油层物理-杨胜来主编-习题集答案电子版
- 格式:doc
- 大小:234.50 KB
- 文档页数:9
油层物理杨胜来油层物理-杨胜来油层物理学3_图文导读:就爱阅读网友为您分享以下“油层物理-杨胜来油层物理学3_图文”的资讯,希望对您有所帮助,感谢您对的支持!第三章油气藏烃类的相态和汽液平衡剂,而很少采用N2和CH4作混相剂的主要原因。
第三章油气藏烃类的相态和汽液平衡第三章油气藏烃类的相态和汽液平衡单组分P-V相图第三章油气藏烃类的相态和汽液平衡2、双组分体系的相态特征第三章油气藏烃类的相态和汽液平衡第三章油气藏烃类的相态和汽液平衡石油和天然气是多种烃类和非烃类所组成的混合物,各地油气藏流体混合物的组成差别甚大。
在原始油气藏条件下,有的呈单一气相为纯气藏;有的是单一液相的油藏;也有的是油、气两相共存,成为带气顶的油藏。
石油和天然气在从地下到地面的采出过程中,状态变化也很复杂,例如原油中溶解的天然气会从原油中分离,而凝析气则会发生由气态转变为液态的反凝析现象。
油藏开发前烃类混合物究竟处于什么相态?为什么开采过程中会发生一系列相态的变化呢?烃类的相态变化的第三章油气藏烃类的相态和汽液平衡油气藏烃类:石油和天然气特点:(1)是多种烃类和非烃类所组成的混合物(2)各地油气藏流体混合物的组成差别甚大(3)高温高压状态下。
原始状态:有的呈单一气相为纯气藏;有的是单一液相的油藏;也有的是油、气两相共存,成为带气顶的油藏。
变化过程:从地下到地面的采出过程中,状态变化也很复杂,例如原油中溶解的天然气会从原油中分离,而凝析气则会发生由气态转变为液态的反凝析现象。
油藏开发前烃类混合物究竟处于什么相态?为什么开采过内因是事物变化的根据:油藏烃类的化学组成的复杂性是相态转化的内因。
外因则是事物变化的条件:压力和温度的变化是产生相态转化的外部条件。
本章将研究压力、温度变化时相态变化的规律。
第三章油气藏烃类的相态和汽液平衡第三章油气藏烃类的相态和汽液平衡主要内容第一节油气藏烃类的相态特征第二节汽-液相平衡第三节油气体系中气体的溶解与分离第四节用相态方程求解油气分离问题的实例第三章油气藏烃类的相态和汽液平衡PT第三章油气藏烃类的相态和汽液平衡PT第三章油气藏烃类的相态和汽液平衡状态方程是体系相态的数学描述方法。
《油层物理学》第四章第四章储层流体的高压物理性质高压物性第一节、地层油的高压物性第二节、地层水的高压物性第三节、地层油、气高压物性参数的测定与计算第四节、流体高压物性参数应用示例--油气藏物质平衡方程第一节地层油的高压物性参数一、地层油的密度和相对密度二、地层原油的溶解气油比三、地层原油的体积系数四、地层原油的压缩系数五、地层原油的粘度六、原油凝固点地层油=地层原油=活油=含气油——处于原始油藏温度和压力时。
——处于高温高压(某一温度和压力)时。
地下原油一. 地层油的密度和相对密度oiooi V m =ρ)T ,P (V m )T ,P (o oo =ρ)T ,P (i i oi ορρ=)atm 1,C 15()T ,P (w o o ρργ=)atm 1,C 15()atm 1,C 15()T ,P (w io w i i o i o ρρρργ==51015202530350.650.700.751270oC84oC地层油密度(g /c m )3地下原油由于溶解有大量的天然气,因而其密度与地面脱气原油密度相比通常要低。
地下原油密度随温度的增加而下降。
随压力的变化关系比较复杂,以饱和压力为界,当压力小于饱和压力时,由于随压力增加,溶解的天然气量增加,因而原油密度减小;当压力高于饱和压力时,天然气已全部溶解,随压力增加原油受压缩,因而原油密度增大。
二、地层原油的溶解气油比地层油的溶解气油比R si 是指单位体积地面原油在地层压力、温度下所溶有的天然气在标准状态下的体积。
osg si V /V R =sdo sc g s s )T ,P (V )T ,P (V )T ,P (R R ==地层压力高于饱和压力时的溶解气油比均为原始溶解气油比Rsi。
当地层压力降至低于饱和压力后,随着压力降低一部分气体已从地层原油中逸出,溶解于原油中的气量减少,故溶解气油比Rs减少。
如果将油、气加压溶解,则随着压力的增加,溶解气油比越来越大,当P=P b (饱和压力)时,溶解气油比为Rsi,气体全部溶解完毕,压力继续增大直到原始典型的未饱和油藏的溶解曲线.我国油田名称R si(标) M3/m3大庆油田P层48.2 大港西区44 井M层37.3 胜利油田营一4井70.1 孤岛渤26—18井G层27.5 任丘油田Ps层7.0 玉门油田L层65.8应用:原始溶解气油比高:油藏弹性能量高。
