磁导率
- 格式:doc
- 大小:255.97 KB
- 文档页数:16
磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。
物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。
对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。
然而铁磁质的μr可以大至几万。
非铁磁性物质的μ近似等于μ0。
而铁磁性物质的磁导率很高,μ>>μ0。
铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。
空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。
所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。
所以用铜裹住铁并不能阻断磁力,而且是远远不能。
在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。
直截了当地讲,磁场无处不在,是不能阻断的。
只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性能,因此可用于导磁,也可用于隔磁(本质上还是导磁)。
磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。
常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
目录1简介2常用参数3功能4方法原理1简介磁导率μ等于磁介质中磁感应强度B与磁场强度H之比,即μ=dB / dH通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0相对磁导率μr与磁化率χ的关系是:μr=1+χ磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。
磁导率温度1 什么是磁导率磁导率是指材料在磁场中的磁化程度,是一个描述材料磁性的物理量。
磁导率用符号表示为μ,在国际单位制中,磁导率的单位是亨利/米(H/m)。
2 磁导率的分类磁导率可分为高磁导率和低磁导率两种。
高磁导率的材料磁化程度较高,易于磁化,而低磁导率的材料则相反,磁化程度较低,难以磁化。
3 磁导率与温度的关系随着温度的变化,不同材料的磁导率也会发生变化。
一般来说,磁导率随着温度的升高而减小。
这是因为随着温度的升高,材料内部的热运动会增加,从而使磁矩的方向更加混乱,减弱材料的磁化程度。
4 材料的磁导率对电子设备的影响材料的磁导率对电子设备的影响非常大。
例如,在变压器和电感器等元件中,需要使用高磁导率的材料来增强电流的磁场,从而达到调节电压和电流的目的。
而在磁随机存取存储器(MRAM)等器件中,则需要使用低磁导率的材料来减小磁场的信号衰减,从而实现高速读写操作。
5 磁导率与磁性材料的选择选择合适的磁性材料对于实现高性能的磁性器件至关重要。
在选择磁性材料时,磁导率是重要的因素之一。
高磁导率的材料在磁场中易于磁化,但也容易受到磁场的扰动和削弱;而低磁导率的材料则在磁场中不易受到扰动,具有良好的磁信号保持能力,但其磁化难度较大,需要更高的磁场强度。
6 结论总之,磁导率在磁性材料的选择和电子设备的设计中起着重要的作用。
随着材料的温度升高,磁导率会减小,这为材料的选择和器件的设计提出了挑战。
未来,随着新磁材料的不断发展和应用,在高性能磁场器件领域中将有更广泛的应用。
磁芯磁导率
磁芯的磁导率是一个物质对磁场的响应能力的量度,表示了材料在磁场中的导磁能力。
磁导率常用符号为μ,单位是亨利每米(H/m)。
磁导率可以分为相对磁导率和绝对磁导率两种。
相对磁导率是指某一材料在给定磁场中的磁导率相对于真空中的磁导率的比值。
相对磁导率可以用来描述材料对磁场的响应情况,表征材料的磁性能。
在电磁学中常用符号μr表示。
绝对磁导率则是指某一材料在给定磁场中的磁感应强度与磁场强度的比值。
绝对磁导率可以用来计算材料各向异性的导磁性能。
在电磁学中常用符号μ表示。
值得注意的是,磁导率和磁性之间虽然有密切联系,但并不是所有磁性材料的磁导率都相同。
