当前位置:文档之家› 有趣的斐波那契数列例子

有趣的斐波那契数列例子

有趣的斐波那契数列例子
有趣的斐波那契数列例子

斐波那契数列

斐波那契的发明者,是数学家(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是)。他被人称作“比萨的列昂纳多”。1202年,他了《珠算原理》(Liber Abacci)一书。他是第一个研究了和数学理论的人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在、、、和研究。

斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……

这个数列从第三项开始,每一项都等于前两项之和。

斐波那契数列通项公式

通项公式

(见图)(又叫“比内公式”,是用表示的一个范例。)

注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)

通项公式的推导

斐波那契数列:1、1、2、3、5、8、13、21、……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(0) = 0,F(1)=1,F(n)=F(n-1)+F(n-2) (n≥2),

显然这是一个递推数列。

方法一:利用特征方程(线性代数解法)

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2,,X2=(1-√5)/2。

则F(n)=C1*X1^n + C2*X2^n。

∵F(1)=F(2)=1。

∴C1*X1 + C2*X2。

C1*X1^2 + C2*X2^2。

解得C1=1/√5,C2=-1/√5。

∴F(n)=(1/√5)*{[(1+√5)/2]^(n+1) - [(1-√5)/2]^(n+1)}(√5表示5)。方法二:待定系数法构造等比数列1(初等待数解法)

设常数r,s。

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

则r+s=1, -rs=1。

n≥3时,有。

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]。

联立以上n-2个式子,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。

∵s=1-r,F(1)=F(2)=1。

上式可化简得:

F(n)=s^(n-1)+r*F(n-1) 。

那么:

F(n)=s^(n-1)+r*F(n-1)。

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的的各项的和)。=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。

=(s^n - r^n)/(s-r)。

r+s=1, -rs=1的一解为s=(1+√5)/2,r=(1-√5)/2。

则F(n)=(1/√5)*{[(1+√5)/2]^(n+1) - [(1-√5)/2]^(n+1)}。

方法三:待定系数法构造等比数列2(初等待数解法)

已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。

解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。

得α+β=1。

αβ=-1。

构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。

所以。

an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2) *(a2-(1-√5)/2*a1)`````````1。

an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2) *(a2-(1+√5)/2*a1)`````````2。

由式1,式2,可得。

an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。

an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。

将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。

与黄金分割的关系

有趣的是:这样一个完全是的数列,通项公式却是用无理数来表达的。而且当n 时(an-1)/an越来越逼近数0.618。

越到后面,这些比值越接近黄金比.

证明:

a[n+2]=a[n+1]+a[n]。

两边同时除以a[n+1]得到:

a[n+2]/a[n+1]=1+a[n]/a[n+1]。

若a[n+1]/a[n]的极限存在,设其极限为x,

则lim[n->∞](a[n+2]/a[n+1])=lim[n->∞](a[n+1]/a[n])=x。

所以x=1+1/x。

即x²=x+1。

所以极限是黄金分割比。

奇妙的属性

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数。比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢?

从第二项开始,每个奇数项的都比前后两项之积多1,每个项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是列的本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)

多了的一在哪?

如果你看到有这样一个题目:

某人把一个8*8的方格切成四块,拼成一个5*13的,故

作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的

确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

斐波那契数列的第n项同时也代表了{1,2,...,n}中所有不相邻正的个数。

斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:

1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1。

2.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)。

3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1。

4.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)。

5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1。

6.f(m+n-1)=f(m-1)·f(n-1)+f(m)·f(n)。

利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。

怎样实现呢?伪代码描述一下?

7.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)。

8.f(2n-1)=[f(n)]^2-[f(n-2)]^2。

9.3f(n)=f(n+2)+f(n-2)。

10.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]

斐波那契数列

11.f(2n+1)=[f(n)]^2+[f(n+1)]^2.

在杨辉三角中隐藏着斐波那契数列

将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……

公式表示如下:

f(1)=C(0,0)=1 。

f(2)=C(1,0)=1 。

f(3)=C(2,0)+C(1,1)=1+1=2 。

f(4)=C(3,0)+C(2,1)=1+2=3 。

f(5)=C(4,0)+C(3,1)+C(2,2)=1+3+1=5 。

f(6)=C(5,0)+C(4,1)+C(3,2)=1+4+3=8 。

F(7)=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13 。

……

F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)

斐波那契数列的整除性与素数生成性

每3个数有且只有一个被2整除,

每4个数有且只有一个被3整除,

每5个数有且只有一个被5整除,

每6个数有且只有一个被8整除,

每7个数有且只有一个被13整除,

每8个数有且只有一个被21整除,

每9个数有且只有一个被34整除,

.......

我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)

斐波那契数列的素数无限多吗?

斐波那契数列的个位数:一个60步的循环

11235,83145,94370,77415,61785.38190,

99875,27965,16730,33695,49325,72910…

斐波那契数与植物花瓣

3………………………百合和蝴蝶花

5………………………蓝花耧斗菜、、飞燕草、毛茛花

8………………………翠雀花

13………………………金盏

和玫瑰

21………………………紫宛

34、55、89……………雏菊

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

斐波那契—卢卡斯数列与广义斐波那契数列

斐波那契—卢卡斯数列

数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2))。

这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)

类似的数列还有无限多个,我们称之为。

如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。

斐波那契—卢卡斯数列之间的广泛联系

①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。

如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),

②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如

黄金特征与孪生斐波那契—卢卡斯数列

斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的是一个恒值,

斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1

卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5

F[1,4]数列:|4*4-1*5|=11

F[2,5]数列:|5*5-2*7|=11

F[2,7]数列:|7*7-2*9|=31

斐波那契数列这个值是1最小,也就是前后项之比接近最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项的独生数列只有斐波那契数列和卢卡斯数列这两个数列。

而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。

广义斐波那契数列

斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,

也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种称为勾股特征)。

数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).