第一章作业第1题解:设气体混合物的总质量为m 克,则其物质的量为 )(037442.0721.05825.04415.0301.0164.0mol m m m m m m =++++ 所以CH 4的物质的量的组成为668.0037442.016/4.0=m m C 2H 6为:089.0037442.030/1.0=mm C 3H 8为:091.0037442.044/15.0=m m C 4H 10为:115.0037442.058/25.0=mm C 5H 1为:037.0115.0091.0089.0668.00.1=---- 第8题解:书40页公式Mpa ....r ..p g c 6112347038610881543861088154=⨯-=-=33461123420..p p p c r === k ....r ..T g c 88842157066671762222926667176222292=⨯+=+=631888421575273..T T T c r =+==根据r r T p ,查图得压缩因子825.0=Z (书46页)书54页3344/004964.020********.010458.327310458.3m m ptZ B g 标=+⨯⨯⨯=+⨯=-- 3119100145.2004964.010m B V V g g sc 标⨯=== 第11题解:地层温度C t o 08.108455402.00.17=⨯+=3344/00278.0414.5408.108273148.110458.327310458.3m m ptZ B g 标=+⨯⨯⨯=+⨯=-- 设天然气的地下密度为f ρ,地上密度为s ρ,3/205.1293008314.0101325.097.28m kg RT p M a air =⨯⨯==ρ 而air g sr ρρ.=, 则3/692.0205.1574.0m kg s =⨯=ρ3922480027806920m /kg ...B B V V B V m V m g s g s s s g s f f ==ρ=ρ===ρ 第16题解:(1)书41页表MPap y p ki cii c 588.4797.3022.0249.4031.0880.4045.0604.4902.01=⨯+⨯+⨯+⨯==∑=kT y T ki cii c 44.20616.425022.082.369031.043.305045.055.190902.01=⨯+⨯+⨯+⨯==∑=8.1588.43.8===c r p p p 5.144.20632273=+==c r T T T 查图得84.0=Z书46页(2) 3344/01067.03.830584.010458.33227310458.3m m pZ B g 标=⨯⨯⨯=+⨯=--(3) 37.10601067.010000m B V V g s f=⨯== (4)根据8.1=r p ,5.1=r T 由书52页查图得00.1.=r gr T C , 则1145.05.1588.400.1.-=⨯==MPa T p T C C r c rgr g (5)查图版(图1.3.10,56页)得0112.01=c μmpa.s ,0106.02=c μmpa.s ,0082.03=c μmpa.s ,0078.04=c μmpa.s利用书58页(1.3.49)的粘度公式,得s Pa m .0109.0μμ=查图版(60页图)得2.1=m μμ,则s Pa mm .01308.02.10109.0.μμμμμ=⨯== 第17题答:(1)此气藏在开采过程中的相态变化:随着压力逐渐下降,当到达第二露点时,开始出现第一批露珠,随压力降低液体含量逐渐增多直到最大值,随后随压力降低液体含量逐渐减少,当压力降低到第一露点时,全部转为气相。
目录第一篇储层流体的高压物性 (3)第一章天然气的高压物理性质 (3)一、名词解释。
(3)二.判断题。
√×××√√×× (3)三.选择题。
ACACBDB (4)四.问答题。
(4)五.计算题。
(5)第二章油气藏烃类的相态和汽液平衡 (9)一、名词解释。
(9)二.判断题。
√√×√×√√××√ (9)三.选择题。
CDAC (9)四.问答题。
(10)五.计算题。
(11)第三章油气的溶解与分离 (13)一、名词解释。
(13)二.判断题。
√××√√× (13)三.选择题。
AADCBB (13)四.问答题。
(14)五.计算题。
(15)第四章储层流体的高压物性 (19)一、名词解释。
(19)二.判断题。
√×√√√× (19)三.选择题。
CCBBC DDDDCD (19)四.问答题。
(21)五.计算题。
(22)第二篇储层岩石的物理性质 (26)第一章砂岩的物理性质 (26)一、名词解释。
(26)二.判断题。
√√×√××× (27)三.选择题。
BDBACC (27)四.问答题。
(28)五.计算题。
(29)第二章储层岩石的孔隙性 (29)一、名词解释。
(29)二.判断题。
×××√√ (30)三.选择题。
ACAB (30)四.问答题。
(31)五.计算题。
(32)第三章储层岩石的渗透性 (34)一、名词解释。