不同类型的磁性材料有不同的磁导率,且随着外部磁场强度和频率的变化,磁导率也会有所不同。
常见磁珠的磁导率
1.硬磁珠(例如氧化铁磁珠,氧化钕磁珠):硬磁珠具有较
高的磁导率,通常在几百到几千之间。
这种材料可以在外加磁
场的作用下保持较强的磁化状态,具备较高的磁性。
2.软磁珠(例如氧化铁磁珠,氧化镍磁珠):软磁珠具有较
低的磁导率,通常在几十到几百之间。
这种材料在外加磁场的
作用下易于磁化,但在取消磁场后会迅速返回无磁状态。
3.纳米磁珠:由于纳米颗粒的尺寸效应,纳米磁珠的磁导率
通常较高,而且对外界磁场的响应更加敏感。
纳米磁珠在生物
医学、磁性分离等领域具有广泛应用。
4.金属磁珠(例如铁磁珠):金属磁珠的磁导率通常较高,
可以达到几百到几千之间。
金属磁珠通常具有较强的磁性,适
用于磁性分离、磁共振成像等应用。
需要注意的是,不同厂家制造的磁珠可能具有不同的磁导率,因此具体的数值可能会有所不同。
此外,磁导率还受到温度、
磁场强度等因素的影响,因此在具体应用中需要根据实际情况
进行选择和使用。
磁导率单位换算磁导率是描述物质对磁场的响应能力的物理量,它反映了物质中磁感应强度与磁场强度之间的关系。
磁导率的单位是亨利每米(H/m),表示在单位长度内,单位磁场强度下,物质中的磁感应强度的变化情况。
在科学研究和工程应用中,常常需要进行磁导率单位的换算。
磁导率的换算涉及到不同单位之间的转换,下面将介绍几种常用的磁导率单位及其换算关系。
1. 亨每安每米(H/A·m)亨每安每米是磁感应强度和磁场强度之间的比值,常用于计算电感的大小。
换算关系如下:1 H/A·m = 1 H/m2. 纳每安每米(nH/A·m)纳每安每米是亨每安每米的十亿分之一,常用于计算微弱磁场中的磁感应强度。
换算关系如下:1 nH/A·m = 10^-9 H/A·m3. 特斯拉(T)特斯拉是国际单位制中磁感应强度的基本单位,表示单位面积上的磁通量密度。
换算关系如下:1 T = 1 H/m4. 高斯(G)高斯是非国际单位制中磁感应强度的常用单位,换算关系如下:1 T = 10^4 G磁导率单位的换算可以通过上述关系进行计算,下面举例说明:例1:将磁导率由亨每安每米换算为特斯拉。
解:由于1 H/A·m = 1 H/m,所以磁导率的换算关系为1 H/A·m = 1 T。
例2:将磁导率由亨每安每米换算为高斯。
解:由于1 H/A·m = 1 H/m,所以磁导率的换算关系为1 H/A·m = 10^4 G。
例3:将磁导率由高斯换算为特斯拉。
解:由于1 T = 10^4 G,所以磁导率的换算关系为1 T = 10^4 G。
通过上述例子可以看出,磁导率单位的换算是基于不同单位之间的换算关系进行的。
在实际应用中,我们常常需要根据具体问题选择合适的单位进行计算和表达。
磁导率单位的换算在电磁学、材料科学、电子工程等领域具有重要的应用价值。
通过磁导率单位的换算,我们可以更好地理解和描述磁场与物质之间的相互作用过程,为科学研究和工程技术提供有力支撑。
透磁率和磁导率
透磁率和磁导率是电磁学中的两个重要概念,它们都与材料的导磁能力有关。
磁导率,通常表示为μ,是材料响应外加磁场而获得的磁化强度的量度。
它描述了材料被磁化的难易程度,即材料的导磁能力。
磁导率的倒数被称为磁阻。
在SI单位中,磁导率以每米亨利(H/m)或等效的牛顿每安培平方(N/A²)为单位进行测量。
磁导率常数μ0,也称为磁常数或自由空间的磁导率,是在经典真空中形成磁场时磁感应强度与磁化力之间的比例关系。
而透磁率,有时也被称为磁导率,但可能更多地用于描述磁场穿过材料的能力。
然而,这个术语的具体定义和用法可能因领域和文献的不同而有所差异。
总的来说,磁导率和透磁率都是描述材料导磁能力的物理量,但它们的具体定义和用法可能因上下文的不同而有所变化。
在理解和应用这两个概念时,需要注意它们的具体定义和用法。
磁导率变化规律总结磁导率是一种描述物质对磁场的响应程度的物理量,它与物质的性质、温度、磁场强度等因素有关。
本文主要介绍了磁导率的定义、分类、测量方法和变化规律,以及磁导率对工程应用的影响和意义。
一、磁导率的定义和分类1.1 磁导率的定义磁导率是一种描述物质对磁场的响应程度的物理量,它是由物质中的原子或分子的磁矩产生的附加磁场与外加磁场之比。
数学上,磁导率可以表示为:μ=B H其中,B是物质中的总磁感应强度,H是外加磁场强度。
