§2.5 对数与对数函数(讲解部分)
- 格式:pptx
- 大小:358.81 KB
- 文档页数:21
对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
2.5对数与对数函数考情分析1.考查对数函数的定义域与值域. 2.考查对数函数的图象与性质的应用.3.考查以对数函数为载体的复合函数的有关性质. 4.考查对数函数与指数函数互为反函数的关系. 基础知识 1.对数的概念 (1)对数的定义如果a x=N(a >0且a≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)几种常见对数2.对数的性质与运算法则 (1)对数的性质①alog a N =N ;②log a a N=N(a >0且a≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b·log b c·log c d =log a d.(3)对数的运算法则如果a >0且a≠1,M >0,N >0,那么①log a (MN)=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =nlog a M(n ∈R);④log am M n=n m log a M.3.对数函数的图象与性质4.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称. 注意事项1.对数源于指数,指数式和对数式可以互化,对数的性质和运算法则都可以通过对数式与指数式的互化进行证明.2.解决与对数有关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.3.画对数函数4.对数值的大小比较方法(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1). (4)化同真数后利用图象比较. 典型例题题型一 对数式的化简与求值【例1】计算:(1)121316324(12427162(8)--+-+-;(2)2(lg 2)lg 2lg 50lg25+⋅+;(3)3948(log 2log 2)(log 3log 3)+⋅+ 解:(1)原式12133(1)246324(113228⨯-⨯-⨯⨯=-+-⨯213332113222118811⨯=+-+-⨯=-=(2)原式22(lg 2)(1lg 5)lg 2lg 5(lg 2lg 51)lg 22lg 5=+++=+++ (11)lg 22lg 52(lg 2lg 5)2=++=+=(3)原式lg 2lg 2lg 3lg 3lg 2lg 2lg 3lg 3()()()()lg 3lg 9lg 4lg8lg 32lg 32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅= 【变式1】已知11223x x-+=,求22332223x x x x--+-+-的值解:∵11223x x-+=,∴11222()9x x -+=,∴129x x -++=,∴17x x -+=,∴12()49x x -+=,∴2247x x -+=,又∵331112222()(1)3(71)18x x x x x x ---+=+⋅-+=⋅-=, ∴223322247231833x x x x--+--==-+-题型二 对数值的大小比较【例2】►已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f(log 47),b =f(log 123),c =f(0.2-0.6),则a ,b ,c 的大小关系是( ).A .c <a <bB .c <b <aC .b <c <aD .a <b <c解析 log 123=-log 23=-log 49,b =f(log 123)=f(-log 49)=f(log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49,又f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f(x)在[0,+∞)上是单调递减的, ∴f(0.2-0.6)<f(log 123)<f(log 47),即c <b <a ,故选B.答案 B【变式2】设a =log 32,b =ln 2,c =5-12,则( ).A .a <b <cB .b <c <aC .c <a <bD .c <b <a解析 法一 a =log 32=1log 23,b =ln 2=1log 2e ,而log 23>log 2e >1,所以a <b ,c =5-12=15,而5>2=log 24>log 23,所以c <a ,综上c <a <b ,故选C.法二 a =log 32=1log 23,b =ln 2=1log 2e ,1<log 2e <log 23<2,∴12<1log 23<1log 2e <1;c =5-12=15<14=12,所以c <a <b ,故选C. 答案 C题型三 对数函数性质的应用【例3】►已知函数f(x)=log a (2-ax),是否存在实数a ,使函数f(x)在[0,1]上是关于x 的减函数,若存在,求a 的取值范围.. 解 ∵a >0,且a≠1,∴u =2-ax 在[0,1]上是关于x 的减函数.又f(x)=log a (2-ax)在[0,1]上是关于x 的减函数,∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎪⎨⎪⎧a >12-a >0,即1<a <2.∴a 的取值范围是(1,2).【变式3】 已知f(x)=log 4(4x-1) (1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求f(x)在区间⎣⎢⎡⎦⎥⎤12,2上的值域. 解 (1)由4x-1>0解得x>0, 因此f(x)的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f(x 1)<f(x 2),f(x)在(0,+∞)上递增.(3)f(x)在区间⎣⎢⎡⎦⎥⎤12,2上递增, 又f ⎝ ⎛⎭⎪⎫12=0,f(2)=log 415, 因此f(x)在⎣⎢⎡⎦⎥⎤12,2上的值域为[0,log 415]. 重难点突破【例1】设f(x)=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2dt ,x≤0,若f(f(1))=1,则a =________.【例2】► (2018辽宁改编)设函数f(x)=⎩⎪⎨⎪⎧21-x,x≤1,1-log 2x ,x >1,则满足f(x)≤2的x 的取值范围是________.巩固提高1. 2 log 510+log 50.25=( ).A .0B .1C .2D .4 解析 原式=log 5100+log 50.25=log 525=2. 答案 C2.(人教A 版教材习题改编)已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ). A .a <b <c B .a <c <b C .b <a <cD .c <a <b解析 将三个数都和中间量1相比较:0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1. 答案 C3.(2018·黄冈中学月考)函数f(x)=log 2(3x+1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞)D .[1,+∞)解析 设y =f(x),t =3x+1. 则y =log 2t ,t =3x+1,x ∈R.由y =log 2t ,t>1知函数f(x)的值域为(0,+∞). 答案 A4.(2018汕尾模拟)下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ).A .(-∞,1]B.⎣⎢⎡⎦⎥⎤-1,43C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析 法一 当2-x≥1,即x≤1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增,故选D. 法二 f(x)=|ln(2-x)|的图象如图所示.由图象可得,函数f(x)在区间[1,2)上为增函数,故选D. 答案 D5.若log a 23>1,则a 的取值范围是________.答案⎝ ⎛⎭⎪⎫23,1。