(34)二.判断题。
×√√××√×√×√ (34)三.选择题。
DBCBCBC (35)四.问答题。
(35)五.计算题。
(36)第四章储层流体饱和度 (38)一、名词解释。
(38)二.判断题。
√×√ (38)12三.选择题。
第二章 习题187页 第3题解:设孔隙体积及岩石的外表体积分别为V p ,V f则煤油煤油ρρ1212W W V V W W p p-==-而煤油煤油ρρ3232)(W W V gW W gV f f -=-=孔隙度fp V V =φ3212W W W W --=253.0178.19665.30760.27665.30=--=第4题解:含油岩石的总体积为38610101010mAh V f =⨯⨯==孔隙体积 3781022.010mV V f p ⨯=⨯==φ油藏的储量7710569.102.1/)2.01(102/)1(mB S V N oi wi p ⨯=-⨯⨯=-=原油在油藏压力P i 与P b 间的平均压缩系数14109.80.1050.1502.1025.102.111--⨯=--=--=MPa P P B B B C b i oi ob oi o综合压缩系数144410424.3)2.01(109.82.0102----⨯=-⨯⨯⨯+⨯=+=MPaS C C C oi o f t φ弹性储量4884.1025.1)0.105.15(10424.310)(B P P C V N obob oi t f =-⨯⨯⨯=-=-第5题解:束缚水饱和度S wi =0.24原始含油饱和度S oi =1-S wi =1-0.24=0.76 则综合压缩系数134441061.1)105.424.0107076.0(27.0104.1)(-----⨯=⨯⨯+⨯⨯⨯+⨯=++=MPa C S C S C C w w o o f t φ第6题 解:361.12.1)3.210.27(1061.11015)(B P P VC N ob b i t =-⨯⨯⨯=-=-弹 第7题 解:1344410331134213050102742501007177020105387005025011-----⨯=⨯⨯+⨯⨯+⨯⨯+⨯=++φ+==--=--=MPa .......(..)C S C S C S (C C ...S S S g g w w o o f t g w o 第8题解:据L P kA Q μ∆= 得P A L Q k ∆=μ2281.03)25.2(0.65.28.0m μπ=⨯⨯⨯=第10题 解:222222100038500113125282018001514022m .)..().(....)P P (A L P Q k g μ=-π⨯⨯⨯⨯=-μ= 第14题解:(1)岩石骨架体积3246292cm W V rockb ===ρ 岩石外表体积333.6125.01461cm V V b f =-=-=φ 则333.1533.6125.0cmV V f p =⨯==φ岩石含油体积32190.48162.01492100cm V W W V oww o =⨯--=--=ρρ则320.033.1590.4===p o o V V S 261.033.154===p w w V V S (2)水的地下体积312.403.14cm B V V w ws wf =⨯=⨯=岩样在原始油藏条件下269.033.1512.4===p wfwi V V S 由于压力高于泡点压力,所以孔隙中只有水和油731.0269.011=-=-=wi oi S S第17题解:油层平均渗透率2332211321125.05.086.222.005.305.019.1286.2205.319.12mk l k l k l l l l k μ=++++=++++=第21题:什么叫岩石的绝对渗透率?测定岩石绝对渗透率的条件是什么?答:(1)渗透率是表征岩石性质的系数,在某种条件下得到的渗透率仅与岩石的性质有关,而与所通过的流体性质无关,此时的渗透率称为岩石的绝对渗透率。
《油层物理学》
第四章
第四章储层流体的高压物理性质
高压物性
第一节、地层油的高压物性
第二节、地层水的高压物性
第三节、地层油、气高压物性参数的测定与计算第四节、流体高压物性参数应用示例--油气藏物质平衡方程
第一节地层油的高压物性参数
一、地层油的密度和相对密度
二、地层原油的溶解气油比
三、地层原油的体积系数
四、地层原油的压缩系数
五、地层原油的粘度
六、原油凝固点
地层油=地层原油=活油=含气油
——处于原始油藏温度和压力时。
——处于高温高压(某一温度和压力)时。
地下原油
一. 地层油的密度和相对密度
oi
o oi V m =ρ)T ,P (V m )T ,P (o o o =ρ)
T ,P (i i oi ορρ=)atm 1,C 15()
T ,P (w o o ρργ=)atm 1,C 15()atm 1,C 15()
