电感系数和初始导磁率
- 格式:doc
- 大小:36.00 KB
- 文档页数:2
1.磁场电流产生磁场,在螺线管中,或在磁路中电流的产生的磁场为:在这一个表式中,采用国际单位制,H单位为安培/米(A/m),N为匝数,I为电流,单位安培(A),le 为螺线管或磁路长度,单位为米(m)。
在磁芯中,加正弦波电流,可用有效磁路长度le来计算磁场强度:2.磁通密度、磁极化强度、磁化强度在磁性材料中,加强磁场H时,引起磁通密度变化,其表现为:B为磁通密度,亦称磁感应强度,J称磁极化强度,M称磁化强度,μ0 为真空磁导率,其值为4π×10-7亨利/米(H/m)。
B、J单位 T,H、M单位为A/m,1T=104Gs。
在磁芯中可用有效面积Ae来计算磁通密度:正弦波为:电压单位V,频率单位为Hz,N为匝数,B单位为T,Ae单位为m2。
3.饱和磁通密度、剩余磁化强度、矫顽力B和H的关系除在真空中和在磁性材料中小磁化场下具有线性关系外,一般具有非线性关系,即具有所谓磁滞回线性质:Bs为饱和磁化强度,Br为剩余磁化强度,Hc为矫顽力,Hs为饱和磁化场,不同磁性材料产生的磁滞回线表现形式不一样,Bs、Br、Hc、Hs都不一样4 磁导率我们平常用的大都是相对磁导率,且把脚标 r 省去。
称初始磁导率,它与温度、频率有关。
测量时在一定温度、一定频率、很低的磁通密度(或很小的磁场)、闭合磁路中进行。
在实际测量中,规定:磁场H所产生的磁通密度应小于1mT,一般B为0.1mT,但亦有许多特殊情况,应加以注意。
4)在磁路中存在气隙,即非闭合磁路条件下,测得的磁导率为有效磁导率:g是气隙长度,le是有效磁路长度。
这一表示,仅是小气隙g下的一种近似。
在大气隙下,磁通要穿过气隙的外部,其有效磁导率将大于按上式计算所得之值。
5)在没有偏置磁场的情况下,磁场H较大时,该磁场H产生磁通密度B,则这时,,称振幅磁导率。
6)在具有直流偏置磁场时,再加上一个交流磁场,这时测得的磁导率称为增量磁导率。
在直流迭加状态下测得的电感,计算出的磁导率近似于增量磁导率。
type:分类chip ceramic inductor:陶瓷片式电感external dimensions:外形尺寸materials code:材质代号nominal indutor;公??感量example:例子nominal val:公称值nH:纳亨inductance tolerance:电感公差Hazardous Substance free products:无毒无公害产品bulk package:散装tape reel:编带T:??F:散?Rated Current:?定?流series:系列slef resonant frequency:自振频率(自共振?率)DC resistance:直流电阻tickness:厚度inch:英尺S,R,F:自振频率DCR:直流电阻Ir:额定电流L:电感量Q:品质因素L/Q:测试频率率test freq:测试频率charateristic:特征impedance:阻抗Temp:温度structure:?构Monolithic:整块light :Ultra miniature size:尺寸极度微小Polarity:极性excellent solderability:极好的可焊性radar detectors:雷达检测器circuit current:电路,电流small chip suitable for surface mounting:小型表面可装配FEATURES:features:特征=charateristic APPLICATIONS:application:应用magnet wire:包漆线tinnable magnet wire:直焊漆包线Ferrite:铁spec:说明Isat:饱和电流Irms:额定电流BOBBIN:骨架CLIP:BASE:底部GLUE:胶TIN:锡TAPE:胶带TUBE:管RoHS:限制命令(不准使用有害物?)SMD:表面安装器件HF:Hazard Free 无危险Mohm:莫姆:欧姆的倒数BOM:物料清单DIP:双列直插式组装DFMEA:失效后果分析Diameter:直径Increase增长Overall diameter:外径Termal class:耐热等级*Chip bead:贴片磁珠Common mode choke:共模电感Coating:涂装Material:材质Core side:品名Curie temperature:摄氏度(current,cicurit)*Initial permeability :初始导磁系数Flux