锆石U-Pb测年实用手册1
- 格式:doc
- 大小:8.01 MB
- 文档页数:5
SIMS锆石U-Pb定年方法用于U-Pb年龄测定的样品(号码)用常规的重选和磁选技术分选出锆石。
将锆石样品颗粒和锆石标样Plésovice (Sláma et al., 2008) (或TEMORA, Black et al., 2004)和Qinghu (Li et al., 2009)粘贴在环氧树脂靶上,然后抛光使其曝露一半晶面。
对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构、帮助选择适宜的测试点位。
样品靶在真空下镀金以备分析。
U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA IMS-1280二次离子质谱仪(SIMS)上进行,详细分析方法见Li et al. (2009)。
锆石标样与锆石样品以1:3比例交替测定。
U-Th-Pb同位素比值用标准锆石Plésovice (337Ma, Sláma et al., 2008(或TEMORA (417Ma, Black et al., 2004))校正获得,U含量采用标准锆石91500 (81 ppm, Wiedenbeck et al., 1995) 校正获得,以长期监测标准样品获得的标准偏差(1SD = 1.5%, Li et al., 2010)和单点测试内部精度共同传递得到样品单点误差,以标准样品Qinghu (159.5 Ma, Li et al., 2009) 作为未知样监测数据的精确度。
普通Pb校正采用实测204Pb值。
由于测得的普通Pb含量非常低,假定普通Pb主要来源于制样过程中带入的表面Pb污染,以现代地壳的平均Pb同位素组成(Stacey and Kramers, 1975)作为普通Pb组成进行校正。
同位素比值及年龄误差均为1σ。
数据结果处理采用ISOPLOT软件(文献)。
参考文献Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S., Foudoulis, Chris., 2004.Improved 206Pb/238U microprobe geochronology by the monitoring of atrace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS andoxygen isotope documentation for a series of zircon standards. Chem. Geol.,205: 115-140.Jiří Sláma, Jan Košler, Daniel J. Condon, James L. Crowley, Axel Gerdes, John M.Hanchar, Matthew S.A. Horstwood, George A. Morris, Lutz Nasdala, Nicholas Norberg, Urs Schaltegger, Blair Schoene, Michael N. Tubrett , Martin J.Whitehouse, 2008. Plešovice z ircon —A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35Li, Q.L., Li, X.H., Liu, Y., Tang, G.Q., Yang, J.H., Zhu, W.G., 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen floodingtechnique. Journal of Analytical Atomic Spectrometry 25, 1107-1113.Li, X.-H., Y. Liu, Q.-L. Li, C.-H. Guo, and K. R. Chamberlain (2009), Precise determination of Phanerozoic zircon Pb/Pb ageby multicollector SIMS without external standardization, Geochem. Geophys. Geosyst., 10, Q04010,doi:10.1029/2009GC002400.Ludwig, K.R., 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication. No. 1a, 56 pp.Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26, 207-221.Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., V onquadt, A., Roddick, J.C., Speigel, W., 1995. Three natural zircon standards for U-Th-Pb,Lu-Hf, trace-element and REE analyses. Geostand. Newsl. 