T ,P (w i
o w i i o i o ρρρργ=
=
51015202530350.650.700.751270o C 84o C
地层油密度(g /c m )
3地下原油由于溶解有大量的天然气,因而其密度与地面脱气原油密度相比通常要低。
地下原油密度随温度的增加而下降。
随压力的变化关系比较复杂,以饱和压力为界,当压力小于饱和压力时,由于随压力增加,溶解的天然气量增加,因而原油密度减小;当压力高于饱和压力时,天然气已全部溶解,随压力增加原油受压缩,因而原油密度增大。
1第一章油层物理判断题1.不均匀系数愈大,则粒度组成愈均匀。
(错)2.三种不同基准体积的比面之间的关系S p>S s>S b。
(正确)3.三种不同孔隙度之间的关系应为流动<有效<绝对。
4.平均压力愈大,则滑动效应愈显着。
(错)5.平均孔道半径愈小,则对滑动效应愈显着。
(正确)6.储层埋藏愈深,则孔隙度愈大。
(错)7.粒度组成分布曲线尖峰愈高,则粒度组成愈均匀。
(正)8.地层水矿化度愈高,则粘土膨胀能力愈强。
(错)9.颗粒平均直径愈大,则岩石比面愈大。
(错)10.胶结物含量愈大,则岩石比面愈大。
(错)11.粒度组成愈均匀,则岩石孔隙度愈大。
(正确)12.离心法测出的岩石孔隙度是有效孔隙度。
(错)13.饱和煤油法测出的岩石孔隙度是流动孔隙度。
(错)14.岩石比面愈大,则岩石的绝对渗透率愈小。
(正确)15.平行于层理面的渗透率小于垂直于层理面的渗透率。
(错)16.同一岩样的气测渗透率必定大于其液测渗透率。
(正确)17.分选系数愈大,则粒度组成愈均匀。
(错)18.绝对渗透率在数值上等于克氏渗透率。
(正确)19.粘土矿物中蒙脱石的膨胀能力是最强的。
(正确)20.油藏总弹性能量中流体弹性能量一定大于岩石骨架的弹性能量。
(错)2 第一章油层物理选择题1-1 若某岩样的颗粒分布愈均匀,即意味着不均匀系数愈,或者说其分选系数愈。
A、大,大;B、大,小;C、小,大;D、小,小答案为D1-2 岩石比面愈大,则岩石的平均颗粒直径愈,岩石对流体的吸附阻力愈。
A、大,大;B、大,小;C、小,大;D、小,小答案为C1-3 若S f、S p、S s分别为以岩石的外表体积、孔隙体积、骨架体积为基准面的比面,则三者的关系为。
A、S f>S p>S sB、S s>S p>S fC、S p>S s>S fD、S f>S s>S p答案为C1-4 若a、e、d分别为岩石的绝对孔隙度、有效孔隙度、流动孔隙度,则三者的关系为。
油层物理-杨胜来主编-习题集答案电子版第一章储层流体的物理性质二. 计算题1.(1)该天然气的视分子量M=18.39该天然气的比重γg=0.634(2)1mol该天然气在此温度压力下所占体积:V≈2.76×10-4(m3)2.(1)m≈69.73×103(g)(2)ρ≈0.0180×106(g/m3)=0.0180(g/cm3)3. Z=0.864. Bg=0.005235. Ng=21048.85×104(m3)6. (1)Cg=0.125(1/Mpa)(2)Cg=0.0335(1/Mpa)7. Z=0.848. Vg地面=26.273(标准米3)9. ρg=0.2333(g/cm3)10. ρg=0.249(g/cm3)11. Ppc=3.87344(MPa)Pc1﹥Ppc﹥Pc212. (1)Z≈0.82(2)Bg=0.0103(3)Vg=103(m3)地下(4)Cg=0.1364(1/Mpa)(5)μg=0.0138(mpa﹒s)13. Rs CO2=65(标准米3/米3)Rs CH4=19(标准米3/米3)Rs N2=4.4(标准米3/米3)14.Rs=106.86(标准米3/米3)15.(1)Rsi=100(标准米3/米3)(2)Pb=20(MPa)(3)Rs=60(标准米3/米3)析出气ΔRs=40(标准米3/米3)16. V/Vb=0.9762 17. γo=0.704(g/cm 3) 18. γo=0.675(g/cm 3) 19. Bo=1.295 20. Bt=1.28321. Rs=71.3(Nm 3/m 3)Bo=1.317 Bg=0.00785 Bt=1.457 Z=0.85422. P=20.684Mpa 下:Co=1.422×10—3 (1/Mpa) Bo=1.383P=17.237Mpa 下: Bo=1.390 Bt=1.390Rs=89.068(Nm 3/m 3)P=13.790Mpa 下:Bo=1.315 Bt=1.458Rs=71.186(Nm 3/m 3)Bg=7.962×10—3 Z=0.87823. 可采出油的地面体积No=32400(m 3) 24. )/1(10034.32C 4Mpa -?= 若只有气体及束缚水)/1(10603.169Cg 4Mpa -?=26. Pb=23.324(Mpa )27.Pd2=18.231(Mpa)28.