den:磁感应强度Loss:亏损uH:微亨Remanence:剩磁Coil Body:内部线圈FERRITE CORE:铁芯CORE:芯COIL:线圈protuberanceProtuberance of the ferrite core 突出铁磁芯Drops 25%:下降Initial value:初始值Mangnetically shielded construction:带磁的屏蔽物Compact and thin :密集和薄MEAS:尺寸Calibrate:校正Primary:基本的Secondary:第二的Trigger:触发Trim:修剪Hide setup:隐形设置Save nom:公称Abs:绝对值Speed:加速Local bias:本地倾向性Impedance mode:阻抗模式Refer to Manual:适用于手工Range auto:自动范围*Typical curve:标准曲线Definitions:定义Introduction:介绍Ferrite crystal:晶体铁氧体IDC:额定电流电感量受:磁芯材料,磁芯形状尺寸,线圈数,线圈形状,线圈大小,一般用微亨为单位标准的电感档位分C+-0.2uH D+-0.5uH F+-1%uh G+-2% H J K SQ=Xl/Re电抗/电阻=2πFL/Re给Q值时必须给于定测试频率SRF自谐频率:电感的分布电容和电感量发生谐振的频率点,整体电感量为0,感抗和容抗相等时,SRF时电感失去储能能力而表现出纯电阻特性。
磁性材料术语解释及计算公式起始磁导率μi初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即μi =01μ× H B ∆∆ ()0→∆H式中μ0为真空磁导率(m H /7104-⨯π) ∆H 为磁场强度的变化率(A/m )∆B 为磁感应强度的变化率(T )有效磁导率μe在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表示磁芯的性能。
e μ =AeLe N L 20⋅μ 式中 L 为装有磁芯的线圈的电感量(H )N 为线圈匝数Le 为有效磁路长度(m )Ae 为有效截面积 (m 2)饱和磁通密度Bs (T )磁化到饱和状态的磁通密度。
见图1。
HcH图 1剩余磁通密度Br(T)从饱和状态去除磁场后,剩余的磁通密度。
见图1。
矫顽力Hc(A/m)从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁感应强度减为零,此时的磁场强度称为矫顽力。
见图1。
损耗因子tanδ损耗系数是磁滞损耗、涡流损耗和剩余损耗三者之和。
tanδ= tanδh + tanδe + tanδr式中tanδh为磁滞损耗系数tanδe为涡流损耗系数tanδr为剩余损耗系数相对损耗因子 tanδ/μi比损耗因子是损耗系数与与磁导率之比:tanδ/μi(适用于材料)tanδ/μe(适用于磁路中含有气隙的磁芯)品质因数 Q品质因数为损耗因子的倒数: Q = 1/ tan δ温度系数αμ( 1/K)温度系数为T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量:αμ=112μμ-μ.12T T 1- 式中μ1为温度为T1时的磁导率μ2为温度为T2时的磁导率 相对温度系数αμr(1/K)温度系数和磁导率之比,即αμr = 2112μμ-μ.12T T 1- 减落系数 DF在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 DF = 212121μ1T T log μμ⨯- (T2>T1) μ1为退磁后T1分钟的磁导率μ2为退磁后T2分钟的磁导率居里温度Tc (℃)在该温度时材料由铁磁性(或亚铁磁)转变为顺磁性,见图2。
磁导率初始磁导率如果没有别的因素限制,那么磁导率肯定越高越好。
磁导率高,意味着所需要的线圈圈数可以很少,变压器和电感器的体积可以很小。
但现实是:磁导率越高,磁感应强度越高,而磁芯材料所能工作的磁感应强度围是有限的,所以有时候我们不得不设法减小有效磁导率,以避免磁芯饱和AC滤波器的选择就灵活了.流过电流通常不大,没那么多要求,磁导率可以在10-12K都OK.相同的磁密, 储能密度与磁导率呈反比, 电感如果是储能用, 那么就选低u的. 如果是作磁放, 那得选高u矩磁.变压器, 原则上磁导率用大些, 以利于减小励磁电流, 励磁电流分量并不能传递到次级, 因此要越小越好. 但是也不是盲目的大, 太大也不好, 如磁集成LLC便需要具有相当大的励磁电流. 要求磁导率适中选用较高磁导率的铁氧体磁芯,磁感应强度就会越大,这样所要求的线圈匝数就会越小,变压器体积就会相对更小。