据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。

当p=1,q=1时,我们得到斐波那契—卢卡斯数列。

当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的有关的数列集合)。

当p=-1,q=2时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为)。

具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1。

当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……

相关的数学问题

1.排列组合

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……

1,2,3,5,8,13……所以,登上十级,有89种走法。

类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?

答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。

2.数列中相邻两项的前项比后项的极限

当n趋于无穷大时,F(n)/F(n+1)的极限是多少?

这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是黄金分割的数值,也是代表的和谐的一个数字。

3.求递推数列a(1)=1,a(n+1)=1+1/a(n)的通项公式

由可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。

3.兔子繁殖问题(关于斐波那契数列的别名)

斐波那契数列又学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“”。

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?

我们不妨拿新出生的一对小兔子分析一下:

第一个月小兔子没有繁殖能力,所以还是一对

两个月后,生下一对小兔民数共有两对

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对

------

依次类推可以列出下表:

幼仔对数=前月成兔对数

成兔对数=前月成兔对数+前月幼仔对数

总体对数=本月成兔对数+本月幼仔对数

可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利数学家斐波那契在<算盘全书>中提出的,这个的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)

数学游戏

一位拿着一块边长为8英尺的地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方

形地毯。”这位匠师对魔术师之差深感惊异,因为两者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!

这真是不可思议的事!亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢?

实际上后来缝成的地毯有条细缝,面积刚好就是一平方英尺。

自然界中的巧合

斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上着名的“鲁德维格定律”。

另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、

蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……

斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的的头部

这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。

数字谜题

三角形的三边关系和斐波那契数列的一个联系:

现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?

分析:由于形成三角形的是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边。截成的铁丝最小为1,因此可以放2个1,第三条就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。

我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。

在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。

影视作品中的斐波那契数列

斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道~

社会文明中的斐波那契数列

艾略特波浪理论

1946年,艾略特完成了关于波浪理论的集大成之作,《自然法则——宇宙的秘密》。艾略特坚信,他的波浪理论是制约人类一切活动的普遍自然法则的一部分。波浪理论的优点是,对即将出现的顶部或底部能提前发出警示信号,而传统的技术分析方法只有事后才能验证。艾略特波浪理论对市场运作具备了全方位的透视能力,从而有助于解释特定的形态为什么要出现,在何处出现,以及它们为什么具备如此这般的预测意义等等问题。另外,它也有助于我们判明当前的市场在其总体周期结构中所处的地位。波浪理论的数学基础,就是在13世纪发现的费氏数列。

波浪理论数学结构8浪循环图

·8浪循环图说明

·波浪理论的推动浪,浪数为5(1、2、3、4、5),调整浪的浪数为3(a\b\c),合起来为8。

·8浪循环中,前5段波浪构成一段明显的上升浪,其中包括3个向上的冲击波及两个下降的调整波。在3个冲击波之后,是由3个波浪组成的一段下跌的趋势,是对前一段5浪升势的总调整。这是艾略特对波浪理论的基本描述。而在这8个波浪中,上升的浪与下跌的浪各占4个,可以理解为艾略特对于股价走势对称性的隐喻。

·在波浪理论中,最困难的地方是:波浪等级的划分。如果要在特定的周期中正确地指认某一段波浪的特定属性,不仅需要形态上的支持,而且需要对波浪运行的时间作出正确的判断。

·换句话说,波浪理论易学难精,易在形态上的归纳、总结,难在价位及时间周期的判定。

波浪理论的数字基础:斐波那契数列

波浪理论数学结构——

斐波那契数列与黄金分割率

·这个数列就是斐波那契数列。它满足如下特性:每两个相连数字相加等于其后第一个数字;前一个数字大约是后一个数字的0.618倍;前一个数字约是其后第二个数字的0.382倍;后一个数字约是前一个数字的1.618倍;后一个数字约是前面第二个数字的2.618倍;

·由此计算出常见的黄金分割率为(0.5和1.5外):

0.191、0.236、0.382、0.618、0.809、

1.236、1.382、1.618、1.764、1.809

·黄金分割比率对于股票市场运行的时间周期和价格幅度模型具有重要启示及应用价值。

黄金分割比率在时间周期模型上的应用

·未来市场转折点=已知时间周期×分割比率

·已知时间周期有两种:

(1)循环周期:最近两个顶之间的运行时间或两个底之间的运行时间

(2)趋势周期:最近一段升势的运行时间或一段跌势的运行时间

·一般来讲,用循环周期可以计算出下一个反向趋势的终点,即用底部循环计算下一个升势的顶,或用顶部循环计算下一个跌势的底。而用趋势周期可以计算下一个同方向趋势的终点或是下一个反方向趋势的终点。