该地层为CaCl2水型29.本题可编程上机计算,结果如下2 '+P--=084998.0B P14696g.1123.6446130.经编程上机运算,有(1)Y=2.039492+0.09387455P(2)33005Bt=.131. 经编程上机运算,得整理后的相对体积系数35. (1)We1=3.0267×105(m3)(2)We1=6.5392×105(m3)(3)Np=6.85462×105(m3)36. 原油的地址储量N=3.452×108(m3)在P=11.032MPa下:We=0.121×108(m3)在P=8.963MPa下:We=0.453×108(m3)在P=6.895MPa下:累积采油量Np=0.999×108(m3)第二章储层流体的物理性质二. 计算题1 (1)Vp=2.356(cm 3)(2)φ=16.319% (3)f ρ=2.2191(g/cm 3)2 (1)K=66.667×10-3(μm 2)(2)Q=0.0444(cm 3/s )3 (1)K L =16.956(μm 2)(2)Kg=17.586(μm 2)对比计算结果,对同一岩样,气测渗透率大于液测渗透率。
油层物理习题有答案第二章第二章油层物理选择题2-1石油是()。
A.单质物质;B.化合物;C.混合物;D.不能确定答案为C。
2-2 对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸汽压愈(),其挥发性愈()。
A.大,强B.大,弱C.小,强D.小,弱答案为A2-3 对于双组分烃体系,若较重组分含量愈高,则相图位置愈();临界点位置愈偏()。
A.高左;B.低,左;C.高,左;D.低,右答案为D2-4 多级脱气过程,各相组成将()发生变化,体系组成将()发生变化。
A.要,要;B.要,不C.不,要;D.不,不。
答案为A2-5 一次脱气与多级脱气相比,前者的分离气密度较(),前者的脱气油密度较()。
A.大,大;B.大,小;C.小,大;D.小,小答案为A2-6 单组分气体的溶解度与压力(),其溶解系数与压力()。
A.有关,有关;B.有关,无关;C.无关,有关;D.无关,无关。
答案为B2-7 就其在相同条件下的溶解能力而言,CO2、N2、CH4三者的强弱顺序为:>N2>CH4; >CH4>CO2>CO2>N2>CH4>N2答案为D2-8 若在某平衡条件下,乙烷的平衡常数为2,此时其在液相中的摩尔分数为20%,则其在气相中的摩尔分数为()。
% % % %答案为C2-9 理想气体的压缩系数仅与()有关。
A.压力;B.温度;C.体积D.组成答案为A2-10 在相同温度下,随压力增加,天然气的压缩因子在低压区间将(),在高压区间将()。
A.上升,上升;B.上升,下降;C.下降,上升;D.下降,下降。
答案为C2-11 天然气的体积系数恒()1,地层油的体积系数恒()1。
A.大于,大于;B.大于,小于;C.小于,大于;D.小于,小于。
答案为C2-12 天然气的压缩系数将随压力增加而(),随温度增加而()。
A.上升,下降;B.下降;上升C.上升,上升D.下降,下降答案为B2-13 形成天然气水化物的有利条件是()。
油层物理学答案【篇一:油层物理课后习题答案】合物的质量组成换算为物质的量的组成。
气体混合物的质量组成如下:ch4?40%,c2h6?10%,c3h8?15%,c4h10?25%,c5h10?10%。
解:按照理想气体计算:2.已知液体混合物的质量组成:c3h8?10%,c4h10?35%,c5h12?55%.将此液体混合物的质量组成换算为物质的量的组成。
解:3.已知地面条件下天然气各组分的体积组成:ch4?96.23%,c2h6?1.85%,c3h8?0.83%,c4h10?0.41%, co2?0.50%,h2s?0.18%。
若地层压力为15mpa,地层温度为50oc。
求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m3,求其地下体积。
解:(1)视相对分子质量mg??(yimi)?16.836(2)相对密度gmgma16.8360.580552 29(3)压缩因子 pr?p15t50?273??3.244 tr1.648 pc4.624tc196.02(4)地下密度mpmg15?16.836?g=111.95(kg/m3)vzrt0.84?0.008314?(50?273)(5)体积系数vgfvgscznrtpt0.101325273?50pz?sc0.84?6.255?10?3(m3/标m3)nrtscptsc15273?20pscbg?(6)等温压缩系数1.6480.523.244cg?cgrtrpc?tr=0.52=0.068(mpa?1)4.624?1.648(7)粘度0.01175016.8361.6481.43.244gg/g1g11.40.01170.01638(mpas)(8)若日产气为104m3,求其地下体积。
