4 不良数据的检测和辩识
- 格式:pdf
- 大小:2.43 MB
- 文档页数:54
电力系统中的不良数据检测和辨识方法介绍西南交通大学电气学院10专业2班傅广港摘要:简述了电力系统不良数据的检测和辨识的必要性。
列举了目前较为主流的不良数据检测和辨识方法,并对这些方法优缺点作出评价。
关键词:不良数据;检测;辨识;优缺点Ways to detect and identify the bad data in power systemFu Guanggang(College of Electrical and Engineering,Southwest Jiao Tong University) Abstract: This paper expounds the necessity of the bad data detection and the identification in power system, as well as the common methods to realize,and discuss the advantages and disadvantages。
Keywords:bad data ;detect; identify;advantage disadvantage0引言在电力系统的实际运行中,由于量测量和量测通道的误差以及可能受到的干扰,会出现各种测量误差。
而我们电力系统的量测数据,通常可看作有效的量测数据和量测噪声的线性组合,通常情况下量测噪声为白噪声[1],通过一定的技术处理(如数字滤波、提高量测冗余度等)一般可消除白噪声对电力系统状态估计结果的影响.但当量测数据中包含不良数据时,这些不良数据对电力系统状态估计结果的影响是不容忽视的,电力系统中的不良数据可能会影响调度员做出错误的决策,进而影响电力系统的正常运行,甚至可能威胁整个电力系统的安全。
因此,为了确保电力系统的稳定安全运行,对不良数据的处理有非常重要的意义[2].1不良数据检测和辨识的研究现状不良数据检测与辨识是电力系统状态估计的重要功能之一,其功能是在获得状态估计值的基础上依靠系统提供的多余信息,发现和排除测量采样数据中偶然出现的少数不良数据,以提高状态估计的可靠性。
一、潮流计算方法之间的区别联系高斯-赛德尔法:原理简单,导纳矩阵对称且高度稀疏,占用内存小。
收敛速度很慢,迭代次数随节点数直接上升,计算量急剧增加,不适用大规模系统。
牛顿-拉夫逊法:收敛速度快,迭代次数和网络规模基本无关。
相对高斯-赛德尔法,内存量和每次迭代所需时间较多,其可靠的收敛还取决于一个良好的启动初值。
PQ 分解法(快速解耦法):PQ 分解法实际上是在极坐标形式的牛顿法的基础上,在交流高压电网中,输电线路等元件的R<<X ,即有功功率主要取决于电压相角,而无功功率主要取决于电压幅值,根据这种特性对方程组进行简化,从而实现了有功和无功的解耦。
两大条件:(1)线路两端的相角相差不大(小于10°~20°),而且||||ij ij G B ≤,于是可以认为:cos 1;sin ij ij ij ij G B θθ≈≤; (2)与节点无功功率相对应的导纳2/i i Q U 通常远小于节点的自导纳ii B ,也即2i i ii Q U B <<。
1. PQ 分解法用一个1n -阶和一个1n m --阶的方程组代替牛顿法中22n m --阶方程组,显著减少了内存需量和计算量。
2. 计算过程中B '、B ''保持不变,不同于牛顿法每次迭代都要重新形成雅可比矩阵,因此显著提高了计算速度。
3.雅可比矩阵J 不对称,而B '、B ''都是对称的,使求逆等运算量和所需的存储容量都大为减少。
4. PQ 分解法的迭代次数要比牛顿法多,但是每次迭代所需时间比牛顿法少,所以总的计算速度仍是PQ 分解法快。
在低压配电网中PQ 分解法不适用。
交流高压电网的输电线路的元件满足R<<X ,PQ 分解法正是基于此条件简化而来;而低电压配电网络一般R/X 比值很大,大R/X 比值病态问题也正是PQ 分解法应用中的一个最大障碍。