弧长与扇形面积练习题与答案
- 格式:docx
- 大小:230.65 KB
- 文档页数:10
1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是.
2、一个扇形的圆心角为120°,面积为3πcm2,这个扇形的半径
是.
3、已知扇形的弧长为20cm,面积为16cm2,那么扇形的半径
为 .
4、扇形的半径是6cm,圆心角为10°,则这个扇形的面积是______ cm2.
5、扇形的面积是5πcm2 ,圆心角为72°,则这个扇形的半径是__ _ cm.
6、已知扇形的圆心角为120°,弧长等于半径为5cm的圆周长,则扇形
的面积为()
A.75 cm2
B.75πcm2
C.150cm2
D.150πcm2
7、如图所示,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为()
A.12πm B.18πm
C.20πm D.24πm
8、如图3所示,OA=30B,则的长是的长的倍.
9、如图,两个同心圆被两条半径截得的的长为6πcm,的长为10πcm,又AC=12cm,求阴影部分ABDC的面积。
浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)一、选择题:本题共5小题,每小题3分,共15分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A. B. C. D.2.如图,半径是1,A、B、C是圆周上的三点,,则劣弧的长是()A.B.C.D.3.如图是两个同心圆的一部分,已知,则的长是的长的()A.B.2倍C.D.4倍4.如图,在的正方形网格中,若将绕着点A逆时针旋转得到,则的长为()A.B.C.D.5.如图,内接于,,若,则的长为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
6.已知弧的长为,弧的半径为6cm ,则圆弧的度数为______.7.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B 点所经过的路径长度为______.8.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为2,则该莱洛三角形的周长为______.9.在半径为6cm 的圆中,的圆心角所对的弧长为______10.如图,在的正方形网格中,每个小正方形的边长为以点O 为圆心,4为半径画弧,交图中网格线于点A 、B ,则的长为______.11.已知一个半圆形工件,搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是______结果用表示三、计算题:本大题共1小题,共6分。
12.如图,已知四边形ABCD 内接于圆O ,连接BD ,,求证:;若圆O 的半径为3,求的长.四、解答题:本题共2小题,共16分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分一段铁丝长,把它弯成半径为160cm的一段圆弧,求铁丝两端间距离.14.本小题8分如图,在矩形ABCD中,将矩形ABCD在直线l上按顺时针方向不滑动地每秒转动,转动3s后停止,则顶点A经过的路程为多长?答案和解析1.【答案】B【解析】解:弧长故选:根据弧长公式进行求解即可.本题考查了弧长的计算,解答本题的关键是掌握弧长公式:2.【答案】B【解析】解:连OB,OC,如图,,,劣弧的长故选连OB,OC,根据圆周角定理得到,然后根据弧长公式计算劣弧的长.本题考查了弧长公式:也考查了圆周角定理.3.【答案】A【解析】解:设,,则,,的长是的长的故选:利用弧长公式计算即可.本题考查了弧长公式:弧长为l,圆心角度数为n,圆的半径为熟记公式是解题的关键.4.【答案】A【解析】解:根据图示知,,的长为:故选根据图示知,所以根据弧长公式求得的长.本题考查了弧长的计算、旋转的性质.解答此题时采用了“数形结合”是数学思想.5.【答案】A【解析】【分析】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于常考题.连接OB,OC,首先证明是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,,,,,的长为,故选:6.【答案】【解析】解:设圆心角为n,则即圆弧的度数的把数量关系对应代入弧长公式,即可求解.主要考查了弧长公式:本题是利用弧长公式作为相等关系求圆心角的度数,即弧度.7.【答案】【解析】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段,第二段故B点翻滚一周所走过的路径长度,三次一个循环,……1,若翻滚了40次,则B点所经过的路径长度为故答案为:B点翻滚一周所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为,第二段是以A为圆心,AB为半径,圆心角为的两段弧长,依弧长公式计算即可.本题考查了旋转的性质,等边三角形的性质,弧长公式等知识,求出两次旋转的角度是解题的关键.8.【答案】【解析】解:该莱洛三角形的周长故答案为:直接利用弧长公式计算即可.本题考查了弧长的计算,等边三角形的性质,熟练掌握弧长的计算公式是解题的关键.9.【答案】【解析】解:半径为6cm的圆中,的圆心角所对的弧长为:故答案为:直接利用弧长公式求出即可.此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.10.