倒装芯片(FC-Flip-Chip)装配技术
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
为什么要用覆晶LED覆晶焊技术支持的LED光源与传统封装光源相比,具有热阻低,电压低,大电流密度光效高的特点,综合研究表明覆晶LED光源在应用上有其独特的潜力和优势。
优点:(1)、高可靠性,最稳定的SMT锡制程,承受拉力是传统LED的数十倍。
(2)、低热阻(3014热阻为40℃/W,倒裝为5.8℃/W),高散热性,防止热量过高而烧坏晶片或荧光粉和封装胶。
(3)、无金线可实现多芯片的集成,特别是COB和高压LED灯源。
也有效的避免金线引起的各种风险,比如热膨胀使之断裂,外部冲击波或压力造成金钱断裂等优势。
(4)、导电面积大,内阻小,能承受大电流通过,减少因为内阻大引起的过大热量。
(5)、发光率高,发光角度大等优点。
(6)、封装工艺简化,降低封装成本,高提生产良率。
(7)、低光衰,不因为热引起的快速光衰,从而延长了芯片的寿命,是普通灯具的10倍以上一、结构优势首先,相对于正装和垂直的芯片封装方式,覆晶封装没有金线存在,可以有效避免金线可能引起的各种风险。
下表为硅胶、金线、芯片的热膨胀系数值,其数量级的差距说明了硅胶热膨胀对金线的拉扯会造成可靠性的隐患。
材料热膨胀系数其次,覆晶焊采用金属与金属直接接触的方式,其大电流散热能力比传统封装更好。
如图为传统封装与覆晶封装在散热通道方面的区别,传统正装封装通过蓝宝石和固晶银胶散热,覆晶焊通过金属通道散热,传统封装的蓝宝石和固晶胶成为散热瓶颈。
下表所示的数值为蓝宝石、固晶胶、金属三者在导热系数大小,三者对比明显可以发现覆晶焊金属导热通道的巨大优势。
材料导热系数传统封装光源散热通道覆晶焊封装光源散热通道最后,覆晶焊的封装不存在金线的焊线弧度,能够实现超薄型的平面封装。
传统封装方式金线的拉力仅10g左右,而覆晶焊的接触面推力达到500g以上,覆晶封装可以抵抗一定的表面挤压而不影响LED的光电性能,适合于狭小的应用空间内。
例如手机、摄像机、背光等领域。
同时在多芯片的集成,均能发挥超薄易安装高集成的优势。
flip chip工艺技术Flip chip工艺技术是一种电子封装技术,它将芯片直接倒装在基板上,通过金线、焊球或者导电胶等连接芯片和基板之间的引脚,以实现电信号的传输。
相比传统的片上线缆(wire bonding)技术,flip chip工艺具有许多优势,如更高的可靠性、更小的封装尺寸和更高的电路性能等。
Flip chip工艺技术最早出现在1961年,当时IBM公司发明了一种在芯片表面覆盖一层金球,并将其倒装在基板上的方法。
经过多年的发展,flip chip工艺技术已经成为现代电子封装领域中的一个重要技术。
首先,flip chip工艺技术可以在同一面芯片上实现更多的输入输出(I/O)引脚,从而提高了芯片的连接密度。
对于高性能芯片来说,这项技术尤为重要。
根据需要,芯片制造商可以在芯片上布置成百上千个引脚,实现更高级别的功能和更复杂的电路设计。
其次,flip chip工艺技术可以显著减小芯片封装的尺寸。
由于芯片是倒装在基板上的,消除了传统封装技术中的芯片焊线和封装间隙,使得整个封装尺寸更小。
作为结果,这种封装技术对于紧凑型电子设备的制造非常有吸引力,例如智能手机、平板电脑和可穿戴设备等。
另外,flip chip工艺技术还具有更高的可靠性。
由于芯片和基板之间的连接是直接的,没有中间电线或导线,所以连接更加牢固。
此外,由于距离更短,电信号传输速度更快,噪声也更小,因此电路性能更稳定。
然而,flip chip工艺技术也存在一些挑战。
首先,由于芯片倒装在基板上,制造过程需要更加精确和复杂的操作。
其次,倒装引脚之间的热量分布不均匀可能会导致芯片热量过量和不均匀,从而影响芯片的性能和寿命。
此外,由于芯片和基板的直接接触,其之间必须要有一层合适的介质材料来调整它们之间的电学和热学性能。
这样的介质材料需要具备良好的导热性、电性能和耐久性。
总结来说,flip chip工艺技术是一种先进的电子封装技术,具有更高的可靠性、更小的封装尺寸和更高的电路性能等优势。