19: 1-23.SIMS U-Pb dating methodsSamples XXX for U-Pb analysis were processed by conventional magnetic and density techniques to concentrate non-magnetic, heavy fractions. Zircon grains, together with zircon standard 91500 were mounted in epoxy mounts which were then polished to section the crystals in half for analysis. All zircons were documented with transmitted and reflected light micrographs as well as cathodoluminescence (CL) images to reveal their internal structures, and the mount was vacuum-coated with high-purity gold prior to secondary ion mass spectrometry (SIMS) analysis.Measurements of U, Th and Pb were conducted using the Cameca IMS-1280 SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing. U-Th-Pb ratios and absolute abundances were determined relative to the standard zircon 91500 (Wiedenbeck et al., 1995), analyses of which were interspersed with those of unknown grains, using operating and data processing procedures similar to those described by Li et al. (2009). A long-term uncertainty of 1.5% (1 RSD) for 206Pb/238U measurements of the standard zircons was propagated to the unknowns (Li et al., 2010), despite that the measured 206Pb/238U error in a specific session is generally around 1% (1 RSD) or less. Measured compositions were corrected for common Pb using non-radiogenic 204Pb. Corrections are sufficiently small to be insensitive to the choice of common Pb composition, and an average of present-day crustal composition (Stacey and Kramers, 1975) is used for the common Pb assuming that the common Pb is largely surface contamination introduced during sample preparation. Uncertainties on individual analyses in data tables are reported at a 1 level; mean ages for pooled U/Pb (and Pb/Pb) analyses are quoted with 95% confidence interval. Data reduction was carried out using the Isoplot/Ex v. 2.49 program (Ludwig, 2001).。
LA-ICPMS锆石U-Pb测年技术主要内容一、 LA-ICP-MS介绍二、锆石U-Pb年代学三、激光剥蚀样品制备(靶)四、激光剥蚀数据处理一、 LA-ICP-MS介绍LA-ICPMS是什么•激光剥蚀-电感耦合等离子体质谱仪——L aser A blation-I nductively C oupled P lasma-M ass S pectrometry(缩写为LA-ICPMS)•基本原理:将激光微束聚焦于样品表面使之熔蚀气化,由载气将样品微粒送入等离子体中电离,再经质谱系统进行质量过滤,最后用接收器分别检测不同质荷比的离子。