【答案】【解析】解:如图,,,,,的长,故答案为:如图,根据直角三角形的性质得到,根据三角形的内角和定理得到,根据弧长公式计算即可.本题考查了弧长的计算、解直角三角形等知识,解题的关键是正确寻找直角三角形解决问题,属于中考常考题型.11.【答案】【解析】解:由图形可知,圆心先向前走的长度即圆的周长,然后沿着弧旋转圆的周长,最后向右平移50米,所以圆心总共走过的路程为圆周长的一半即半圆的弧长加上50,由已知得圆的半径为3,设半圆形的弧长为l,则半圆形的弧长,故圆心O所经过的路线长故答案为:根据弧长的公式先求出半圆形的弧长,即根据弧长的公式先求出半圆形的弧长,即半圆作无滑动翻转所经过的路线长,把它与沿地面平移所经过的路线长相加即为所求.本题主要考查了弧长公式,同时考查了旋转的知识.解题关键是得出半圆形的弧长=半圆作无滑动翻转所经过的路线长.12.【答案】证明:四边形ABCD内接于圆O,,,,;解:连接OB、OC,,,由圆周角定理得,,的长【解析】根据圆内接四边形的性质求出,根据等腰三角形的判定定理证明;连接OB、OC,根据圆周角定理求出,根据弧长公式计算即可.本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.13.【答案】解:设半径为160cm的一段圆弧的角度为n,则解得所以铁丝两端间距离为【解析】由半径为160cm的一段圆弧的长度为一段铁丝长,求得圆弧的角度,进一步利用勾股定理求得结论即可.此题考查弧长计算公式的运用,以及.勾股定理的运用,注意利用特殊的角度直接解决问题14.【答案】解:由勾股定理得矩形ABCD的对角线长为10,从A到,,路线长为;从到,,路线长为;从到,,路线长为;所以顶点A经过的路程为【解析】由勾股定理得矩形ABCD的对角线长为10,从A到是以B点为圆心AB为半径的弧,从到是以C为圆心AC为半径的弧,从到是以D为圆心AD为半径的弧,利用弧长公式即可求出顶点A经过的路线长.本题主要考查圆的弧长公式,旋转的性质以及勾股定理的运用,此题正确理解题意也很重要.。
专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
初三数学弧长及扇形的面积试题1.扇形的弧长为20cm,半径为5cm,则其面积为_____.【答案】【解析】扇形的面积公式:由题意得【考点】扇形的面积公式点评:本题是扇形的面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.2.如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=,将△ABC绕点B旋转至△A ′BC′的位置,且使点A,B,C′三点在同一直线上,则点A经过的最短路线长是______cm.【答案】【解析】由题意得点A经过的最短路线长是半径为AB且圆心角等于150°的扇形的弧长.∵∠C=90°,∠A=60°,AC=∴∴点A经过的最短路线长cm.【考点】弧长公式点评:图形的旋转问题是初中数学平面图形中的极为重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.如图,扇形AOB的圆心角为60°,半径为6cm,C、D分别是弧AB的三等分点, 则阴影部分的面积是________.【答案】cm2【解析】根据图形的特征可得阴影部分的面积等于扇形AOB的面积的由题意得阴影部分的面积【考点】扇形的面积公式点评:本题是扇形的面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.4.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为( )A. B. C.; D.【答案】A【解析】从图中明确S 阴=S 半-S △,然后依公式计算即可.∵∠AOB=90°,∴AB 是直径,连接AB根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知OB=2,∴OA=OBtan ∠ABO=OBtan30°=2,AB=AO÷sin30°=4 即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO 的面积,故选A.【考点】圆周角定理,锐角三角函数,圆、直角三角形的面积公式点评:辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.5. 如图,Rt △ABC 中,∠ABC=90°,AB=BC=2,以BC 为直径的圆交AC 于点D, 则图中阴影部分的面积为( )A .2B .C .1D .【答案】A【解析】从图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.∵∠ABC=90°,AB=BC , ∴∠C=45°, ∴DC=BD ,∴由BD ,CD 组成的两个弓形面积相等,所以阴影部分的面积就等于△ABD 的面积,所以S △ABD =2×1÷2=1.故选C .【考点】扇形的面积公式点评:根据图形的特征把复杂图形转化为一般图形的问题是初中数学中极为重要的知识点,是中考的热点,尤其在压轴题中比较常见,需特别注意.6. 已知,一条弧长为cm,它所对的圆心角为120°,求这条弧所对的弦长.【答案】9cm【解析】先根据弧长公式求得扇形的半径,再根据锐角三角函数的概念即可求得结果.设其半径为R,则,解得则可求弦长为【考点】弧长公式,锐角三角函数点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7.