时间循环周期模型预测图

时间趋势周期模型预测图

时间周期与波浪数浪的数学关系

·一个完整的趋势(推动浪3波或调整浪3波),运行时间最短为第一波(1浪或A 浪)的1.618倍,最长为第一波的5.236倍。如果第一波太过短促,则以第一个循环计算(A浪与B浪或1浪与2浪)。

·1.382及1.764的周期一旦成立,则出现的行情大多属次级趋势,但行情发展迅速。

·同级次两波反向趋势组成的循环,运行时间至少为第一波运行时间的1.236倍。

·一个很长的跌势(或升势)结束后,其右底(或右顶)通常在前趋势的 1.236或1.309倍时间出现。

黄金分割比率在价格幅度模型上的应用

·如果推动浪中的一个子浪成为延伸浪的话,则其他两个推动浪不管其运行的幅度还是运行的时间,都将会趋向于一致。也就是说,当推动浪中的浪3在走势中成为延伸浪时,则浪1与浪5的升幅和运行时间将会大致趋同。假如并非完全相等,则极有可能以0.618的关系相互维系。

·浪5最终目标,可以根据浪1浪底至浪2浪顶距离来进行预估,他们之间的关系,通常亦包含有神奇数字组合比率的关系。

·对于ABC调整浪来说,浪C的最终目标值可能根据浪A的幅度来预估。浪C的长度会经常是浪A的1.618倍。当然我们也可以用下列公式预测浪C的下跌目标:浪A浪底减浪A乘0.618。

·在对称三角形内,每个浪的升跌幅度与其他浪的比率,通常以0.618的神奇比例互相维系。

黄金分割比率在价格幅度模型上的应用

·0.382:浪4常见的回吐比率、部份浪2的回吐比率、浪B的回吐比率。

·0.618:大部份浪2的调整幅度、浪5的预期目标、浪B的调整比率、三角形内浪浪之间比率。

·0.5:常见是浪B的调整幅度。

·0.236:浪3或浪4的回吐比率,但不多见。

·1.236与1.382:

·1.618:浪3与浪1、浪C与浪A的比率关系。

推动浪形态

·推动浪有五浪构成。第一浪通常只是由一小部分交易者参与的微弱的波动。一旦浪1结束,交易者们将在浪2卖出。浪2的卖出是十分凶恶的,最后浪2在不创新低的情况下,市场开始转向启动下一浪波动。浪3波动的初始阶段是缓慢的,并且它将到达前一次波动的顶部(浪1的顶部)。

推动浪浪5未能创新高(低),市场将会出现大逆转

推动浪的变异形态——倾斜三角形

·倾斜三角形为推动浪中的一种特殊型态(比较少见),主要出现在第5浪的位置。艾略特指出,在股市中,一旦出现一段走势呈现快速上升或赶底的状况,其后经常会出现倾斜三角形型态

调整浪形态

·调整是十分难以掌握的,许多艾略特交易者在推动模式阶段上赚钱而在调整阶段再输钱。一个推动阶段包括五浪。调整阶段由三浪组成,但有一个三角形的例外。一个推动经常伴随着一个调整的模式。

·调整模式可以被分成两类:

·简单的调整:之字型调整(N字型调整)

·复杂的调整:平坦型、不规则型、三角形型

调整浪的简单与复杂调整的交替准则调整浪的变异形态:强势三角形

调整浪的变异形态:前置三角形

各段波浪的特性

·在8浪循环中,每段波浪都有不同的特点,熟知这些特点,对波浪属性的判断极有帮助,

·第1浪:大部分第1浪属于营造底部形态的一部份,相当于形态分析中头肩底的底部或双底的右底,对这种类型的第1浪的调整(第2浪)幅度通常较大,理论上可以回到第1浪的起点。

小部份第1浪在大型调整形态之后出现,形态上呈V形反转,这类第1浪升幅较为可观。在K线图上,经常出现带长下影线的大阳线。

从波浪的划分来说,在5-3-5的调整浪当中,第1浪也可以向下运行,通常第1浪在分时图上应该显示明确的5浪形态。

·第2浪:在强势调整的第2浪中,其回调幅度可能达到第1浪幅度的0.382或0.618,在更多的情况下,第2浪的回调幅度会达到100%,形态上经常表现为头肩底的右底,使人误以为跌势尚未结束。