vgf?bgvgsc?6.255?10?3?104?62.55(m3)4.知常压下天然气各组分的体积组成:ch4?87.0%,c2h6?4.0%,c3h8?1.0%,c4h10?0.5%, n2?7.5%。
第一章 储层岩石的物理特性24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。
Log d iWWi图1-1 两岩样的粒度组成累积分布曲线答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。
曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。
一般储油砂岩颗粒的大小均在1~0.01mm 之间。
粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。
上升段直线越陡,则说明岩石越均匀。
该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。
曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。
30、孔隙度的一般变化范围是多少?常用测定孔隙度的方法有哪些?影响孔隙度大小的因素有哪些?答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。
3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。
间接测定法影响因素多,误差较大。
实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。
4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以及成岩后的压实作用(即埋深)就成为影响这类岩石孔隙度的主要因素。
44、试推导含有束缚水的油藏的综合弹性系效计算式)(w w o o f C S C S C C ++=*φ其中:*C ——地层综合弹性压缩系数;fC ——岩石的压缩系效; oC ——原油压缩系效; w C ——地层水压缩系效;oS 、wiS ——分别表示含油饱和度和束缚水饱和度。
第一章 储层岩石的物理特性24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。
Log d iWWi图1-1 两岩样的粒度组成累积分布曲线答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。
曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。
一般储油砂岩颗粒的大小均在1~0.01mm 之间。
粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。
上升段直线越陡,则说明岩石越均匀。
该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。
曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。
30、孔隙度的一般变化范围是多少?常用测定孔隙度的方法有哪些?影响孔隙度大小的因素有哪些?答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。
3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。
间接测定法影响因素多,误差较大。
实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。
4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以及成岩后的压实作用(即埋深)就成为影响这类岩石孔隙度的主要因素。
44、试推导含有束缚水的油藏的综合弹性系效计算式)(w w o o f C S C S C C ++=*φ其中:*C ——地层综合弹性压缩系数;fC ——岩石的压缩系效; oC ——原油压缩系效; w C ——地层水压缩系效;oS 、wiS ——分别表示含油饱和度和束缚水饱和度。