如图是一把绸扇,线段AD、BC所在的直线相交于点O,弧AB与弧CD是以点O为圆心、半径分别为10cm,20cm的圆弧,且∠AOB=150°,这把绸扇的绸布部分ADCB的面积是多少?(不考虑绸布的折皱,结果用含的式子表示)【答案】125【解析】分别计算出扇形DOC和扇形AOB的面积,再相减即可得到结果.由题意得扇形DOC的面积=,扇形AOB的面积=故绸布部分的面积为扇形DOC的面积-扇形AOB的面积=125.【考点】扇形的面积公式点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8.如图是一管道的横截面示意图,某工厂想测量管道横截面的面积,工人师傅使钢尺与管道内圆相切并与外圆交于A、B两点,测量结果为AB="30cm," 求管道阴影部分的面积.【答案】【解析】设切点为C,圆心为O,连接OC,根据切线的性质可得OC⊥AB,根据垂径定理可得AC=BC=15,连接OA,根据圆的面积公式及勾股定理即可求得结果.设切点为C,圆心为O,连接OC则OC⊥AB,故AC=BC=15连接OA,则故阴影部分的面积=【考点】切线的性质,垂径定理,圆的面积公式,勾股定理点评:辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.9.一服装厂里有大量形状为等腰直角三角形的边角布料,如图所示,现找出其中一种,测得∠C=90°,AC=BC=4,今要从这种三角形中剪出一种扇形, 做成形状不同的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形的弧与△ABC的其他边相切, 请设计出所有可能符合题意的方案示意图,并直接写出扇形的半径.【答案】如图所示:【解析】根据可以A为圆心,作出与BC相切的扇形,或者以B为圆心,以BC为半径做扇形;还可以以AB的中点为圆心,作出与AC,BC都相切的扇形,或者以∠A的平分线与BC的交点为圆心,以到C的距离为半径的扇形.如图所示:【考点】应用与设计作图中扇形作法点评:作图能力是初中数学学习中一个极为重要的能力,是中考的热点,一般以作图题形式出现,难度不大,需特别注意.10.如图,正△ABC的边长为1cm,将线段AC绕点A顺时针旋转120 °至AP1, 形成扇形D1;将线段BP1绕点B顺时针旋转120°至BP2,形成扇形D2;将线段CP2绕点C 顺时针旋转120°至CP3,形成扇形D3;将线段AP3绕点A顺时针旋转120°至AP4,形成扇形D4,……设为扇形的弧长(n=1,2,3…),回答下列问题:(1)按要求填表:(2)根据上表所反映的规律,试估计n至少为何值时,扉形的弧长能绕地球赤道一周?(设地球赤道半径为6400km).【答案】(1)依次填;(2)1.92×109毛【解析】从上图中可以找出规律,弧长的圆心角不变都是120度,变化的是半径,而且第一次是1,第二次是2,第三次是3,依此下去,然后按照弧长公式计算.(1);;;(2)由题意得解得【考点】弧长公式点评:根据题意分析归纳问题的能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度较大,需特别注意.。
弧长和扇形面积(练习2)第1题. 如图10,扇形O D E 的圆心角为120 ,正三角形ABC 的中心恰好为扇形O D E 的圆心,且点B 在扇形O D E 内(1) 请连接O A O B 、,并证明A O F B O G △≌△; (2) 求证:A B C △与扇形O D E 重叠部分的面积等于A B C △面积的13.答案:(1)连结O A O B 、(如图) O 是正三角形ABC 的中心. O A O B ∴=.O A F O B ∠=∠.3601203AO B ∠==又120DOE ∠=A OB D O ∴∠=∠ A O B B O D D O E ∴∠-∠=∠-∠ 即A O F B O G ∠=∠故AO F BO G △≌△ (2)BO G BO F BG O F S S S =+ △△四边形而AO F BO G △≌△. 有BOG AOF S S =△△ AO FB O FBGOF S S SS ∴=+=△△△四边形又O 是正三角形ABC 的中心. 13AOBAB CS S ∴=△△BG OFS ∴四边形13A B C S =△即A B C △与扇形O D E 重叠部分的面积等于A B C △面积的13.DAE第2题. 如图,两个半径为1,圆心角是90的扇形O A B 和扇 形O A B '''叠放在一起,点O '在 AB 上,四边形OPO Q '是正方 形,则阴影部分的面积等于 . 答案:12-π第3题. 下图是一纸杯,它的母线A C 和E F 延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形O A B .经测量,纸杯上开口圆的直径为6cm ,下底面直径为4cm ,母线长8E F =cm .求扇形O A B 的圆心角及这个纸杯的表面积(面积计算结果用π表示).答案:解:由题意可知:6AB =π, 4C D =π 设AOB n ∠=,A O R =,则8C O R =-由弧长公式得:6180n R =ππ,(8)4180n R -=ππ解方程组618041808nR nR n⨯=⎧⎨⨯=-⎩得4524n R =⎧⎨=⎩答:扇形O A B 的圆心角是45∵24R = 816R -= 1AA BB '(第2题图)O1624722OABS =⨯⨯=扇形ππ 7232O A B O CD S S S =-=-纸杯侧面积扇形扇形ππ 40=π224S =⋅=纸杯底面积ππ.40444S =+=纸杯表面积πππ.