在第2浪回调结束时,指标系统经常出现超卖、背离等现象。

第2浪成交量逐渐缩小,波幅较细,这是卖力衰竭的表现。

出现传统系统的转向信号,如头肩底、双底等。

·第3浪:如果运行时间较短,则升速通常较快。在一般情况下为第1浪升幅的1.618倍。如果第3浪升幅与第1浪等长,则第5浪通常出现扩延的情况。

在第3浪当中,唯一的操作原则是顺势而为。因为第3浪的升幅及时间经常会超出分析者的预测。

通常第3浪运行幅度及时间最长。属于最具爆发性的一浪。大部分第3浪成为扩延浪。第3浪成交量最大。

出现传统图表的突破信号,如跳空缺口等。

·第4浪:如果第4浪以平坦型或N字型出现,a小浪与c小浪的长度将会相同。第4浪与第2浪经常是交替形态的关系,即单复式交替或平坦型、曲折型或三角形的交替。

第4浪的低点经常是其后更大级数调整浪中A浪的低点。

经常以较为复杂的形态出现,尤其以三角形较为多见。通常在第3浪中所衍生出来的较低一级的第4浪底部范围内结束。

第4浪的底不会低于第1浪的顶。

·第5浪:除非发生扩延的情况,第5浪的成交量及升幅均小于第3浪。

第5浪的上升经常是在指标出现顶背离或钝化的过程中完成。

在第5浪出现衰竭性上升的情况下,经常出现上升楔形形态。这时,成交量与升幅也会出现背离的情况。

如果第1、3浪等长,则第5浪经常出现扩延。如果第3浪出现扩延浪,则第5浪幅度与第1浪大致等长。

市场处于狂热状态。

·第6浪A浪:A浪可以为3波或者5波的形态。在A浪以3波调整时,在A浪结束时,市场经常会认为整个调整已经结束。在多数情况下,A浪可以分割为5小浪。

市场人士多认为市场并未逆转,只视为一个较短暂的调整。

斐波那契数列应用

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术,我们还是来看一个简单的问题吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个单位的面积,真不可思议! 这两个问题是这样的令人惊奇和难以理解,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。 问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是:。其中表示正方形的面积,表示长方形的面积。知道了这个事实,我们就可以自己构造类似于问题2的几何趣题。 爬梯子问题(斐波那契数列应用) 1.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法? 这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法. 既:楼梯的级数:12345678... 上楼梯的走法:124713244481... 这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

vb套题——斐波那契数列

第03套: 1. 基本操作(2小题,每小题15分,共计30分) 注意:下面出现的“考生文件夹”均为%USER% ********************************************************************** 请根据以下各小题的要求设计Visual Basic应用程序(包括界面和代码)。 (1)在名称为Form1的窗体上画一个名称为Frame1,标题为“目的地”的框架,在框架中添加三个复选框,名称分别为Check1、Check2、Check3,其标题 分别是“上海”、“广州”、“巴黎”,其中“上海”为选中状态,“广 州”为未选状态,“巴黎”为灰色状态,如图所示。请画控件并设置相应 属性。 注意: 存盘时必须存放在考生文件夹下,工程文件名为sjt1.vbp,窗体文件名 为sjt1.frm。 解题思路: 启动Visual Basic系统,创建一个Form1窗体。 在该窗体上画一个框架控件,通过其属性窗口将名称设为Frame1,标题(Caption属性)设为“目的地”。在F1框架中画三个复选框控件,通过其属性窗口将名称分别设为Check1、Check2、Check3,标题(Caption属性)分别设为“上海”、“广州”、“巴黎”,“上海”的Value属性设为1,“巴黎”的Value属性设为2。 参考文件:c:\wexam\26990001\hlpsys\参考答案\sjt1.vbp、sjt1.frm、sjt1.vbw 请把这些文件复制到c:\wexam\26990001中,然后打开sjt1.vbp文件并运行。 ********************************************************************** (2)在名称为Form1的窗体上画一个名称为Picture1的图片框,其宽和高分别为1700、1900。请编写适当事件过程,使得在运行时,单击图片框,则装 入考生目录下的图形文件pic1.bmp,如图所示。单击窗体则图片框中的图 形消失。要求程序中不得使用变量,每个事件过程中只能写一条语句。 注意: 存盘时必须存放在考生文件夹下,工程文件名为sjt2.vbp,窗体文件名 为sjt2.frm。

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

浅谈斐波那契数列的真善美

浅谈斐波那契数列的真善美 小七怪小组 摘要自斐波那契数列产生至今,人们对其研究的热情经久不衰。本文探究斐波那契数列的真、善、美,简单介绍斐波那契数列到底真在何处、善在何处、美在何处,并且得出斐波那契数列真、善、美三者之间的联系。 关键词斐波那契数列真善美 一、斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道著名的兔子繁殖问题。问题是这样的:如果每对兔子(一雄一雌) 每月能生殖一对小兔子( 也是一雄一雌,下同)每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12个月以后会有多少对兔子呢? 这个问题的解释如下:第一个月只有一对兔子;第二个月仍然只有一对兔子;第三个月这对兔子生了一对小兔子,共有1+l =2 对兔子;第四个月最初的一对兔子又生一对兔子,共有2+l =3对兔子;则由第一个月到第十二个月兔子的对数分别是: l , l , 2 , 3 , 5 , 8 ,13 , 21 , 34 , 55 ,89,144 , …… , 后人为了纪念提出兔子繁殖问题的斐波那契,将这个兔子数列称为斐波那契数列,学术界又称为黄金分割数列。 二、斐波那契数列与真 何为真?“真有两个含义, 一是指客观世界存在的客观物质, 二是指客观世界的本质规律。”[1]在自然界中,许多事物本身蕴含的规律都跟斐波那契数列有关。例如树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,之后才萌发新枝。因此,一株树苗在一 段时间间隔后,例如一年,会长出一条新枝; 第二年新枝“休息”,老枝依旧萌发;此后, 老枝与“休息”过一年的枝同时萌发,当年生 的新枝则次年“休息”。这样,一株树木各个 年份的枝桠数,便构成斐波那契数列。这就是 图1 树木生长与斐波那契数列

《算法分析与设计》期末复习题[1]