第一章储层流体的物理性质二. 计算题1.(1)该天然气的视分子量M=18.39该天然气的比重γg=0.634(2)1mol该天然气在此温度压力下所占体积:V≈2.76×10-4(m3)2.(1)m≈69.73×103(g)(2)ρ≈0.0180×106(g/m3)=0.0180(g/cm3)3. Z=0.864. Bg=0.005235. Ng=21048.85×104(m3)6. (1)Cg=0.125(1/Mpa)(2)Cg=0.0335(1/Mpa)7. Z=0.848. Vg地面=26.273(标准米3)9. ρg=0.2333(g/cm3)10. ρg=0.249(g/cm3)11. Ppc=3.87344(MPa)Pc1﹥Ppc﹥Pc212. (1)Z≈0.82(2)Bg=0.0103(3)Vg=103(m3)地下(4)Cg=0.1364(1/Mpa)(5)μg=0.0138(mpa﹒s)13. Rs CO2=65(标准米3/米3)Rs CH4=19(标准米3/米3)Rs N2=4.4(标准米3/米3)14.Rs=106.86(标准米3/米3)15.(1)Rsi=100(标准米3/米3)(2)Pb=20(MPa)(3)Rs=60(标准米3/米3)析出气ΔRs=40(标准米3/米3) 16. V/Vb=0.9762 17. γo=0.704(g/cm 3) 18. γo=0.675(g/cm 3) 19. Bo=1.295 20. Bt=1.28321. Rs=71.3(Nm 3/m 3)Bo=1.317 Bg=0.00785 Bt=1.457 Z=0.85422. P=20.684Mpa 下:Co=1.422×10—3 (1/Mpa) Bo=1.383P=17.237Mpa 下: Bo=1.390 Bt=1.390Rs=89.068(Nm 3/m 3) P=13.790Mpa 下: Bo=1.315 Bt=1.458Rs=71.186(Nm 3/m 3) Bg=7.962×10—3 Z=0.87823. 可采出油的地面体积No=32400(m 3) 24. )/1(10034.32C 4Mpa -⨯= 若只有气体及束缚水)/1(10603.169Cg 4Mpa -⨯=26. Pb=23.324(Mpa )27. Pd 2=18.231(Mpa ) 28. 该地层为CaCl 2水型29. 本题可编程上机计算,结果如下2084998.014696.1123.64461g B P P -+-='30. 经编程上机运算,有 (1)Y=2.039492+0.09387455P (2)33005.1Bt =31. 经编程上机运算,得整理后的相对体积系数35. (1)We 1=3.0267×105(m 3)(2)We 1=6.5392×105(m 3) (3)Np=6.85462×105(m 3) 36. 原油的地址储量N=3.452×108(m 3)在P=11.032MPa 下: We=0.121×108(m 3) 在P=8.963MPa 下: We=0.453×108(m 3) 在P=6.895MPa 下:累积采油量Np=0.999×108(m 3)第二章 储层流体的物理性质二. 计算题1 (1)Vp=2.356(cm 3) (2)φ=16.319% (3)f ρ=2.2191(g/cm 3)2 (1)K=66.667×10-3(μm 2) (2)Q=0.0444(cm 3/s )3 (1)K L =16.956(μm 2) (2)Kg=17.586(μm 2)对比计算结果,对同一岩样,气测渗透率大于液测渗透率。
4 K=4.575(μm 2) 5 Q=804.90(m 3/D ) 6 K ∞=3×10-3(μm 2) 7 K=0.761μm 2 8 Pe=14.527Mpa 9. (1) Φ=28.58% (2)K=0.248(×10-3μm 2 ) 10. (1)修井前()2310066.250m K μ-⨯=(2)修井后()2310402.70m K μ-⨯=11.()2310012.125m K μ-⨯= 12. ()2310438m K μ-⨯= 13.(1)%33.21=φ()231067.276m K μ-⨯= (2) %7.21=φ(3) ()2310623.263m K μ-⨯=14.(1) ()231080m K μ-⨯= (2) ()2310375.134m K μ-⨯= (3) ()2310900.29m K μ-⨯= (4) ()2310375.134m K μ-⨯= 15.(1)裂缝岩石的渗透率()2303084m K μ=(2) 圆形孔道岩石的渗透率()21413m K μ= 16.(1)φKr 8=(2)()m r n r n r n r n r μ422221142241110⨯++=17.(1)23108.1m K μ-⨯= (2)()m r μ3.17= (3)()32/064.0cm cm S = 18 .(1)5268.0=w S (2)4354.0=o S (3)0378.0=g S 19.(1) 436.0=o S 392.0=w S (2) 073.0=g S 20.(1) 3042.0=w S (2) 6885.0=o S (3)φ=0.36188 21.(1)()吨81064.2⨯=N(2)%42.43=η22.