维、特征、变量。
用来描述一个给定对象的一组属性叫做属性向量(或者特征向量)。
涉及一个属性的叫做单变量、两个属性的叫做双变量4.一个属性的类型由该属性可能具有的值的集合决定,分为标称的、二元的、序数的、数值的5.标称属性的值是一些符号或者事物的名称,每一个值代表某种类别、编码或者状态,被看做是分类或者枚举的,不必具有有意义的序6.二元属性是一种标称属性,又叫布尔属性,只有两个状态:0或者1,0代表不出现,1代表出现。
如果两种状态具体同等价值并且携带相同的权重,那二元属性是对称的。
7.序数属性可能的值之间具有有意义的序或秩评定,相继之间的差是未知的,通常用于等级评定调查。
8.数值属性用整数或者实数值表示,可以是区间标度或者比率标度的。
区间标度属性用相同的单位尺度度量,有序,可以为负、零、正,允许比较和度量评估值之间的值。
比率标度是具有固定零点的数值属性,可以说一个数是另一个数的倍数9.机器学习领域开发的分类算法通常把属性分为离散的、连续的。
离散属性具有有限或者无限可数个值,可以用或者不用整数表示。
连续属性值一般用浮点变量表示,实数值用有限位数字表示。
知识点四数据的基本描述统计1.中心趋势度量数据分布的中部或者中心位置,包括均值、中位数、众数、中列数2.数据的分散度量包括极差、四分位数、四分位数极差、五数概括和和盒图、方差和标准差3.图形可视化审视数据,包括条图、饼图、线图4.为了抵消少数极端值的影响,使用截尾均值来高低极端值后的均值。
5.具有一个、两个、三个众数的数据集合叫做单峰、双峰、三峰6.在具有完全对称的数据分布的单峰频率曲线图中,均值、中位数和众数都是相同的中心值7.分位数是取自数据分布的每隔一定间隔上的点,把数据划分成基本上大小相等的连贯集合。
8.识别可疑的离群点挑选落在第三个四分位数之上或者第一个四分位数之下至少1.5*IQR (四分数极差)处的值。
9.五数概括包括中位值、四分位数Q1、四分位数Q3、最小和最大观测值组成盒图。
知识点五度量数据的相似性和相异性1.簇是数据对象的集合,使得每一个簇中的元素互相相似,与其他簇中的对象相异。
2.两种数据结构:数据矩阵(存放数据对象)和相异性矩阵(存放数据对象对的相异性值)3.邻近性指相异性和相似性4.数据矩阵也叫二模矩阵,相异矩阵只包含一种实体,称为单模矩阵5.欧几里得距离和曼哈顿距离满足:非负性、同一性、对称性、三角不等式,满足条件的测度叫做度量。
6.上确界距离是两个对象的最大值差知识点六数据预处理概述1.数据质量包括准备性、完整性、一致性、时效性、可信性、可解释性。
质量基于数据的应用目的。
2.数据预处理的主要任务数据清理、数据集成、数据归约、数据变换3.数据清理是为了填补缺失的值、光滑噪声数据、识别和删除离群点、纠正数据的不一致性。
这是一个两步的迭代的过程,分为偏差检测和数据变换4.数据集成涉及集成多个文件、数据库、数据立方体,整合成一致的数据存储。
语义异种性的解决、元数据、相关分析、元组重复检测和数据冲突检测都有助于数据的集成。
5.数据归约得到数据集的简化表示,使信息内容的损失最小化。
策略包括维归约和数值归约、数据压缩。
维归约中减少所考虑的随机变量或者维的个数,方法包括小波变换、主成分分析、属性子集选择和属性创建。
数值归约归约中,使用参数模型和非参数模型,用较小的表示取代数据。
数据压缩指按照比例映射到一个较小的区间。
不损失任何信息代表是无损的。
6.属性的原始值被区间或者叫高层的概念所取代可以采用离散化和概念分层产生的方法,使得数据在多个抽象层上进行。
数据变换包括规范化、数据离散化、概念分层产生7.冗余数据的删除既是数据清理也是数据归约8.填补缺失值的方法有忽略元组、人工填写、使用一个全局变量、使用属性的中心度量(中位数或者均值)、使用给定元组属性的同一类的所有样本的属性均值或者中位数、使用最可能的值(使用回归或者贝叶斯推理得到)9.噪声是被测量的变量的随机误差或者方差10.识别噪声的方法有基本统计描述技术和数据可视化方法11.数据光滑技术有分箱、回归、离群点分析12.分箱通过考察数据的近邻来光滑有序数据值,这些有序的值被分配到一些桶或箱中。
13.分箱考察近邻的值,它是局部光滑14.对于用箱均值光滑,所有值都被替换成均值;用箱中位数光滑,每一个数都替换成中位数;用箱边界光滑,每一个数字都替换成最近的边界值,宽度越大代表光滑效果越好15.数据变换指数据被变换或者统一成适合挖掘的形式,策略包括光滑、属性构造、聚集、离散化、由标称数据产生概念分层。
16.光滑指去掉数据中的噪声,技术包括分箱、回归、聚类;属性构造通过已知属性产生新的属性添加到属性集中;聚类对数据的汇总和聚集;概念分层将属性泛化到较高的概念层17.离散化技术根据如何离散化加以分类,比如自顶向下的分类或者离散化。
使用类信息叫做监督的离散化。
18.离散化和概念分层也是数据归约的形式,原始数据被曲建或者标签取代。
19.用较小的单位表示属性将导致该属性有较大值域,因此倾向于使这样的属性具有较大的影响或者较高的权重20.规范化或标准化的目的是避免对度量单位选择的依赖性,规范化数据试图赋予所有属性相等的权重。
方法有最小-最大规范化、z分数规范化和按小数定标规范化21.最小-最大规范化:(v-minA)/(maxA-minA)(new_maxA-new_minA)+new_minAz分数规范化:(v-均值)/方差按小数定标规范化:全部除以一个数字22.分箱是一种基于指定的箱个数的自顶向下的分裂技术。
分箱不使用类信息,是一种非监督的离散化技术,对用户指定的箱个数敏感,容易受离群点的影响23.直方图是一种非监督的离散化方法,将属性A的值划分为不相交的区间,叫做桶或者箱。
直方图分析算法可以递归地用于每一个分区,自动地产生多级概念分层,直到达到一个预先设定的概念层数,过程终止。
对每一层使用最小区间长度来控制递归。
24.聚类将属性A划分为簇或组来离散化属性A。
采用自顶向下的划分策略或组自底向上的合并策略产生概念分层,其中每一个簇形成的概念分层的一个结点。