一、选择题 1.一个.java文件中可以有()个public类。 A.一个B.两个C.多个D.零个 2.一个算法应该是() A.程序B.问题求解步骤的描述 C.要满足五个基本特性D.A和C 3.用计算机无法解决“打印所有素数”的问题,其原因是解决该问题的算法违背了算法特征中的()A.唯一性B.有穷性C.有0个或多个输入D.有输出 4.某校有6位学生参加学生会主席竞选,得票数依次为130,20,98,15,67,3。若采用冒泡排序算法对其进行排序,则完成第二遍时的结果是() A.3,15,130,20,98,67B.3,15,20,130,98,67 C.3,15,20,67,130,98 D.3,15,20,67,98,130 5.下列关于算法的描述,正确的是() A.一个算法的执行步骤可以是无限的B.一个完整的算法必须有输出 C.算法只能用流程图表示D.一个完整的算法至少有一个输入 6.Java Application源程序的主类是指包含有()方法的类。 A、main方法 B、toString方法 C、init方法 D、actionPerfromed方法 7.找出满足各位数字之和等于5的所有三位数可采用的算法思路是() A.分治法B.减治法C.蛮力法D.变治法 8.在编写Java Application程序时,若需要使用到标准输入输出语句,必须在程序的开头写上( )语句。 A、import java.awt.* ; B、import java.applet.Applet ; C、import java.io.* ; D、import java.awt.Graphics ; 9.计算某球队平均年龄的部分算法流程图如图所示,其中:c用来记录已输入球员的人数,sum用来计算有效数据之和,d用来存储从键盘输入的球员年龄值,输入0时表示输入结束。

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用 发表时间:2019-07-29T11:38:49.093Z 来源:《基层建设》2019年第14期作者:孙烨赵倩[导读] 摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。 山东协和学院山东济南 250107摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活 多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:斐波那契数列应用黄金分割 1 引言 数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。 斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。 人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。 斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。 2 斐波那契数列的应用 (1)斐波那契数列和花瓣数花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。 (2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。 (3)斐波那契数列和向日葵种子排列向日葵种子的排列是典型的数学模型。仔细观察向日葵盘,你会发现两组螺旋,一组顺时针旋转,另一组螺旋逆时针旋转,彼此嵌套。虽然不同向日葵品种的种子选装方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契序列中的两个相邻数字。前一个数字是顺时针旋转的线数,后一个数字是逆时针旋转的线数。回想起向日葵。种子全都紧密排列在花盘当中,每个种子都保证按照适合的角度生长大小还基本保持一致又疏密得当,与此同时,螺旋的数目也是斐波那契序列中的数字,世界如此繁琐,却又如此的井然有序。 (4)斐波那契数列与台阶问题当只有一个台阶时,只有一种移动方式,F1=1两个台阶,有2种走法,一步上两个台阶或者一阶一阶的上,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(0,2,2),共5种方法,所以F4=5依此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然,生活和科学上有很多联系,但是从这几个例子中,我们可以看到斐波那契数列的应用的广泛性,我们可以看到数学之美无处不在。它是一门科学,同时也是一种艺术,一种语言,它就像一朵盛开的茉莉花,白皙而优雅,简言而之,数学伴随着自然生活共同发展。 (5)斐波那契数列与蜜蜂的家谱蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有一个母亲,没有父亲,因为蜂后所产的卵,未受精的孵化为雄蜂,受精的孵化为雌蜂(即工蜂或蜂后)。人们在追踪雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是斐波那契数列的第n项f(n)。 (6)黄金分割与斐波那契的联系斐波那契和黄金比例(也称黄金分割,Φ,取三位小数1.618)密切相关。黄金法则,也称为黄金比率,是指将直线分成两部分,使得一部分与整体的比率等于剩余部分与该部分的比率,即0.618/1=0.382/0.618。0.618是斐波那契数列相邻两项之比的近似值,一般称之为黄金分割数。这是古希腊哲学家、数学家毕达哥拉斯于公元前6世纪由提出,后被著名的希腊美学家柏拉图称为“黄金比例率”。 (7)斐波那契数列和鳞片的关系菠萝果实上的菱形鳞片排成一列,8排向左倾斜,13排向右倾斜;挪威云杉的球果在一个方向上有3排鳞片,在另一个方向上有5排鳞片;常见的落叶松是一种针叶树,松果上有鳞片,两个方向也排成5行8行;美国松树松鳞片在两个方向上排成3行和5行。 (8)影视作品中的斐波那契数列斐波那契数列在欧美可以说是是每个人都知道,在电影这种通俗艺术中也经常的出现,例如在风靡一时的《达芬奇密码》当中它就作为一个重要的符号和情节线索出现,在《魔法玩具城》当中也出现过。由此可见此数列就像黄金分割那样的流行。可是虽说叫得上名,大多数人并没有深入理解研究。在电视剧中也经常看到斐波那契数列的影子,比如:日剧《考试之神》的第五回,义嗣做全国模拟考试题中的最后一道数学题。还在FOX热播美剧《Fringe》中也是多次引用,甚至被当做全剧宣传海报的主要设计元素。 3 结束语 除了上文中涉及的几个方面外,斐波那契数列在生活的其他领域当中例如现代物理、准晶体结构、化学等领域,斐波纳契数列都有着广泛的应用。这个奥秘神奇的序列就在我们生活中任何常见的事物中隐藏,植被如一朵向日葵,一棵花菜,宏观如飓风以及星系,微观小至细胞的分裂,斐波那契数列都有存在。而且,通过对上文数列在生活中应用的几个方面的分析,也希望能激发大家对斐波那契数列的兴趣,感受数学的魅力。