在国际单位制中,磁导率的单位是亨利每米(H/m)。
1.2 磁导率的分类根据物质对磁场的响应方式,可以将物质分为三类:顺磁性、反磁性和铁磁性。
顺磁性物质:当外加磁场时,物质中的原子或分子的磁矩会与外加磁场方向一致,从而产生一个增强外加磁场的附加磁场。
顺磁性物质的磁导率大于零,但远小于1。
例如,氧气、铝、钛等。
反磁性物质:当外加磁场时,物质中的原子或分子的磁矩会与外加磁场方向相反,从而产生一个削弱外加磁场的附加磁场。
反磁性物质的磁导率小于零,但绝对值远小于1。
例如,水、铜、金等。
铁磁性物质:当外加磁场时,物质中存在着一些微观区域(称为魏斯区),它们具有很强的自发磁化现象,即使没有外加磁场,也有一定的剩余磁性。
当外加磁场时,这些魏斯区会尽可能地与外加磁场方向一致,从而产生一个远远大于外加磁场的附加磁场。
铁磁性物质的磁导率远大于1,甚至可以达到几千或几万。
例如,铁、钴、镍等。
二、测量方法测量物质的相对磁导率(即与真空中光速平方之比)有多种方法,其中常用的有下列几种:2.1 悬挂法悬挂法是利用顺(反)磁性物质在非均匀外加磁场中受到力的作用而发生偏转来测量其相对继续写:相对磁导率的方法。
具体步骤如下:将待测样品制成细长条形,并用细丝悬挂在水平方向上。
将两个同极性的永久磁铁放置在样品的两侧,使样品处于非均匀磁场中。
调节磁铁的距离和方向,使样品达到稳定的偏转角度。
用角度测量仪或游标卡尺测量样品的偏转角度。
磁导率 (magnetic permeability) 磁性合金的磁感应强度B与磁场强度H的比值,μ=B/H,又称绝对磁导率,单位为H/m。
分类在工程实用中,磁导率术语都是指相对磁导率,为物质的绝对磁导率μ与磁性常数μ0(又称真空磁导率)的比值,μr=μ/μ0,为无量纲值。
通常“相对”二字及符号下标r都被省去。
磁导率是表示物质受到磁化场H作用时,内部的真磁场相对于H的增加(μ>1)或减少(μ<1)的程度。
在实际应用中,磁导率还因其技术磁化条件的不同而分为多种,其中磁性合金常用的有:(1)起始磁导率μi。
磁中性化的磁性合金,当磁场强度趋近于无限小时磁导率的极限值。
在实际测量中,-般规定某低值条件下的磁导率作为起始磁导率。
(2)最大磁导率μm。
对应基本磁化曲线上各点磁导率的最大值。
(3)微分磁导率μd。
与B-H曲线上某-点的斜率相对应的磁导率μd=dB/dH。
(4)脉冲磁导率μp。
在脉冲磁场的作用下,磁通密度增量△B与磁场强度增量△H的比值,μp=△B/△H。
(5)理想磁导率μid。
磁性合金同时经受-定数值的交流磁场强度(其幅值使材料趋于饱和且波形近似正弦)和给定的直流磁场强度作用,然后将交流磁场强度逐渐降为零,此时磁通密度与相应的直流磁场强度的比值。
这样得到的理想磁导率为所加直流磁场强度的函数。
理想磁导率又称无磁滞磁导率,主要用于弱磁性材料和软磁材料的瑞利区。
(6)复数磁导率μ。
合金中磁通密度B与磁场强度H的复数商,表示B和H在时间相位上不同。
假定B的空间矢量和H的空间矢量是平行的,μ=μ'-jμ''。
这里μ'为复数磁导率的实部,又称弹性磁导率;μ''为复数磁导率的虚部,对应于合金的磁损耗,又称粘性磁导率。
许多应用场合常常要求以串联或并联项表示复数磁导率即μ=μs'-jμs''和1/μ=1/μp'-1/jμp''。
磁导率单位换算
磁导率是描述物质磁性的物理量,通常用符号μ表示,其单位是亨利每米(H/m)。
在国际单位制中,磁导率的单位可以通过基本单位换算得到。
在国际单位制中,磁感应强度的单位是特斯拉(T),电流的单位是安培(A),长度的单位是米(m)。
根据定义,磁导率μ等于磁感应强度B与磁场强度H的比值,即μ=B/H。
因此,磁导率的单位可以表示为:
μ = T / A·m
根据国际单位制的基本单位换算关系,1特斯拉等于1牛/安培·米,1安培等于1库仑/秒,1米等于10的9次方纳米。
因此,磁导率的单位可以进一步表示为:
μ = N / A²·s·m
这个单位可以简化为亨利每米(H/m),因为1亨利等于1牛/安培,1安培等于1库仑/秒,1米等于10的9次方纳米。
因此,磁导率的单位换算关系可以表示为:
1 H/m = 1 T / A·m = 1 N / A²·s·m
在实际应用中,磁导率的单位换算很重要。
例如,在电磁学中,磁导