激光剥蚀-电感耦合等离子体质谱仪(LA-ICP-MS)剥蚀池6LA-ICP-MS 是一种新发展和建立起来的定年方法, 它是利用等离子体质谱计(ICPMS)进行U-Th-Pb 同位素分析.先将锆石样品用环氧树脂浇铸在一个样品柱上(mount), 磨蚀和抛光至锆石核心出露, 无需喷炭或镀金. 也无需将标样置于同一 mount 中. 将这个mount 和标样放置于同一样品舱内. 用激光剥蚀锆石使其气化, 用Ar 气传输到ICP-MS 中进行分析.LA-ICP-MS能够作什么?•同位素比值分析(精度低)•元素含量分析(主、微量)•整体分析(低空间分辨率,剥蚀直径0. 1 ~4mm,剥蚀量为1 μg ~0. 1g)•微区分析(高空间分辨,剥蚀直径1 ~100 μm,剥蚀量为1pg ~1μg)•空间分辨分析(高、低空间分辨)•深度分析•扫面分析(Mapping)岩石、矿物、流体/熔体包裹体、金属、有机物……LA-ICPMS分析的技术优势1.样品制备简单2.原位、“无损”3.低样品消耗量4.低空白/背景5.高空间分辨率(>5µm或者>100nm)6. 高效率(单点分析<3min)7. 避免了水、酸所致的多原子离子干扰8. 可以同时测定主、微量元素•Gray (1985)率先将ICP-MS与激光剥蚀系统相结合,开创了LA-ICP-MS微区分析技术(第一代ICP-MS于1984年出现);•Jackson et al. (1992) 展示了LA-ICP-MS在地质样品微量元素定量分析中的潜力;•Fryer et al. (1993)将LA-ICP-MS应用于锆石U-Pb同位素定年。
2009年8月Aug.,2009 矿 床 地 质 M IN ERA L DEPOSIT S第28卷 第4期28(4):481~492文章编号:0258-7106(2009)04-0481-12LA-M C-ICP-M S锆石微区原位U-Pb定年技术侯可军1,李延河1,田有荣2(1中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;2赛默飞世尔科技(上海)有限公司,北京 100007)摘 要 利用激光多接收等离子体质谱(LA-M C-ICP-M S)技术对30~1065M a的系列锆石进行了详细的定年研究。
包含离子计数器的多接收系统使得不同质量数的同位素信号可以同时静态接收,并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U比值的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右;不同质量数同位素信号的同时静态接收使得剥蚀时间缩短,剥蚀深度变浅,相比LA-ICP-M S方法,提高了激光剥蚀的空间分辨率。
对5个锆石标准和2个实际样品的测试表明,206Pb/238U年龄测定误差在1%(2σ)以内,定年结果在误差范围内与前人报道值完全一致,测试精度达到国际同类实验室先进水平。
关键词 地球化学;锆石;LA-M C-ICP-M S;U-Pb年代学中图分类号:P597+.3 文献标志码:AIn situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MSHOU KeJun1,LI YanHe1and TIAN YouRong2(1M RL Key L aboratory of M etallogeny and M ineral Assessment,I nstitute of Mineral Resources,Chinese Academyof Geological Sciences,Beijing100037,China;2Thermo Fisher Scientific(Shanghai)Co.,Ltd,Beij ing100007,China)AbstractHigh resolution in situ U-Pb zircon geochronology on zoned g rains can obtain isotope signatures from multi-ple grow th or thermal events.We present a method using laser ablation-multicollector-inductively coupled plas-ma-mass spectrometry(LA-MC-ICP-MS)to overcome com plications associated w ith intricately zoned zircon crystals through in situ sampling of zircon volumes as small as12μm,25μm and40μm in diameter by about10μm in depth.High precision U-Pb age of a series of zircon standard covering a w ide age range of30to1065Ma w as acquired using LA-MC-ICP-MS.The precision of measured Pb/U ratios in homogeneous zircon is about2% (2σ),resulting in routinely achieved precision of U-Pb ages obtained by ex ternal calibration of~1%(2σ)or bet-ter.All masses of interest can be simultaneously recorded w ith a multi-ion counting system(M IC)operating in static mode,and the sho rt ablation required to achieve such precision results in spatial resolution that is superior to comparable U-Pb zircon analy ses by single collector ICP-M S.The resulting present U-Pb age for five zircon reference samples and tw o geological samples show an excellent agreement with the previously reported ID-TIMS o r SH RIM P data.Key words:geochemistry,zircon,LA-MC-ICP-MS,U-Pb geochronology本研究得到国土资源部公益性行业科研专项经费(200811114)、国土资源大调查项目(1212010816039)和公益性科研院所基本科研业务费(K2007-2-3,Yw f060712)的联合资助第一作者简介 侯可军,1981年生,男,硕士,从事同位素地球化学研究。