斐波那契数列趣闻

斐波那契数列趣闻 目录 摘要 (1) 第一章斐波那契数列的提出 (2) 第二章斐波那契数列的应用 (2) 2.1 斐波那契数列与花朵的花瓣数 (2) 2.2 斐波那契数列与仙人掌的结构 (2) 2.3 斐波那契数列与向日葵种子排列方式 (3) 2.4 斐波那契数列与台阶问题 (3) 2.5 斐波那契数列与蜜蜂的家谱 (3) 2.6 斐波那契数列的其他应用 (3) 第三章黄金分割 (4) 第四章黄金分割的应用 (4) 4.1 黄金分割的美学应用 (4) 4.2 黄金分割在灾害科学中的应用 (5) 第五章总结 (5) 参考文献 (5) 摘要 自从斐波那契数列被提出以后,众多科学研究者对其产生了极大的兴趣,并由此导出了一些有趣的性质和结论,本文主要介绍与斐波那契数列的一些变式及其与自然、生活科学等方面的一些奇妙的联系,并谈及黄金分割率在生活中的应用。 关键字:斐波那契数列,黄金分割,应用 斐波那契数列是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明,起始的正方形的边长为1,在它左边的那个正方形的边长也是1,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、2l……等等的正方形。这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。

第一章斐波那契数列的提出 意大利数学家斐波那契在《算盘全集》中提出了一个有趣的兔子繁殖问题:如果每队兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同)每队兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都不死亡现象,那么从一对刚出生的兔子开始,一年只有会有多少对兔子呢?解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2对兔子。第四个月:最初的一对兔子又生一堆兔子,共成为2+1=3对兔子。后人为了纪念兔子繁殖问题的斐波纳契将这个兔子数列成为斐波那契数列。也就是把1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 第二章斐波那契数列的应用 人类很早就从自然界中看到了数学特征:蜜蜂的繁殖规律,树的分枝,钢琴音阶的排列以及花瓣对称排列在花托边缘、整个花朵几乎完美无缺地呈现出辐射对称状……,所有这一切向我们展示了许多美丽的数学模式。而对这些自然、社会以及生活中的许多现象的解释,最后往往都能归结到Fibonacci数列上来。 斐波那契数列在数学理论上有许多有趣的性质,不可思议的是在自然界中也存在着这个性质,似乎完全没有秩序的植物的纸条彼此相隔的距离或叶子的生长凡是,都被斐波那契数列支持着。 2.1 斐波那契数列与花朵的花瓣数 花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,百合花有3瓣花瓣,至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;万寿菊的花瓣有13瓣,更有趣的是,有一位学者细心地数过一朵花的花瓣,发现这朵花的花瓣刚好有157瓣。且他又发现其中有13瓣与其他144瓣有显著的不同,是特别长并卷曲向内,这表明这朵花的花瓣树木是由F1=13和F2=144合成的。 2.2 斐波那契数列与仙人掌的结构 在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,并将所得数据输入电脑,结果发现仙人掌的Fibonacci数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在

数学与几个生活实例的联系

数学与几个生活实例的联系 一摘要 (1)概率论与日常生活 20世纪30年代科尔莫格罗夫提出概率公理化以来,概率论在生活的各个方面得到了广泛应用。 拉普拉斯名言———“生活中最重要的问题,绝大部分其实只是概率问题。” (2)数学与艺术 爱因斯坦说过:“这个世界可以由音乐和音符组成,也可以由数学的公式组成。” 古希腊数学家对音乐的认识开创了数学研究音乐的历史; 著名的黄金分割在音乐与数学上的应用。 (3)中国数学教育的缺陷 中国教育对于数学的不正确引导使得青年甚至儿童对于数学有了畏惧心理与抗拒心理。功利化的考查制度也让真正对于数学感兴趣的人部分或者完全丧失了学习数学的动力与兴趣。 43A13418 张弘毅

二正文 第一章概率论与日常生活 “要成为现代社会中有文化的人,必须对博弈论有大致的了解”——著名经济学家萨缪尔森 中世纪欧洲盛行掷骰子赌博,帕斯卡,费马与旅居巴黎的荷兰数学家惠更斯用组合数学研究了许多于掷骰子有关的概率问题。20世纪30年代科尔莫格罗夫提出概率公理化以来,概率论在生活的各个方面得到了广泛应用。 由于本人水平有限,对于概率论无研究,只能简单举例并粗略计算 (1)纽约乐透一人中两次头奖 就单次来说,中头奖概率是1/22500000,那么按照常识,一人中两次概率为1/506250000000000 但是单纯的平方计算没有考虑到开奖次数的问题。每年开奖104次,15年大约1500次开奖。所谓的赌徒心理会让中过奖的人继续买彩票,每次总注数超过3000注。15年内再次中奖概率则大于五分之一,所以连中头奖才是真正的小概率事件。十几年内如果中两次头奖,从概率角度则不算太稀奇。 (2)概率学分析华南虎造假事件 2007年陕西省林业厅声称发现华南虎并提供照片。照片与年画极其相似,经过鉴定,相似率高达99% 概率学上来说,由于华南虎所处环境,动作神态每时每刻都会发生变化,与年画如此相似的概率无限趋近0 (3)综述 由以上两个例子可以看出,生活中从与普通民众相关的彩票博弈到鉴别照片真伪等问题都有概率学的影子。如今的初中,高中考试等等都会有类似问题提出。本人是江苏毕业生,清楚的记得江苏高考中附加题的最后一题常常是概率问题,在各种附加条件之下求出事件发生概率。其中要多次用到排列组合,对于逻辑思维能力有很高的要求。但是概况论面向普通民众推广时则极为便利。从彩票股票,赌博跑马(当然还有学生蒙答案也会用到概率)到天气预报,灾害预警等等与生活息息相关的方面都用到概率学原理。但是对于真正的概率学研究来说又是没有很大的促进作用,但是能调动群众的积极性这点还是有着重要意义。总结一下,概率学,上手容易,精通难;推广容易研究难。