率是描述材料对磁场的响应能力的重要参数。
不同材料的磁导率不同,可以通过实验测量得到。
在磁性材料的应用中,磁导率的大小和方向
决定了材料的磁性能,对于磁性材料的设计和制造具有重要意义。
总之,磁导率是描述物质磁性的重要物理量,其单位可以通过基本单
位换算得到。
在实际应用中,磁导率的单位换算很重要,对于磁性材
料的设计和制造具有重要意义。
磁导率检测标准磁导率是描述物质对磁场响应的能力的物理量,常用于磁性材料的磁性检测。
磁导率检测标准是为了保证磁导率测量结果准确可靠,从而确保材料的质量和性能。
本文将介绍磁导率检测标准的相关内容。
一、磁导率检测标准的重要性磁导率是磁性材料的重要物理参数,对材料的磁性能和电磁性能有着重要影响。
因此,磁导率检测标准的制定和执行对于材料的质量控制和产品应用具有重要意义。
通过磁导率检测可以判断材料的磁性能、材料成分的纯度、杂质含量以及材料的加工工艺等,为材料的选择和应用提供了依据。
二、磁导率检测标准的制定磁导率检测标准的制定需要考虑多个因素,包括测试方法、测试设备、测试条件等。
国际上常用的磁导率检测方法有静态法和交流法两种。
静态法适用于低频范围内的磁导率测量,交流法适用于高频范围内的磁导率测量。
磁导率检测设备的选择应根据实际需求和材料特性进行合理选择。
测试条件方面,应明确测试温度、磁场强度、频率等参数,并保证测试环境的稳定性和一致性。
三、磁导率检测标准的要求1. 样品制备:样品制备应符合相关的标准规定,确保样品的准备过程不会对磁导率检测结果产生影响。
2. 测试方法:根据实际需求选择合适的测试方法,并确保测试方法的准确性和可重复性。
3. 测试设备:选择适当的测试设备,并确保设备的精度和稳定性,以保证测试结果的准确性。
4. 测试条件:明确测试条件,并保证测试环境的稳定性和一致性。
5. 数据处理:对测试数据进行准确的处理和分析,以获得准确的磁导率值。
6. 结果评定:根据相关的标准或规范,对测试结果进行评定,并确定测试样品的合格与否。
四、磁导率检测标准的应用磁导率检测广泛应用于材料科学、电子工程、磁性材料制备等领域。
在材料科学中,磁导率检测可用于研究材料的磁性能、电磁性能以及相关的物理性质。
在电子工程中,磁导率检测可用于磁性材料的选型和应用,以满足电子器件对磁性材料的要求。
在磁性材料制备中,磁导率检测可用于控制材料的质量和性能,保证产品的稳定性和可靠性。
磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。
物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。
对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr 与1之差的绝对值是0.94×10-5)。
然而铁磁质的μr可以大至几万。
非铁磁性物质的μ近似等于μ0。
而铁磁性物质的磁导率很高,μ>>μ0。
铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。
空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。
所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。
所以用铜裹住铁并不能阻断磁力,而且是远远不能。
在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。
直截了当地讲,磁场无处不在,是不能阻断的。
只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性能,因此可用于导磁,也可用于隔磁(本质上还是导磁)。
磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。
常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。
目录1简介2常用参数3功能4方法原理1简介磁导率μ等于磁介质中磁感应强度B与磁场强度H之比,即μ=dB / dH通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0相对磁导率μr与磁化率χ的关系是:μr=1+χ磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。