LED 术语和实际应用指南倒装芯片安装(flip
在底板上直接安装芯片的方法之一。
连接芯片表面和底板时,并不是像引线键合一样那样利用引线连接,而是利用阵列状排列的,名为焊点的突起状端子进行连接。
与引线键合相比,可减小安装面积。
另外,由于布线较短,还具有电特性优异的特点。
主要用于对小型和薄型具有较高要求的便携产品电路以及重视电特性的高频电路等。
另外为了将芯片发出的热量容易地传递到底板上,需要解决发热问题的LED 也有采用这种安装技术的。
将LED 芯片收纳于封装中时如果采用倒装芯片技术,发光层(发热源)距离封装一侧就较近。
因此,容易将LED 芯片的热量散发到封装侧。
另外,采用倒装芯片安装方法安装LED 芯片的话,发光层的光射出外部时不会受到电极的遮蔽。
尤其是采用蓝宝石底板的蓝色LED 等只在LED 芯片一面设置电极的产品,其效果更为明显。
通过倒装芯片安装的LED 的发光效率,与采用引线键合的安装相比,可提高数十%。
用于LSI 时可削减芯片面积
倒装芯片安装多用于LSI。
原因是由于芯片整体拥有输入输出(I/O)端子,由此可缩小芯片面积。
以前,采用通常使用的引线键合方法时,I/O 端子在芯片周围,为了备齐所需的I/O 数量,必须扩大芯片面积。
倒装芯片安。
半导体fc工艺哎呀,半导体FC工艺,这玩意儿听起来就挺高大上的,不过别急,我今儿个就给你聊聊这个,保证让你听得明明白白,还能乐呵乐呵的。
话说,这半导体工艺啊,就像做蛋糕一样,得一层一层来。
FC工艺呢,就是其中的一个步骤,全名叫“Flip Chip”工艺,直译过来就是“翻转芯片”。
这名字听起来是不是有点搞笑?芯片还能翻转?别急,听我慢慢道来。
首先,这FC工艺,其实就是把芯片的底部金属焊盘翻转过来,直接和电路板连接的一种技术。
这就好比你把一张纸翻过来,然后在背面写上字一样。
不过,这芯片可比纸复杂多了,它上面密密麻麻的都是电路,一不小心,那可就全乱套了。
我记得有一次,我在实验室里,亲眼目睹了这FC工艺的全过程。
那是个阳光明媚的下午,实验室里静悄悄的,只有机器运转的声音。
我看着那些工程师,他们一个个都穿着白大褂,戴着手套,眼睛盯着显微镜,手里拿着那些比米粒还小的芯片,小心翼翼地翻转、焊接。
那场景,简直就像是在做一场精细的手术。
我看着他们,心里不由得佩服。
这FC工艺,可不仅仅是翻转那么简单,它还得保证芯片和电路板之间的连接完美无缺。
这就好比你在纸上写字,不仅要写得好看,还不能写错一个字。
而且,这FC工艺还有个特别的地方,就是它用的是一种叫做“焊球”的东西。
这些焊球,就像是一个个小小的金色珠子,它们在高温下融化,然后迅速凝固,把芯片和电路板牢牢地粘在一起。
这个过程,就像是在做糖葫芦,只不过这糖葫芦不是给人吃的,而是给机器用的。
说到这,我突然想起了小时候,妈妈给我做的糖葫芦。
那时候,我总是站在厨房门口,看着妈妈把一颗颗山楂串起来,然后裹上糖浆。
那糖浆在锅里咕嘟咕嘟地冒着泡,散发出诱人的香味。
我那时候就想,这半导体FC工艺,是不是也有点像做糖葫芦呢?你看,这FC工艺,虽然听起来高大上,但其实它的原理和我们日常生活中的一些事情还挺相似的。
它就像是一场精细的手术,也像是在做糖葫芦。
虽然我们可能不会亲手去做,但了解它的过程,也能感受到科技的魅力和乐趣。
flipchip封装工艺Flipchip封装工艺是一种先进的微电子封装技术,它在集成电路封装领域具有重要的应用价值。
本文将从Flipchip封装工艺的基本原理、优势和应用领域等方面进行介绍。
一、Flipchip封装工艺的基本原理Flipchip封装工艺是一种将芯片直接翻转并与基板相连接的封装技术。
与传统封装工艺相比,Flipchip封装工艺具有更高的可靠性和更小的封装体积。
其基本原理是通过将芯片的电路面朝下,将芯片的引脚与基板上的金属引脚连接,从而实现芯片与基板之间的电气连接。
Flipchip封装工艺的具体步骤包括:首先,将芯片的电路面朝下,将芯片上的金属引脚与基板上的金属引脚对准;然后,通过热压或焊接等方式将芯片与基板相连接;最后,进行封装胶的填充和固化,以保护芯片和连接引脚。