第4题. 半径为R 的圆弧 AB 的长为12R π,则AB 所对的圆心角为 ,弦A B 的长为 .答案:90第5题. 半径为5的圆的弧长等于半径为2的圆的周长,则在半径为5的圆中,这条弧所对的圆心角的度数为 .答案:144第6题. 在半径为4cm 的圆中,弧长为2cm 3π的弧所对的圆周角的度数为 .答案:15第7题. 一个扇形的圆心角为30,半径为12cm ,则这个扇形的面积为 .答案:212cm π第8题. 如图,1O 和2O 是半径为6的两个等圆,且互过圆心,则图中阴影部分的面积为.答案:24π-第9题. 如图,△ABC 内接于O ,4cm AB BC C A ===,则图中阴影部分的面积为 .答案:216)93π-第10题. 如图,O A 是O 的半径,A B 是以O A 为直径的O ' 的弦,O B '的延长线交O 于C 点,且4O A =,45OAB ∠= ,则由 AB ,A C 和线段BC 所围成的图形(影阴部分)的面积是 .答案:53π-第11题. 已知扇形的圆心角为60,半径为5,则扇形周长为( )A.53πB.53π+10 C.56π D.5106π+答案:B第12题. 如果扇形的圆心角为150 ,半径是6,那么扇形的面积为( )A.5π B.10π C.15π D.30π答案:C第13题. 如图,1O ,与2O 外切于点C ,M 与1O ,2O 都相内切,切点分别为A ,B ,1O 与2O 的半径均为2,M 的半径为6,求图中阴影部分的面积.答案:连结12O O ,1M O ,2M O 并延长,则1M O ,2M O 分别过点A ,B .124O O = ,124O M O M ==,1212O O O M O M ∴==,122160M M O O M O O ∴∠=∠=∠=,12120AO C BO C ∴∠=∠=.12160112024423602236081063M O O M AB O AC S S S S 22⎛π⨯6π⨯2=--=-⨯⨯⨯-⨯ ⎝⎭π=π-=π-3 阴影扇形扇形第14题. 如图,正方形A B C D 的边长为2,分别以B ,D 为圆心,2为半径画弧,求图中阴影部分的面积.答案:2909022360360ABCD BAC DAC S S S S 22π⨯2π⨯2=+-=+-=π-4阴影正方形扇形扇形.D第15题. 如图,阴影部分是某一个广告标志,已知两圆弧所在圆的半径分别是20cm ,10cm ,120AOB ∠=,求这个广告标志的周长(精确到0.1cm ).答案:设半径为20cm ,10cm 的圆弧长分别为1l 和2l .124080(cm )180l π20π==3,224040(cm )180l π10π==3.广告标志的周长为128040(2010)240cm l l A C B D ππ+++=++-⨯=π+20≈145.6()33.第16题. 如图,1O 与2O 相外切于C 点,A B 切1O 于A 点,切2O 于B 点,21O O 的延长线交1O 于点D ,与B A 的延长线交于点P . (1)求证:2221P O P C P AP O =;(2)若AB =,6cm P C =,求图中阴影部分的面积.答案:(1)连结1O A ,2O B ,B C ,A C ,则12O A O B ∥,12180AO C BO C ∴∠+∠=.11O A O C = ,11O AC O C A ∴∠=∠,同理22O CB O BC∠=.112212360()180O AC O C A O C B O BC AO C BO C ∠+∠+∠+∠=-∠+∠=,1290AC O BC O ∴∠+∠= ,90ACB ∴∠= ,90CAB CBA ∴∠+∠=,11C BA O AC O C A ∠=∠=∠.P又C PA BPC ∠=∠ ,∴△PAC ∽△P C B ,P C P B P AP C∴=,2PC PA PB = .222PC PA PB PB PAPAPA∴==.12O A O B ∥,21PO PB PAPO ∴=,2221P O P C P AP O ∴=.(2)设P A x =,由2PC PA PB =,得(36x x +=,解得x =2PA PD PC =,226PAPD PC∴===,4C D ∴=,14PO =,11sin 2PA PO A PO ∠==160PO A ∴∠= ,1120AO C ∴∠= ,260B O C ∠=.1213AO PA BO PB==,26O B =,121221422(26)cm 233OA B O OA COB CS S S S =--=+⨯π-6π=π()阴影梯形扇形扇形第17题. 如图中的五个半圆,邻近的两个半圆相切,两只小虫以相同速度,同时从A 点到B 点,甲虫沿 1ADA , 12A EA , 23A FA , 3A GB 路线爬行;乙虫沿A CB 路线爬行,则下列结论正确的是( )A.甲先到达B 点 B.乙先到达B 点 C.甲、乙同时到达B 点 D.无法确定答案:C第18题. 如图,正方形A B C D 的边长为2,以C D 为直径在正方形内画半圆,再以D 为圆心,2为半径画弧A C ,则图中阴影部分的面积为() A.π B.23π C.32π D.2πD EFGC1A2A3A答案:D第19题. 如图,半圆O 的弦A B 平行直径C D ,已知24AB =,半圆E F 与A B 相切,求圆中阴影部分的面积.答案:如图所示,将小半圆沿C D 平行移动,使其圆心与点O 重合,这样所求阴影部分的面积不变.设平移后,小圆与线段A B 相切于G 点,连O G ,O B ,O G A B ∴⊥,且11241222B G A B ==⨯=.