对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。
在大多数情况下,导体的相对磁导率等于1.在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。
例如,如果空气(非磁性材料)的磁导率是1,则铁氧体的磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。
涉及磁导率的公式:磁场的能量密度=B^2/2μ在国际单位制(SI)中,相对磁导率μr是无量纲的纯数,磁导率μ的单位是亨利/米(H/m)。
常用的真空磁导率2常用参数(1)初始磁导率μi:是指基本磁化曲线当H→0时的磁导率公式(2)最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即公式(3)饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo。
(4)差分(增量)磁导率μΔ∶μΔ=△B/△H。
ΔB及△H是在(B1,H1)点所取的增量如图1和图2所示。
(5)微分磁导率,μd∶μd=dB /dH,在(B1,H1)点取微分,可得μd。
可知:μ1=B1/H1,μ△=△B /△H,μd=dB1/dH1,三者虽是在同一点上的磁导率,但在数值上是不相等的。
非磁性材料(如铝、木材、玻璃、自由空间)B与H之比为一个常数,用μ。
来表示非磁性材料的的磁导率,即μ。
=1(在CGS单位制中)或μ。
=4πX10o-7(在RMKS 单位制中)。
在众多的材料中,如果自由空间(真空)的μo=1,那△么比1略大的材料称为顺磁性材料(如白金、空气等);比1略小的材料,称为反磁性材料(如银、铜、水等)。
本章介绍的磁性元件μ1是大有用处的。
只有在需要磁屏蔽时,才会用铜等反磁性材料做成屏蔽罩使磁元件的磁不会辐射到空间中去。
下面给出几个常用的参数式:公式(1)有效磁导率μro。
在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。
随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B 值,称为饱和磁感应强度B,。
(3)剩余磁感应强度Br。
磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。
(4)矫顽力Hco。
磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。
公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。
值得注意的是:除了磁导率μ与温度有关系之外,饱和磁感应强度Bs、剩余磁感应强度Br、矫顽力Hc,以及磁心比损耗Pcv(单位重量损耗W/kg)等磁参数,也都与磁心的工作温度有关。
3功能磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁芯材料的磁导率。
所以,磁导率的测试仪器就是电感测试仪。
在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。
例如某些电桥,测试频率为100Hz或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。
至于被测线圈两端的电压是个未知数。
如果用高档的仪器测量电感,例如Agilent 4284A 精密LCR测试仪,不但测试频率可调,而且被测电感线圈两端的电压及磁化电流都是可调的。
了解测试仪器的这些功能,对磁导率的正确测量是大有帮助的。
4方法原理说起磁导率μ的测量,似乎非常简单,在材料样环上随便绕几匝线圈,测其电感,找个公式一算就完了。
其实不然,对同一只样环,用不同仪器,绕不同匝数,加不同电压或者用不同频率都可能测出差别甚远的磁导率来。
造成测试结果差别极大的原因,并非每个测试人员都有精力搞得清楚。
本文主要讨论测试匝数及计算公式不同对磁导率测量的影响。