(1)C=16.056()MPa /1104-⨯ (2)()3m 728.13=弹N 23.(1)N=7.17()31110m ⨯(2) ()31110596539.5m N p ⨯=第三章 储层岩石的渗流特性二:计算题1. 解:2=0.1092W 附(J/m )2. 解:(1)毛管插在水中 1 1.287()h cm = 212.867()h cm = 3128.667()h cm = (2)毛管插在油水体系中123 4.486()44.865()448.647()h cm h cm h cm ===(3)毛管插在油中1230.579()5.970()57.898()h cm h cm h cm ===对比这三题的结果可见:(1) 流体一定,毛管半径越小,则液面上升高度越大; (2) 毛管半径一定,ow w o h h h >>。
3. 解:水滴要运动时外加压差 =232()P Pa △4. 解:气泡通过窄口所引起的压力差)(MPa 101896.4P 4-⨯=∆5. 解:211h g r R σρ⎛⎫=- ⎪⎝⎭ 6. 解:2cos 11h gr R σθρ⎛⎫=- ⎪⎝⎭7. 解:润湿指数0.812ω=视接触角arccos0.81235.790θ==< 因而岩样亲水。
8. 解:22220.01875(m )0.0075(m )0.02625(m )0.067(m )/0.01875/0.0670.280/0.0075/0.0670.112/0.40o w o w ro o rw w rw ro k k k k k k k k k k k k ==+=======∴=μμμ<μ9解: (1)323232010(m )12.810(m )o w k k --=⨯=⨯μμ(2)0127.0krw 3168.0kro ==(3)32113211/32010/250.0128(m )/12.810/0.80.016(m )0.016/0.0128 1.25o o o w w w wo k mPa s K mPa s M λλλλ------==⨯=••==⨯=••===μμμμ10 解:211211/0.06/0.0154(m )/0.25/1.250.2(m )/4/0.220g g g o o o g o K mPa s K mPa s λλλλ----===••===••==μμμμ 11.解:(1)当岩样为非湿相饱和50%时:0.0595()cow P MPa =此时相应的油柱高度:h=14.886(m) (2) 引起水的驱替所需要的油柱高度为: h=3.192m12.解:50c P 所对应的油柱高度为 5028.846()h m = 13.解:所对应的油柱高度为:h=21.749(m)14.解:所求换算系数为39.55m/Mpa 。
15 解:油水过渡带厚度为:h1-h2=26.66(m) 油水界面位置:-3180+3=-3177(m )16.解:欲使半径为0.005cm 的液滴通过半径为0.002cm 的狭窄通道时,所需的压差为:=1200()P Pa △压力梯度:/=12()MPa P L m△17.解:气泡通过此孔隙时需要的压差为: 0.04()P MPa =△此压差相应的油柱高度为h=4.71(m) 18.解:(1)该剖面的含水饱和度为32w S =% (2) 绘图略19. 解:过渡带顶部到自由水面的相对深度h1=13.86(m) 油水界面到自由水面的深度h2=0.62(m) 20.解:Rp=980.99(Nm 3/m 3)21 (1) P T =0.008MPa ; P C50=0.015MPa; S Wi =20% 22 (1) P T1=0.013MPa; P T2=0.03MPa; P C50(1)=0.25MPa; P C50(2)=3.5MPa; S wmin(1)=7.83%; S wmin(2)=19.35%. r 1=4.74um; r 2=0.53um.若以r 50为平均孔隙半径,则; r 1=2.45um; r 2=0.09um. (3) a. r max(1)=49.03um; r max(2)=24.52um. b. r max(1)=56.57um; r max(2)=24.51um.23 P T =0.1MPa; P c50=13MPa; S wmin =20%; r 50=0.028um 。
12.0=r (um )24 2444.0=η29 (2)由图可见:平衡饱和度约为0.59;平衡相对渗透率约为0.048.30 (1)518.542rw ro=K K e -11.513Sw(2)31.(3)a=1249.1 , b=16.093(4)Kro=0.44 ,Krw=0.11 地下fw=0.556 ,地面fw=0.64132.(1)59.8% ,0.2 (3)Soi=0.75 ,Sor=0.05,m ax η=93.3% (4)a=2517.82 ,b=13.076。