在Rt △O BG 中,222212144OB OG GB -===.2222211112222S S S O B O G O B O G G B 1=-=π-π=π(-)=π=π⨯144=72π2阴影大半圆小半圆.第20题. 已知一圆的周长为8cm π,其圆周上一段弧长为3cm π,则该弧所对的圆周角为 .答案:67.5第21题. 如果弧长为l ,圆心角度数为n ,圆的半径为r ,那么,弧长的计算公式为 .答案:180n r l π=第22题. 如果设圆心角是n 的扇形面积为S ,圆的半径为r ,那么扇形的面积为 .答案:2360n rS π=或12S lr =第23题. 圆心角为30 ,半径为R 的弧长为 . 答案:6R π第24题. 圆周长为6π,则60 圆心角所对应的弧长为 .答案:π第25题. 在半径为1cm 的圆中,弧长为23π的弧所对应的圆周角为 .答案:60第26题. 在O 中,如果120的圆心角所对应的弧长为43π,则O 的半径为 .答案:2第27题. 如果O 的半径3cm ,其中一弧长2πcm ,则这弧所对的弦长为 .答案:第28题. 圆心角是180 ,占整个周角的180360,因此它所对的弧长是圆周长的 .答案:12第29题. 圆心角是n ,占整个周角的 ,因此它所对的弧长是圆周长的 . 答案:360n ,360n第30题. 扇形的面积为34cm 2,扇形所在圆的半径32cm ,求扇形的圆心角.答案:120。
弧长以及扇形面积的计算副标题题号一二三总分得分一、选择题(本大题共3小题,共9.0分)1.如图,在中,,,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则的长为A.B.C.D.【答案】B【解析】解:连接OE、OD,设半径为r,分别与AB,AC相切于D,E两点,,,是BC的中点,是中位线,,,同理可知:,,,由勾股定理可知,,故选:B.连接OE、OD,由切线的性质可知,,由于O是BC的中点,从而可知OD是中位线,所以可知,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.2.一个扇形的弧长是,面积是,则此扇形的圆心角的度数是A. B. C. D.【答案】B【解析】解:一个扇形的弧长是,面积是,,即,解得:,,解得:,故选B利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.3.的圆心角对的弧长是,则此弧所在圆的半径是A. 3B. 4C. 9D. 18【答案】C【解析】解:根据弧长的公式得到:解得.故选C.根据弧长的计算公式,将n及l的值代入即可得出半径r的值.此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般.二、填空题(本大题共1小题,共3.0分)4.如图,已知等边的边长为6,以AB为直径的与边AC、BC分别交于D、E两点,则劣弧的长为______.【答案】【解析】解:连接OD、OE,如图所示:是等边三角形,,,,、是等边三角形,,,,的长;故答案为:.连接OD、OE,先证明、是等边三角形,得出,求出,再由弧长公式即可得出答案.本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.三、解答题(本大题共1小题,共8.0分)5.如图,AB为半圆O的直径,AC是的一条弦,D为的中点,作,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若,求阴影区域的面积结果保留根号和【答案】证明:连接OD,为的中点,,,,,,,,即,,为半圆O的切线;解:连接OC与CD,,,,又,,,,为等边三角形,,,,,,在中,,,在中,,,,,,由,是等边三角形,,,,故,.【解析】直接利用切线的判定方法结合圆心角定理分析得出,即可得出答案;直接利用得出,再利用,求出答案.此题主要考查了切线的判定与性质以及扇形面积求法等知识,得出是解题关键.。
ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。
2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。
4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。
5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。
6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。
7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。
②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。
8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。
9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。
10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。