2.1 计算公式的影响大家知道,测量磁导率μ的方法一般是在样环上绕N匝线圈测其电感L,因为可推得L的表达式为:L=μ0 μN^2A/l (1)所以,由(1)式导出磁导率的计算公式为:μ=Ll/μ0N^2A (2)式中:l为磁心的磁路长度,A为磁心的横截面积。
对于具有矩形截面的环型磁芯,如果把它的平均磁路长度l=π(D+d)/2就当作磁心的磁路长度l,把截面积A=h(D-d)/2,μ0=4π×10-7都代入(2)式得:μ=L(D+d)*10/4Nh(D-d) (3)式中,D为环的外直径,d为内径,h为环的高度,如图2所示。
把环的内径d=D-2a代入(3)式得:μ=L(D-a)*10/4Nha (4)式中:a为环的壁厚。
对于内径较小的环型磁心,内径不如壁厚容易测量,所以用(4)式比较方便。
(4)式与(3)式是等效的,它们的由来是把环的平均磁路长度当成了磁心的磁路长度。
用它们计算出来的磁导率称为材料的环磁导率。
有人说用环型样品测量出来的磁导率就叫环磁导率,这种说法是不正确的。
实际上,环磁导率比材料的真实磁导率要偏高一些,且样环的壁越厚,误差越大。
对于样环来说,在相同安匝数磁动势激励下,磁化场在径向方向上是不均匀的。
越靠近环壁的外侧面,磁场就越弱。
在样环各处磁导率μ不变的条件下,越靠近环壁的外侧,环的磁通密度B就越低。
为了消除这种不均匀磁化对测量的影响,我们把样环看成是由无穷多个半径为r,壁厚无限薄为dr的薄壁环组成。
根据(1)式,可写出每个薄壁环产生的电感dL为:(5)由(5)式对r从内半径r1到外半径r2积分,既得到整个样环产生的电感L:(6)由(6)式导出计算磁导率的精确公式为:(7)为了便于实际应用,可把(7)式化为;(8)上式中:D为样环外径,d为内径。
把自然对数换为常用对数,(8)式被化为:如果样环是由同一种材料组成,则用(7)、(8)或(9)式计算出来的磁导率就是其材料的真正磁导率μ。
它比其环磁导率略低一些。
2.2 测试线圈匝数N的影响由于电感L与匝数N2成正比,按理说用(9)式计算出来的磁导率μ不应该再与匝数N 有关系,但实际上却经常有关系。
关于材料磁导率的测量,一般使用的测试频率都不高,经常在1kHz或10kHz的频率测试。
测试信号一般都是使用正弦信号,因为频率不高,样环绕组线圈阻抗的电阻部分可忽略不计,把绕组线圈看作一个纯电感L接在测量仪器上。
测试等效电路如图所示,仪器信号源产生的电压有效值为U,Ri为信号源的输出阻抗。
由图3很容易写出磁化电流的表达式:(10)上式中,ω为仪器信号源的角频率,L为样环绕组线圈的电感。
L=μ0μN2Ae /le (11)(11)中,Ae为磁心的有效截面积,le为磁心的有效磁路长度。
如果把环型磁心的Ae和le代入,(11)式就会变为与(6)式的结果相同。
测试电流产生的有效磁场强度峰值Hm为:(12)把(10)式和(11)式都代入(12)式得到:(13)由(13)式可知,当(ωμ0μAe)2N4远小于le2Ri2时,(13)式可近似为:上式告诉我们,测试线圈匝数很少时,测试磁场强度与匝数成正比。
随着匝数的增多,当达到(ωμ0μAe)2N4远大于le2Ri2时,(13)式可近似为:(15)由(15)式可知,测试线圈匝数太多时,测试磁场强度又会与匝数成反比。
从以上分析得知,测量磁导率时,样环中的磁化场强度与测试线圈的匝数有关,当匝数为某一定值时磁场强度就会达到最强值。
而材料的磁导率又与磁化场强密切相关,所以导致磁导率的测量与测试线圈匝数有关。
结合图具体讨论匝数对磁导率测试的影响。
2.2.1测试电压U较低的情况如前所述,对于高档仪器,如Agilent 4284A精密LCR 测试仪,它的测试电压可以调得极低,以至于测试磁场强度随匝数的变化达到最强时,仍然没有超出磁导率的起始区。
这时测得的总是材料的起始磁导率μi,它与测试线圈匝数N无关。
用同一台仪器,如果把测试电压调得比较高,不能再保证不同匝数测得的磁导率都是起始磁导率,这时所测得的磁导率又会与测试线圈匝数有关了。
2.2.2 测试电压U不能调的情况绝大多数测量电感的简便仪器,其测试电压和频率都不能灵活调节。
如2810 LCR电桥,其测试频率为100Hz或1kHz,测试电压小于0.3V。
[1]磁屏蔽编辑把磁导率不同的两种介质放到磁场中,在它们的交界面上磁场要发生突变,这时磁感应强度B的大小和方向都要发生变化,也就是说,引起了磁感线的折射。