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班 莫少勇 指导教师 孙丽英 摘 要 本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci 数列 黄金数 优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一. F ibonacci 数列的由来 Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1F 1,F Z)n 2,(n F F F 102-n 1-n n 这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……, 这串数列的特点是:其中任一个数都是前两数之和。 这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。 它的通项是F n =51[(25 1+)n+1-(251-)n+1 ],由法国数学家比内(Binet )求出的。 二.Fibonacci 数列的内涵 (1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。 证法一:

计算Fibonacci数列前20个数值之和

计算Fibonacci 数列前20个数值之和 问题 计算Fibonacci 数列前20个数值之和,其中Fibonacci 数列有如下的迭代规律: 第一个元素:11=F 第二个元素:12=F 第三个元素:213F F F += …… 第n 个元素:21--+=n n n F F F 分析 根据Fibonacci 数列的递推规律,必须已知第n-1项和第n-2项之后,才可以计算 出第n 项。可以同时计算第n -1项和第n 项序列的值。所需数据与算法如下。 数据要求 问题中的常量: 无 问题的输入: int f1=1 /*序列中第1项*/ int f2=1 /*序列中第2项*/ 问题的输出: unsigned long sum /*序列前20项之和*/ 设计 初始算法 1. f1和f2初始化为1,并初始化sum 的值为sum=0。 2. 计算第n-1项并求和,再计算第n 项并求和。 3. 循环执行步骤2至求出前20项之和,输出sum 。 算法细化

1.初始化: f1=1; f2=1; sum= f1+f2; 当n=1,n=2时f1=1,f2=1;因此前两项之和为sum=f1+f2。 2.循环体的语句如下: f1=f1+f2; /*计算第n-1项*/ sum+=f1; f2=f2+f1; /*计算第n项*/ sum+=f2; 当n=3时f3=f1+f2。如果f3用f1表示,则f1=f1+f2;因此前三项之和为 sum=sum+f1。 当n=4时f4=f3+f2。如果f3用f1表示,f4用f2表示,则f2=f2+f1。前四项 之和为sum=sum+f2。 依次类推,可以求解出前n项之和。 3.由于循环次数已知,因此可以使用for语句。由于循环一次计算2项,因此循环9次可以计算18项数据的和,加上前两项之和,正好为前20项之和。循环 条件为 for(i=1;i<10;i++) { …… } 流程图

详解由递推公式求斐波那契数列的通项公式

详解由递推公式求斐波那契数列的通项公式 武汉市黄陂区第四中学 蔡从江 斐波那契数列的递推公式是121==a a ,11-++=n n n a a a (2≥n 且N n ∈),那么它的通项公式是怎样的呢?不少同学经常问到这个问题。 下面详细解答用待定系数法构造过渡数列求其通项公式。 由递推公式11-++=n n n a a a ,可设)(11-++=+n n n n a a a a λμλ,比较得1=-λμ且1=μλ,即012=-+λλ,解得251±-= λ。若251+-=λ,则251+=μ;若251--=λ,则2 51-=μ。 先以2 51+-=λ,251+=μ求解, 此时)2)(2 15(21521511≥-++=-+-+n a a a a n n n n , 所以)2()215()215()215(2151211≥+=-++=-+ -+n a a a a n n n n , 即)2()2 15(2511≥++-=+n a a n n n , 再另)2]()215([251)215( 11≥+--=+-++n x a x a n n n n 即n n n x x )2 15()215(215)215(1+=+-+++, 所以12 15215=-++x x 即55=x , 所以 ])215(55[251)215(5511n n n n a a +--=+-++, )2]()2 15(551[)251()215(552111≥+--=+--++n a n n n ,

所以)2]()2 15(551[)251()215(552111≥+--=+--++n a n n n , )2]()251()251[(5 1])215(551[)251()215(55112111≥--+=+--++=++-++n a n n n n n 所以)3]()251()251[(5 1≥--+=n a n n n , 又121==a a 适合上式,故 *)]()251()251[(51N n a n n n ∈--+=, 同理可得251--=λ,2 51-=μ时,*)]()251()251[(51N n a n n n ∈--+=, 因此斐波那契数列的通项公式是 *)]()251()251[(51N n a n n n ∈--+=

高三数学 教案 斐波那契数列通项公式推导过程

斐波那契数列 斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。 定义 斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 自然中的斐波那契数列 这个数列从第3项开始,每一项都等于前两项之和。 斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。 通项公式 递推公式 斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) 显然这是一个线性递推数列。 通项公式

斐波那契数列的启示

Xxxxxxxxxxx大学 课程论文(2013-2014学年春季学期) 论文题目: 课程名称: 任课教师: 班级: 学号: 姓名:

浅谈斐波那契数列 摘要: 斐波那契数列,又称作黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21……这个数列从第三项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多?斐波那契(Leonardo Fibonacci)。本文主要就斐波那契数列的提出与特征进行简要分析,通过举例重点说明斐波那契数列在实际生活当中的表现与应用,进而得到启示。 关键词: 斐波那契数列; 特征; 应用 Research on Fibonacci sequence (Institute of Technology, China Agricultural University, FENG-Wei) Abstract: Fibonacci sequence, also known as the golden series, referring to such a sequence: 1,1,2,3,5,8,13,21…… this sequence beginning from the third term, each of which equal to the sum of the first two terms. The inventor of Fibonacci series was an Italian mathematician——Leonardo Fibonacci. This tractate focuses on the characteristics of Fibonacci sequence and has a brief analysis, as well as giving examples to analyze the performance and application of Fibonacci sequence in real life, and then get inspirations. Key words: Fibonacci sequence; Characteristics; Application

2.1神奇的斐波那契数列说课材料素材(人教A版必修5)

斐波那契数列说课稿 【教材的地位、作用分析】 本节课的内容选自人教社《必修5》第二章“数列”中的章头图和阅读思考材料,是在学习了数列的基本概念的基础上,对数列问题的进一步研究和拓展。设计说明: 大家请看,这是数列单元的章头图,以向日葵的花冠、树木的分杈、花瓣的数量等自然现象遵循斐波那契数列来让学生感受大自然的丰富多彩,体会“大自然是懂数学的”。 阅读材料中则详细介绍了斐波那契数列的由来和定义,进一步阐述了章头图中提出的斐波那契数列在植物界中的应用,鼓励有兴趣的同学搜集资料,深入了解和研究斐波那契数列。 课本中安排的章头图和阅读思考材料贴近学生的生活实际,具有趣味性、科学性、实用性等功能,是教材不可分割的一部分,也是教师对教材进行二次开发的有效素材,因而不能被淡化或忽视,应该充分发挥它的教育功能。

【教学模式、课型分析】 本节课的课型定位为数学项目活动课。 由教师结合课本引入斐波那契数列这一数学知识,指导学生利用课余时间自主探究斐波那契数列在各领域中的应用,最后以小组汇报的形式将研究成果向同学和老师们展示。 真正做到以教师为主导,学生为主体,将课堂和数学学习的主动权交给学生。设计说明:我国新课程改革的目标特别强调有效的数学学习应该重视开展独立而积极的数学活动,让学生通过动手实践、自主探索与合作交流来学习数学,获得广泛的数学活动经验。 数学项目活动学习这一类型的数学课是帮助活动参与者达到上述目的的有效手段。在国外已有广泛的普及,在国内尚处于起步阶段。本人在高一年级选取了斐波那契数列这一古老的数学问题,开展数学项目活动学习,是对新课程改革的一种尝试。 【学情分析】 从学生已有的认知基础来看,学生刚刚接触数列这一新知识,初步掌握了数列的基本概念。 在进一步学习数列知识之前引入斐波那契数列的研究性课题,可以使学生在接下来的数列学习中带着问题去学,更具针对性和发展性。 特别是在学习完数列整个章节后,再用数列知识解释现实生活中的问题,有助于深化学生对数列知识的认识,从而进一步提升数学素养和水平。 从能力基础看,学生具有较强的信息技术能力和广博的见识,完

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班莫少勇指导教师孙丽英 摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci数列黄金数优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一.Fibonacci数列的由来 Fibonacci数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,

而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1 F 1,F Z)n 2,(n F F F 102-n 1-n n

使用fork()调用计算Fibonacci数列

实验二Linux 进程创建 实验目的 ?加深对进程概念的理解 ?练习使用fork()系统调用创建进程 ?练习Linux操作系统下C程序设计 实验准备知识 1. fork()函数:创建一个新进程. ?调用格式: #include #include int fork(); ?返回值: 正确返回时,等于0表示创建子进程,从子进程返回的ID值;大于0表示从父进程返回的子进程的进程ID值。 错误返回时,等于-1表示创建失败 实验内容:使用fork()调用计算Fibonacci数列 ?Fibonacci数列是0,1,1,2,3,5,8…….通常表示为:fib0=0, fib1=1,fib n=fib n-1+fib n-2 ?写一个C程序,使用fork()系统调用产生一个子进程来计算 Fibonacci数列,序列通过命令行显示。例如,如果参数为5,Fibonacci数列的前5个数字将在子进程中被输出。 ?因为父进程和子进程拥有各自的数据拷贝,所以需要由子进程

输出。在退出程序之前,父进程调用wait()等待子进程完成。 要求提供必要的错误检测以保证在命令行传递的参数是非负数. 实验程序: #include #include #include #include int main(int argc, char* argv[]) { pid_t pid; int i; int f0,f1,f2; f0=0; f1=1; if(argv[1]<0) { fprintf(stderr,"request a nun-negative number"); } pid=fork(); //printf("pid = %d ",pid); if(pid<0) { fprintf(stderr,"fork failed"); exit(-1); } else if(pid==0) { printf("argv[1] = %d\n",atoi(argv[1])); printf("0 1 "); for(i=2; i<=atoi(argv[1]);i++) { f2=f0+f1; f0=f1; f1=f2; printf("%d ",f2); }

相关主题
文本预览
相关文档 最新文档