苏科新版九年级上册《2.7弧长及扇形的面积》2024年同步练习卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A.B.C.D.2.一个圆中有三个扇形甲、乙、丙,其中甲、乙所占总面积的百分比如图所示,那么扇形丙的圆心角是() A. B.C.D.3.如图,在中,,,以BC 为直径作半圆,交AB 于点D ,则阴影部分的面积是()A. B.C.D.24.如图,半圆O 的直径,将半圆O 绕点B 顺针旋转得到半圆,与AB 交于点P ,则图中阴影部分的面积为() A. B. C. D.5.如图,半径为10的扇形AOB 中,,C 为弧AB 上一点,,,垂足分别为D ,若图中阴影部分的面积为,则()A. B. C.D.6.如图,将半径为2cm的圆形纸片翻折,使得、恰好都经过圆心O,折痕为AB、BC,则阴影部分的面积为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
7.在圆心角为的扇形AOB中,半径,则扇形OAB的面积为______.8.如图,的半径为2,点A,C在上,线段BD经过圆心O,,,,则图中阴影部分的面积为_______.9.如图,图1是由若干个相同的图形图组成的美丽图案的一部分,图2中,图形的相关数据:半径,则图2的周长为______结果保留10.如图,矩形ABCD的四个顶点分别在扇形OEF的半径和弧上,若,,,则AB的长为______.11.如图,半圆O中,直径,弦,长为,则由与AC,AD围成的阴影部分面积为______.12.如图,的半径为5,A、B是圆上任意两点,且,以AB为边作正方形点D、P在直线AB两侧若AB边绕点P旋转一周,则对角线BD边扫过的面积为______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为,AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积纸扇有两面,结果精确到14.本小题8分如图,已知在中,,,,半径为2的分别与AC、BC相切于点E、求证:AB是的切线;求的度数,写出图中阴影部分的面积.15.本小题8分如图,D是等边内的一点,将线段AD绕点A顺时针旋转得到线段AE和扇形EAD,连接CD、BE、若,求阴影部分的面积;结果保留根号和若,求的度数.16.本小题8分如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,,AD、BC的延长线相交于点求证:AD是半圆O的切线;连结CD,求证:答案和解析1.【答案】C【解析】解:该扇形的弧长故选:根据弧长公式计算.本题考查了弧长的计算:弧长公式:弧长为l,圆心角度数为n,圆的半径为2.【答案】B【解析】解:,故选:根据扇形统计图的意义可得,扇形丙的圆心角占的,计算即可得答案.本题考查认识平面图形,掌握扇形统计图的意义是正确解答的前提.3.【答案】D【解析】解:连接CD,是半圆的直径,,在中,,,是等腰直角三角形,,阴影部分的面积,故选:连接CD,根据圆周角定理得到,推出是等腰直角三角形,得到,根据三角形的面积公式即可得到结论.本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4.【答案】A【解析】解:由已知可得,,,弓形PB的面积是:,阴影部分的面积是:,故选:根据题意和扇形面积计算公式、三角形的面积公式,可以计算出图中阴影部分的面积,本题得以解决.本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】B【解析】解:连接OC,,,,四边形CDOE是矩形,,在与中,,≌,图中阴影部分的面积=扇形OBC的面积,,,,≌,,,,故选:连接OC,易证得四边形CDOE是矩形,则≌,得到图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得,然后根据求得三角形的性质以及平行线的性质即可求得本题考查了扇形的面积,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC的面积等于阴影的面积是解题的关键.6.【答案】C【解析】解:作于点D,连接AO,BO,CO,如图所示:,,同理,,阴影部分的面积面积;故选:作于点D,连接AO,BO,CO,求出,得到,进而求得,再利用阴影部分的面积得出阴影部分的面积是面积的,即可得出结果.本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定7.【答案】【解析】解:圆心角为的扇形AOB中,半径,扇形OAB的面积,故答案为:根据扇形的面积公式即可得到结论.别人看出来扇形的面积的计算,熟练掌握扇形的面积公式是解题的关键.8.【答案】【解析】【分析】本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.通过解直角三角形可求出,,从而可求出,再通过证三角形全等找出,套入扇形的面积公式即可得出结论.【解答】解:在中,,,,,,同理,可得出:,在和中,有,≌故答案为9.【答案】【解析】解:由图1得:的长的长的长半径,则图2的周长为:,故答案为:先根据图1确定:图2的周长个的长,根据弧长公式可得结论.本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.10.【答案】2【解析】解:如图,连接OD,,,,,四边形ABCD是矩形,,,在中,,,,,在中,根据勾股定理,得,,解得,故答案为:连接OD,可得,根据已知可得,根据四边形ABCD是矩形,可得,,再根据含30度角的直角三角形可得,根据勾股定理即可求出OB的长,进而可得AB的长.本题考查了矩形的性质,含30度角的直角三角形,勾股定理,解决本题的关键是连接OD得到11.