2.8寸 TFT LCD模块 原理图
- 格式:pdf
- 大小:243.54 KB
- 文档页数:2
TFT LCD显示原理详解<什么是液晶>我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一):图(一)<TFT LCD显示原理>a:背景两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。
图(六)b:TFT LCD显示原理液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。
图(七)b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。
下层的偏光板与上层偏光板, 角度也是恰好差异90度。
所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。
效果如图(七)中前两个图所示。
b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。
c:TFT-LCD驱动电路。
为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。
在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。
已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。
由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。
上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。
TFT-LCD各功能电路原理通过前阶段对PWB的ASIC、DC/DC、GAMMA电路及IC的原理学习后,我对TFT-LCD的电路原理有了一定的了解,现总结归纳如下。
一、输入信号的提供目前CPTW所用到的讯号产生器有两种:PDC(MA4004U)和COMOS。
对于实装和组立点灯都采用PDC,提供Vin、RANO/RAPO、RBNO/RBPO、RCNO/RCPO、RDNO/RDPO、RANE/RAPE、RBNE/RBPE、 RCNE/RCPE、RDNE/RDPE、RCLKN/RCLKP、Vbuff等。
二、PWB产生工作电压和信号的过程PWB由S-PWB和G-PWB组成,分别完成不同的功能,它们的作用有很大差别:S-PWB作用是POWER电压分配VDD/VIN:模组消耗电压;VCOM:液晶偏转基准电压;VDDA:阶调电压,即GAMMA电压,配合Data信号输出S极所需电压; VDDG:G极电压,液晶开启电压;VEEG:G极电压,液晶关闭电压;VDDD:IC工作电压,包括ASIC、S-IC、G-IC;Data信号处理及传输(与GAMMA电压配合,输出S极电压)、Timing Control (控制数据传输的时序,达到稳定显示的作用);G-PWB:只起到线路的连接作用。
现将S-PWB之组成简介如下:1.ASIC该部分借助一集成芯片(IC101)产生时序信号和DATA。
其INPUT为RANO/RAPO、RBNO/RBPO、RCNO/RCPO、RDNO/RDPO、RANE/RAPE、RBNE/RBPE、RCNE/RCPE、RDNE/RDPE、RCLKN/RCLKP以及一些控制信号,这十组DATA借助10个差分电阻(R101~R110)产生如下时序信号和DATA:HMS 、OE、CLKV、STV、POL、LP、STH-F、STH-B、F-D[00:19]、B-D[00:19]。
2.POWER电路该部分主要产生控制液晶偏转所需要之电压:VDDD、VDDA、VDDG、VEEG、VCOM 和VGAM1~10。
TFT液晶屏:TFT-LCD结构及工作原理TFT-LCD即薄膜场效应晶体管LCD,是有源矩阵类型液晶显示器(AM-LCD)中的一种。
TFT的显示采用“背透式”照射方式——假想的光源路径不是像TN液晶那样从上至下,而是从下向上。
这样的作法是在液晶的背部设置特殊光管,光源照射时通过下偏光板向上透出。
由于上下夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的表现也会发生改变,可以通过遮光和透光来达到显示的目的,响应时间大大提高到80ms左右。
因其具有比TN-LCD更高的对比度和更丰富的色彩,荧屏更新频率也更快,故TFT俗称“真彩”。
TFT-LCD的主要特点是为每个像素配置一个半导体开关器件。
由于每个像素都可以通过点脉冲直接控制。
因而每个节点都相对独立,并可以进行连续控制。
这样的设计方法不仅提高了显示屏的反应速度,同时也可以精确控制显示灰度,这就是TFT色彩较DSTN更为逼真的原因。
目前,绝大部分笔记本电脑厂商的产品都采用TFT-LCD。
早期的TFT-LCD主要用于笔记本电脑的制造。
尽管在当时TFT相对于DSTN具有极大的优势,但是由于技术上的原因,TFT-LCD在响应时间、亮度及可视角度上与传统的CRT显示器还有很大的差距。
加上极低的成品率导致其高昂的价格,使得桌面型的TFT-LCD成为遥不可及的尤物。
不过,随着技术的不断发展,良品率不断提高,加上一些新技术的出现,使得TFT-LCD在响应时间、对比度、亮度、可视角度方面有了很大的进步,拉近了与传统CRT显示器的差距。
如今,大多数主流LCD 显示器的响应时间都提高到50ms以下,这些都为LCD走向主流铺平了道路。
LCD的应用市场应该说是潜力巨大。
但就液晶面板生产能力而言,全世界的LCD主要集中在中国台湾、韩国和日本三个主要生产基地。
亚洲是LCD面板研发及生产制造的中心,而台、日、韩三大产地的发展情况各有不同。
目前主流的TFT面板有a-Si(非晶硅薄膜晶体管)、TFT技术和LTPS TFT(低温复晶硅)TFT技术。