二、Flipchip封装工艺的优势1. 封装密度高:由于Flipchip封装工艺将芯片的电路面朝下,可以实现更高的封装密度,从而提高芯片的性能和功能。
2. 电性能优良:Flipchip封装工艺可以实现短距离的电气连接,减少电阻和电感的影响,从而提高芯片的电性能。
3. 信号传输速度快:由于Flipchip封装工艺可以实现更短的信号传输路径,可以提高芯片的信号传输速度,从而提高芯片的运行速度和性能。
4. 散热性好:由于Flipchip封装工艺可以将芯片直接与基板相连接,可以实现更好的散热效果,提高芯片的稳定性和可靠性。
三、Flipchip封装工艺的应用领域Flipchip封装工艺在高性能计算、通信、消费电子等领域具有广泛的应用。
具体应用包括:1. 高性能处理器:Flipchip封装工艺可以实现更高的封装密度和更好的散热性能,适用于高性能处理器的封装。
2. 光通信模块:Flipchip封装工艺可以实现更短的信号传输路径和更高的信号传输速度,适用于光通信模块的封装。
3. 手机和平板电脑:Flipchip封装工艺可以实现更小的封装体积和更好的散热性能,适用于手机和平板电脑等消费电子产品的封装。
倒装芯片(FC,Flip-Chip)装配技术
时间:2010-05-27 23:04:25 来源:网络
倒装芯片焊接完成后,需要在器件底部和基板之间填充一种胶(一般为环氧树酯材料)。
底部填充分为于“ 毛细流动原理” 的流动性和非流动性(No-follow )底部填充。
上述倒装芯片组装工艺是针对C4 器件(器件焊凸材料为SnPb 、SnAg 、SnCu 或SnAgCu )而言。
另外一种工艺是利用各向异性导电胶(ACF )来装配倒装芯片。
预先在基板上施加异性导电胶,贴片头用较高压力将器件贴装在基板上,同时对器件加热,使导电胶固化。
该工艺要求贴片机具有非常高的精度,同时贴片头具有大压力及加热功能。
对于非C4 器件(其焊凸材料为Au 或其它)的装配,趋向采用此工艺。
这里,我们主要讨论C4 工艺,下表列出的是倒装芯片植球(Bumping )和在基板上连接的几种方式。
倒装倒装芯片几何尺寸可以用一个“ 小” 字来形容:焊球直径小(小到0.05mm ),焊球间距小(小到0.1mm ),外形尺寸小(1mm 2 )。
要获得满意的装配良率,给贴装设备及其工艺带来了挑战,随着焊球直径的缩小,贴装精度要求越来越高,目前12μm 甚至10μm 的精度越来越常见。
贴片设备照像机图形处理能力也十分关键,小的球径小的球间距需要更高像素的像机来处理。
随着时间推移,高性能芯片的尺寸不断增大,焊凸(Solder Bump)数量不断提高,基板变得越来越薄,为了提高产品可靠性底部填充成为必须。
对贴装压力控制的要求
考虑到倒装芯片基材是比较脆的硅,若在取料、助焊剂浸蘸过程中施以较大的压力容易将其压裂,同时细小的焊凸在此过程中也容易压变形,所以尽量使用比较低的贴装压力,一般要求在150g 左右。
对于超薄形芯片,如0.3mm ,有时甚至要求贴装压力控制在35g 。
对贴装精度及稳定性的要求
对于球间距小到0.1mm 的器件,需要怎样的贴装精度才能达到较高的良率?基板的翘曲变形,阻焊膜窗口的尺寸和位置偏差,以及机器的精度等,都会影响到最终的贴装精度。
关于基板设计和制造的情况对于贴装的影响,我们在此不作讨论,这芯片装配工艺对贴装设备的要求里我们只是来讨论机器的贴装精度。
为了回答上面的问题,我们来建立一个简单的假设模型:
1. 假设倒装芯片的焊凸为球形,基板上对应的焊盘为圆形,且具有相同的直径;
2. 假设无基板翘曲变形及制造缺陷方面的影响;
3. 不考虑Theta 和冲击的影响;
4. 在回流焊接过程中,器件具有自对中性,焊球与润湿面50% 的接触在焊接过程中可以被“ 拉正” 。
那么,基于以上的假设,直径25μm 的焊球如果其对应的圆形焊盘的直径为50μm 时,左右位置偏差(X 轴)或前后位置偏差(Y 轴)在焊盘尺寸的50% ,焊球都始终在焊盘上(图9 )。
对于焊球直径为25μm 的倒装芯片,工艺能力Cpk 要达到1.33 的话,要求机器的最小精度必须达到12μm@3sigma 。