【答案】【解析】解:连接OC,OD,直径,,,,长为,阴影部分的面积为,故答案为:连接OC,OD,根据同底等高可知,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式来求解.本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.12.【答案】【解析】解:连接PD,过点P作与点E,PE交AB于点F,则BD边扫过的面积为以PD为外圆半径、PB为内圆半径的圆环面积,如图所示,,又为的弦,,,在中,易知,,,,,在中,,边扫过的面积为故答案为:连接PD,过点P作与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出,进而可得出,再根据圆环的面积公式结合勾股定理即可得出BD边扫过的面积.本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出BD边旋转过程中扫过区域的形状是关键.13.【答案】解:答:贴纸部分的面积为【解析】扇形面积公式可计算出两个扇形的面积,然后相减即可得.主要考查了扇环的面积求法.一般情况下是让大扇形的面积减去小扇形的面积求扇环面积.14.【答案】证明:连接OE、OD,过点O作,垂足为M,与AC,BC相切于点E、D,,,,,,,,,,,又,是的切线;,,,,、OB分别是、的角平分线,,,,,,,,图中阴影部分的面积为:【解析】根据已知分别与AC、BC相切于点E、D,想到连接OD,OE,可得,要证明AB是的切线,想到过点O作,垂足为M,只要求出即可,然后通过面积法进行计算即可解答;由得,,,,从而可得OA、OB分别是、的角平分线,即可求出的度数,最后利用的面积减去扇形的面积进行计算即可解答.本题考查了切线的判定与性质,勾股定理,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.【答案】解:,,是等边三角形,,;是等边三角形,,,线段AD绕点A顺时针旋转,得到线段AE,,,,,在和中,,≌,,,,为等边三角形,,【解析】利用扇形面积公式和三角形面积公式求得即可;由SAS证≌可得,证为等边三角形,则,继而得出答案.本题主要考查扇形面积的计算,旋转的性质,等边三角形的性质和全等三角形的判定与性质等知识;熟练掌握旋转的性质,证得三角形的全等是解题的关键.16.【答案】解:连结OD,BD,是的切线,,即,,,,,,,是半圆O的切线.由知,,,是半圆O的切线,,,是的直径,,,,,,【解析】连接OD,BD,根据圆周角定理得到,根据等腰三角形的性质得到,,根据等式的性质得到,根据切线的判定定理即可得到即可;由AD是半圆O的切线得到,于是得到,根据圆周角定理得到,等量代换得到,即可得到结论.本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.。
知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。
典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。
若固定 B 点,将此扇形依 顺时针方向旋转,得一新扇形 A'O' B , 其中 A 点在O' B 上,如图 (十四)所示, 则 O 点旋转至 O'点所经过的轨迹长度 为何 (A ) (B ) 2 (C ) 3 (D )4【关键词】弧长【答案】 D 图(十三) O图(十四)9.(2010 福建泉州市惠安县 ) 已知圆锥的底面半径是 3 ,母线长是 4 ,则圆锥的侧面积是 . 【关键词】圆锥侧面积 【答案】 12 2.(2010 年山东聊城 ) 将一块三角板和半圆形量角器按图中方式叠放,重叠部 分(阴影)的量角器弧( A ⌒B )对应的圆心角(∠ AOB)为 120°, AO 的长为 4cm ,OC 的长为 2cm ,则图中阴影部分的面积为()1分分16 π2A.(3+2)cm2.(83π+2)cm2C.(163π+2 3)cm2【关键词】阴影面积8π2.(3+ 2 3)cm2答案】 C BC=2 3 , 图中阴影部分的面积=扇形AOB+三角形BOC的面积=163π+ 2 3(cm2)1、(2010 年宁波市)如图,AB是⊙ O的直径,弦DE垂直平分半径半径OB相交于点P,连结EF、EO,若DE (1)求⊙ O 的半径;(2)求图中阴影部分的面积。
DPAOA,C 为垂足,弦DF 与45 。
【关键词】扇形面积,垂径定理【答案】解:(1)∵直径AB⊥ DE1∴ CE DE2∵ DE平分AO1∴ CO AO21OE 2又∵ OCE 90∴ CEO 30CE3在Rt△ COE中,OE3cos302∴⊙ O的半径为2。
2)连结OF在Rt△ DCP中,∵DPC45∴ D 90 4545∴ EOF 2 D90∵902∵ S扇形OEF2290 ,2. (2010 年兰州市)现有一个圆心角为圆锥的侧面(接缝忽略不计). 该圆锥底面圆的半径为A.4cmB .3cmC .2cm【关键词】圆锥BB半径为8cm 的扇形纸片,用它恰好围成一个.1cm答案】 C3. (2010 年兰州市 ) 如图,扇形 OAB ,∠ AOB=90 ,⊙ P 与 OA 、 OB 分别相切于点 F 、E ,并且与弧 AB 切于点 C ,则扇形 OAB 的面积与⊙ P 的面积比是 .2010 辽宁省丹东市) .如图,已知在⊙ O 中, AB =4 3 ,AC 是⊙ O 的直径, AC⊥BD 于 F ,∠A =30°.1)求图中阴影部分的面积;2)若用阴影扇形 OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.