锆石U—Pb同位素定年的原理、方法及应用研究本文在研究中主要围绕锆石开展,在分析其化学特征的基础上,对U-Pb同位素定年的主要原理进行判断,提出定年的实际方法,并分析U-Pb同位素定年在韧性剪切带定年以及分析沉积盆地物源等方面的应用。
标签:U-Pb定年;锆石;方法;运用0 前言作为月岩、变质岩、岩浆岩以及沉积岩中的重要矿物,锆石在成分上涉及到较多微量元素、放射性元素。
而且该矿物本身具有较为稳定的物化性质,分布极为广泛,加上其自身封闭温度较高,不仅是矿物定年中的最佳选择,也能被应用于地质学中。
因此,本文对U-Pb同位素定年相关研究,具有十分重要的意义。
1 锆石化学特征及其U-Pb同位素定年原理关于锆石,其在不同类型岩石内所体现的微量元素、常量元素等较为不同,且锆石成因不同,其中的U、Th等含量也存在一定差异,且两种含量在比值上变化较为明显,如对于变质锆石U与Th含量的都较少,比值可保持在0.1以内,而岩浆锆石,U与Th含量较高,比值超出0.4。
需注意由于较多岩浆中涵盖的组分较为特殊,所以在锆石成因判断中并不能完全依靠Th/U比值。
假若从稀土元素看,锆石中有较多花岗岩、镁铁质岩等存在,具有较高的丰度。
而对于U-Pb 同位素进行定年,其实际原理主要表现在对母体进行测定的基础上,将其中因衰变而带来的子体同位素含量变化进行测定,结合放射性衰变定律,使同位素自形成起的年龄得以推算出来。
在测定过程中,由于有U、Th都存在于锆石中,而且贫普通Pb,本身具有较为明显的抗后期影响优势,此时便需对Th、U衰变为Pb的情况分析,完成整个定年过程。
需注意的是对于1000-1200Ma的年轻锆石,测试过程中可直接引入206Pb/238U,原因在于年轻锆石不存在较多放射成因铅,而在放射成因铅较多的锆石中,可采取的定年方式为207Pb/206Pb[1]。
2 U-Pb同位素定年的主要方法分析从现行定年中采用的方法看,常见的主要以LA-ICP-MS、SIM以及ID-TIMS 等方法,这些方法用于U-Pb同位素定年中有各自的优势与弊端。
锆石u-pb同位素定年的原理,方法及应用
锆石U-Pb同位素定年是一种广泛使用的放射性同位素定年方法,应用于地质科学中,用于测定岩石、矿物的年龄。
以下是其原理、方法和应用:
原理
锆石晶体中自然存在的微量铀和钍,通过自然放射性衰变过程,最终分别转变为稳定的铅同位素。
锆石U-Pb同位素定年,即利用锆石中铀和铅之间的放射性衰变关系,测定锆石的年龄。
具体来说,是利用锆石晶体中铀(^238U)自然放射性衰变成铅(^206Pb),以及钍(^232Th)自然放射性衰变成铅(^208Pb)的过程中释放出的α粒子造成的连锁反应计算锆石形成的时间。
方法
锆石U-Pb同位素定年的方法通常有两种:碰撞法和非碰撞法。
碰撞法利用离子束将样品表面剥蚀,将离子轰击区域的同位素进行测量。
非碰撞法则是利用激光将样品表面打在一个小点上,使表面物质的离子化并被聚焦和加速,最终进行同位素测量。
应用
锆石U-Pb同位素定年可用于测定岩石和矿物的年龄、形成时期等,并广泛应用于地质学、矿床学、构造地质学等领域。
例如,在岩石学中,可以通过锆石U-Pb同位素定年来了解岩石的形成历史和演化过程;在矿床学中,可以通过锆石U-Pb同位素定年来确定矿床形成的年龄和矿床类型;在构造地质学中,可以通过同位素定年来研究大地构造演化过程等方面。
同时,锆石U-Pb同位素定年也可以与其他定年方法相结合,以提高年代学的精度和可靠性。
锆石U-Pb测年实用手册1
花生哥整理,微信公众号“37地质人”首发在精准化、精确化的测年进程中,微区原位测试有着不可比拟的优势,使用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)进行锆石U-Pb测年也被广为推崇。
一个成功的锆石U-Pb测年实验过程主要分为以下4个阶段:(1)根据实验目的采集合理的样品;(2)锆石挑选及制靶;(3)锆石选点及实验测试;(4)测试结果综合分析。
以下就锆石U-Pb测年的(1)(2)(3)项进行介绍,其中对锆石选点进行重点介绍。
实验仪器简介:激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)由LA、ICP、MS三个系统有机组合在一起的。
其结构示意图及实验工作台如图1、图2所示。
图1LA-ICP-MS仪器结构示意图
图2 LA-ICP-MS实验工作台
一、根据实验目的采集合理的样品
采取合理的实验样品是进行成功的实验的前提,应根据项目需求以及针对实
际的采样对象进行合理的样品采取。
一般来说:(1)采取新鲜的样品;(2)对锆石含量较高的花岗岩取3-5Kg,火山岩取10-15Kg,中基性-超基性岩采取20-25Kg。
二、锆石挑选及制靶