磁导率高了,同样的电感量可以用更小的磁芯;但是,更容易饱和。
所以,要计算选择高μ值的铁氧体,绕制匝数可能会少点,但是得注意电感量以及饱和问题。
如果对质量因素有要求的话,绕线匝数也不是越少越好。
μ高的材料在同样尺寸、同样匝数的情况下,肯定电感量大。
电感量大在大电流的情况下,反向电压就高,磁通密度也就上升了,磁心就容易饱和了软磁材料为什么磁导率越高,能量存储越小E=VB²/2uE=uH²/2容量总会有限,导磁率高,励磁功率就小,用来做变压器是很好的,但作电流泵(flyback)用就不太适合了。
几句话讲明白,电感的能量为什么绝大部分存在气隙中?电路磁路电动势磁动势电阻磁阻电流磁通量的砖不但引出来很多玉,最后还能引出相声段子。
百家争鸣的确好,各抒己见,越辩越明。
73楼greendot给出的式子很好,相当有说服力,为了更清楚明白的表示,我又更调理的写出来了,如下最后一项左侧是磁芯的,右侧是气隙的能量,很明显,只要lg>>MPL/ur,那么绝大部分能量是在气隙中的。
磁导率和电感量的关系英文回答:Inductance (L) is a measure of a circuit's ability to store magnetic energy. It is directly proportional to the magnetic flux (Φ) produced by the current flowing through the circuit and inversely proportional to the current (I) itself:L = Φ/I.Permeability (μ) is a measure of a material's ability to conduct magnetic flux. It is defined as the ratio of the magnetic flux density (B) to the magnetic field intensity (H):μ = B/H.The relationship between inductance and permeability is evident when considering the magnetic energy (W) stored inan inductor:W = (1/2)LI^2。
Substituting the expression for inductance (L = Φ/I) into this equation, we get:W = (1/2)ΦI.Now, substituting the expression for magnetic flux (Φ = μH) into this equation, we get:W = (1/2)μH^2。
This equation shows that the magnetic energy stored in an inductor is directly proportional to the permeability of the core material. Therefore, materials with higher permeability will have higher inductance.中文回答:电感量 (L) 是衡量电路存储磁能能力的指标。
电力电子电路常用磁芯元件的设计一、常用磁性材料的基本知识磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。
磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。
1.低碳钢低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。
硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。
磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。
这种材料大多应用于低频场合,工频磁性元件常用这种材料。
2.铁氧体随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。
铁氧体是一种暗灰色或者黑色的陶瓷材料。
铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。