∵ AC⊥BD,∴ BC CD .∴∠ COD =∠ BOC =60°.∴∠ BOD =120°. ················· 5 分2∴S 阴影=n πOA2=120π42 16π. ····················· 6 分360 360 3关键词】 答案】 关键词】 圆锥侧面积 答案】解:(1)法一:过 O 作 OE ⊥AB 于 E ,则 AE =1 AB =2 3 1 分2 AE 在 Rt △ AEO 中,∠ BAC =30°, cos30°= AE .OA ∴OA = AE cos3023==4. 33分又∵ OA =OB ,∴∠ ABO =30°.∴∠ BOC =60° 扇形的面积 3 2 2第 22 题图D法二 :连结 AD . ∵AC⊥BD,AC 是直径,AF =AB·sin60°=4 3× 3 =6.2∴OB =4.【答案】 202. ( 2010 年福建省晋江市) 已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积 是.【关键词】圆锥的侧面积、扇形的面积 【答案】 2000 cm 2( 201 0 年 浙 江 省 绍 兴 市 ) 水管的外部需要包扎 , 包扎时用带子缠绕在管道外部 . 若要使1分∴ AC 垂直平分 BD . 2分∴AB =AD , BF =FD , BC CD . ∴∠ BAD =2∠ BAC =60°, ∴∠ BOD =120°. 3分∵BF =1 AB =2 3 ,sin602AF,AB∴OB 2=BF 2+OF 2.即 (2 3) 2 (6 OB)2 OB 2∴S 阴影=120 π· OA 2= 1 ×42·360 3 以下同法一. (2)设圆锥的底面圆的半径为 ∴ 2πr120π4.180 4∴r . ····316.π.36分r ,则周长为 2πr ,10 分1. ( 2010 年四川省眉山市) 已知圆锥的底面半径为 4cm ,高为 3cm ,则这个圆锥的侧面积为 2 _________ cm .【关键词】弧长与扇形面积 6D法三:∴S 阴影=1S 圆=16 π.∴cos BACAC 3 AB 2带子全部包住管道且不重叠 (不考虑管道两端的情况) , 需计算带子的缠绕角度 ( 指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ ABC , 其中 AB 为管道侧面母线的一部分) . 若带子宽度为 1,水管直径为 2,则 的余弦值为 .1答案】 16. 1212.(2010 江苏泰州, 12,3 分)已知扇形的圆心角为 120°,半径为 15cm ,则扇形的弧长 为cm (结果保留 ).【答案】 10 【关键词】弧长计算公式(2010 年眉山市 )17 .已知圆锥的底面半径为 4cm ,高为 3cm ,则这个圆锥的侧面积为2__________ cm .答案: 202010珠海) 15.如图, ⊙O 的半径等于 1,弦 AB 和半径 OC 互相平分于点积(结果保留π)解:∵弦 AB 和半径 OC 互相平分 ∴ OC ⊥AB(2010 年滨州)24 、(本题满分 8分)如图,已知AB 是⊙ O 的直径,点C 在⊙ O 上,且AB=12, BC=6.(1) 求 cos BAC 的值;解: (1) ∵AB 是⊙ O 的直径,∴∠ ACB 是直角.在直角△ ACB 中, AC 12 6 6 3.M.求扇形 OACB 的面1 1 OM=MC= OC= OA22在 Rt △ OAM 中, sinA= OM 1OA 2∴∠ A=30°又∵ OA=OB ∴ ∠ B=∠ °∴∠°120 1360∴ S 扇形(2) 如果 OD ⊥ AC ,垂足为 D ,求 AD 的长;(3) 求图中较大阴影部分的面积是较小阴影部分的面积的几倍 ( 精确到1(2) ∵OD ⊥ AC, ∴AD AC 3 32(3) 连接 OC ,作 OH ⊥ BC 于 H .由 (1) 可知∠ BAC=30°,∠ AOC=120°,∠ COB=60°;1 OD BC 32,OH1AC 2 33 120S大阴影 621 633 21.09∴ 3602S 60 62S小阴影1 6 33 3.25 小阴影3602S 大阴影6.8∴S 小阴影 ,答:图中较大阴影部分的面积是较小阴影部分的面积的倍19.( 2010 年山东省济宁市) 如图,如果从半径为 9cm 的圆形纸片剪去 1圆周的一个扇形, 3将留下的扇形围成一个圆锥(接缝处不重叠) ,那么这个圆锥的高为ABCD 边长为 4,以 BC 为直径的半圆 O 交对角线BD于 E .则直线 CD 与⊙ O 的位置关系是 ▲ ,阴影部分面积为 ( 结果保留π ) ▲ 关键词】圆的切线、扇形面积、三角形面积 答案】 相切 , 6 π(第 15 题)16.(2010年浙江台州市 )如图,菱形 ABCD 中, AB =2 ,∠ C =60°,菱形 ABCD 在直线 l 上向右作无滑动的翻滚,每绕着一个顶点旋转 60 °叫一次操作,则经过 36 次这样的操作菱 形中心 O 所经过的路径总长为 ( 结果保留π ) ▲ .A .6cmB . 3 5cmC.8cm D . 5 3 cm关键词】 弧长与扇形面积 答案】 B15.( 2010 年浙江台州市 )如图,正方形关键词】弧长 答案】(8 3+4)πO2010 年广东省广州市)一个扇形的圆心角为 D 90°.________ . ( 结果保留 ) 【关键词】弧长公式 【答案】π2010 年四川省眉山)已知圆锥的底面半径为 4cm ,高为 3cm ,则这个圆锥的侧面积为__________ cm 2.【关键词】圆锥的侧面积 . 【答案】 20 .(第 16题)。