锆石单矿物的挑选一般0.5-2g,纯度>98%。
对制靶的锆石应为随机取样,尽量避免人为选择性。
制靶时一般常见有大靶和小靶,可根据实际需要选取,小靶一般排列200粒锆石,靶的直径大小有一定差别,有常见小靶直径为2.54cm。
图3 样品池中锆石靶及标样图4锆石靶
制靶时需注意,锆石之间的间距及排列顺序,较好的锆石制靶应保持锆石间距合适,相互独立但又排列有序(图5、图6)。
图5 锆石制靶间距适宜、排列有序图6锆石制靶间距太小、排列无序
三、锆石选点及实验测试
(一)锆石选点
锆石的选点应综合考虑两个方面得因素:(1)实验者研究需求;(2)锆石本身条件。
第一个方面主要根据是实验者研究所需进行锆石(岩浆锆石、变质锆石、热液锆石)的选点。
在进行锆石选点之前,首先厘清锆石分类的相关概念。
从成因上对锆石进行分类,常分为:岩浆锆石(在岩浆作用过程中结晶形成的锆石)、变质锆石(在变质作用过程中形成的锆石),现认为也存在热液锆石(此
次暂不展开,另拟文再探讨)(表1)。
表1岩浆锆石、变质锆石、热液锆石主要特征对比表
从来源上对锆石进行分类,常可分为:(1)碎屑锆石:指来已存在的锆石,经过破碎、搬运后,寄存于沉积岩内的锆石。
碎屑锆石可以是岩浆成因,也可以是变质成因;(2)捕获锆石:岩浆岩在岩浆房、岩浆通道、地表,通过同化混染围岩或地表物质获得锆石;(3)继承/残留锆石:原岩中的锆石,经历岩浆作用过程,未被全部熔融,或者经历变质作用过程,未被全部改造,剩余的部分可以呈残留核的形式保留,也可呈单颗粒的形式保留。
岩浆锆石一般具有特征的岩浆振荡环带。
振荡环带的宽度可能与锆石结晶时岩浆的温度有关,高温条件下微量元素扩散快,常常形成较宽的结晶环带如辉长岩中的锆石低温条件下微量元素的扩散速度慢,一般形成较窄的岩浆环带,如I 型和S型花岗岩中的锆石岩浆锆石中还可能出现扇形分带的结构(图7)。
这种扇形分带结构是由于锆石结晶时外部环境的变化导致各晶面的生长速率不一致造成的。
部分地幔岩石中的锆石表现出无分带或弱分带的特征。
在岩浆锆石中往往有继承锆石的残留核。
图7不同类型岩浆岩中锆石的CL图像
(a)辉长岩中的岩浆锆石(b)二长闪长岩中的岩浆锆石;(c)、(d)碱性正长岩中的岩浆锆石;
(e)、(f)、(g)花岗岩中的锆石
变质锆石的形成既可以是变质过程中新生长的锆石,又可以是变质作用对岩石中原有锆石不同程度的改造,其中变质增生锆石既可以形成独立的新生颗粒还可以在原有锆石基础上形成变质新生边。
此外,锆石的蜕晶质化或蜕晶质化锆石的重新愈合作用同样会对原有锆石产生不同程度的影响。
图8变质锆石典型CL图像
(a)无分带结构;(b)扇形分带结构;(c)斑杂状分带;(d)扇形分带结构;(e)冷杉叶状分带;(f)面状分带;(h)片状分带;(i)边部变质重结晶锗石切割原岩岩浆锗石的环带;(j)核部重结晶锗石中有明显
的残留岩浆锗石岩浆环带;(j)面形分带增生锆石
图9变质岩中变质锆石年龄选点图,核部与边部为不同时期的锆石第二个方面是锆石本身条件。
也就是锆石本身是否具备进行测试者所需的条件。
现在主要通过内部结构分析和表面分析两个方面进行综合考虑:(1)锆石内部结构分析方法包括HF酸蚀刻法、背散射电子图像(BSE)、阴极发光电子图像(CL),一般情况下常用CL照相,它主要是基于锆石中微量元素和晶体缺陷的差异的原理成像,兼具快速、无损、内部结构显示清晰效果较佳的优点(图10),而HF酸蚀刻法对锆石具不可恢复性损伤,BSE其表面特征清晰、照相速度快,但一般效果较差,而观察锆石内部结构主要是看其内部环带是否清晰,没有继承核影响;(2)表面分析主要是通过透反射光学显微系统进行观察,掌握各个锆石的清晰透彻程度、裂隙、包裹体等情况(图11、图12、图13),在锆石选点时应该注意尽量避免选在这些有麻点、云雾状、发育裂隙、包裹体的位置上。
图10 CL图像清晰显示锆石内部结构图11 实验过程中反射光观察系统下可清晰辨别
锆石中包裹体
图12 反射光下清晰显示锆石裂隙图13 透射光下清晰显示锆石裂隙
只有同时满足CL图像显示环带清晰,没有继承核影响;并且透射光照片中锆石晶体清澈透亮、没有包裹体图像;并且透射光照片中锆石晶体清澈透亮、没有包裹体/微裂隙/烟雾混沌这样的锆石,才是U-Pb定年的备选锆石。
具体到权重,有多年从事锆石U-Pb定年经验的人员认为透反射光照片在选点过程中应该占60-70%权重;而CL照片,仅能占30-40%权重。
因为光学显微镜在拍摄透反射照片的时候是无损的,而电子显微镜在拍摄CL图像时,是通过电子显微镜的高压电子枪发射的高能电子束照射到锆石的表面,激发出可见光、红外光或紫外光。
为了获取高清晰的CL图像,通常采用电子束流密度较大的电镜且增加积分时间(长达120-180秒)来实现,电子枪发射的高能电子束流一直照射在锆石表面,在获得一张高清晰CL图像的2-3分钟后,锆石表面会被严重灼烧,影响U-Pb定年结果。
因此,合理的步骤是在锆石U-Pb 定年前拍摄普清的CL图像(积分时间仅80秒,SIMS定年要求更短的积分时间),在完成U-Pb定年后,如有发表文章的需要,再选择性地拍摄高清CL图像。
(二)实验测试
在进行实验测试时,主要需注意以下事项。
(1)在实验时对于光斑的选取甚是重要,光斑常见有24、32um,也有更小些,主要与仪器的灵敏度及锆石的大小相关,这在实验测试之前选点时应先综合考虑。
(2)在进行打点时,应使锆石与数据的一一对应,避免张冠李戴,使得后期数据处理分析带来不必要的麻烦。
(3)在进行打点时应尽量聚焦、准确选择,使实际打点与预期选点位置一致。
花生哥整理,微信公众号“37地质人”首发。