这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。
铁氧体材料非常容易磁化,并且具有相当高的电阻率。
这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。
高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。
比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。
但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。
3.粉芯材料粉芯材料是将一些合金原料研磨成精细的粉末状颗粒,然后在这些颗粒的表面覆盖上一层绝缘物质(它用来控制气隙的尺寸,并且降低涡流损耗),最后这些粉末在高压下形成各种磁芯形状。
有效导磁率在测试变压器铁芯导磁率的时候,一般都是通过测试变压器线圈电感量的方法来测试变压器铁芯的导磁率;这种测试方法实际上就是测试电感线圈的交流阻抗;然而用来代表介质属性的导磁率并不是一个常数,而是一个非线性函数,它不但与介质以及磁场强度有关,而且与温度还有关。
我们在前面(2-11)式和(2-12)式中,已经介绍过脉冲变压器的脉冲导磁率和开关变压器平均导磁率的概念。
脉冲变压器的脉冲导磁率由下式表示:(2-11)式中,称为脉冲静态磁化系数,或脉冲变压器的脉冲导磁率;为脉冲变压器铁芯中的磁通密度增量;为脉冲变压器铁芯中的磁场强度增量。
(2-12)式中,为开关变压器的平均导磁率;为开关变压器铁芯中的平均磁通密度增量;为开关变压器铁芯中的平均磁场强度增量。
在一定程度上来说,开关变压器也属于脉冲变压器,因为它们输入的都是电压脉冲;但一般脉冲变压器输入脉冲电压的幅度以及宽度基本上都是固定的,并且是单极性电压脉冲,其磁滞回线的面积相对来说很小,因此,变压器的脉冲导磁率几乎可以看成是一个常数。
而开关变压器输入脉冲电压的幅度以及宽度一般都不是固定的,其磁滞回线的面积相对来说变化比较大,铁芯导磁率的变化范围也比较大,特别是双激式开关变压器,因此,只能用平均导磁率的概念来描述。
如果不是特别强调脉冲变压器输入电压为单极性脉冲电压,并且输入脉冲电压的幅度以及宽度基本上都是固定的;那么,利用(2-11)式来计算开关变压器平均导磁率也未尝不可;因为,人们在测量开关变压器平均导磁率的时候,不可能用很多不同幅度和宽度的脉冲电压,分别对开关变压器逐一进行测试,然后再把测试结果取平均值。
我们可以试想,如果在众多用来测试的不同幅度和宽度的电压脉冲之中,我们只选出其中一组,其幅度和宽度都是在这些测试电压脉冲之中比较偏中的,那么,用(2-11)式的测试结果来代替(2-12)式的结果,实际上不会有很大的区别。
这样,反而使得对变压器平均导磁率的测量变得简单。
初始磁导率的单位-概述说明以及解释1.引言1.1 概述磁导率是描述磁性材料对磁场的响应能力的物理量。
它是一个重要的磁性特性,用于衡量材料对外加磁场的感应程度。
在磁场作用下,磁性材料会发生磁化现象,即磁场的引导效应。
磁导率是用来描述这种磁化现象的强度和程度的因子。
磁导率衡量了材料对磁场的响应能力,即表明了磁感应强度和磁场强度之间的关系。
磁导率数值越大,表示材料对外加磁场的响应越强烈,即磁性材料的磁化程度较高。
磁导率的单位通常使用国际单位制中的安培每米(A/m)表示。
在物理学和工程领域中,磁导率的概念被广泛应用于磁性材料的研究和应用中。
通过对磁导率的测量和分析,科学家和工程师可以了解材料在不同磁场中的行为,对材料进行性能评估和优化设计。
总结而言,磁导率是描述磁性材料对磁场响应能力的物理量,它的单位是安培每米(A/m)。
通过磁导率的测量和分析,可以深入研究材料的磁性质,并为材料的设计和应用提供指导。
在接下来的正文中,我们将详细介绍磁导率的单位和其在磁性材料中的应用。
1.2文章结构文章结构部分的内容可以包括以下内容:在本部分中,将介绍文章的整体结构和各个部分的主要内容。
首先,本文将包括引言、正文和结论三个主要部分。
引言部分将提供对本文主题的概述,说明文章的目的和重要性。
正文部分将深入探讨磁导率的定义、性质以及相关的数学公式和理论知识。
在正文部分中,将着重介绍磁导率的单位,包括国际单位制中的定义、符号以及常用的换算关系。
此外,也将简要介绍一些磁导率单位的历史背景和应用领域。
最后,在结论部分将对本文的主要内容进行总结,并提出一些结论和展望。
值得注意的是,本文将通过详细的解释和实例,为读者提供对磁导率单位的深入理解和应用能力的提升。
同时,本文将采用清晰的逻辑结构和简明扼要的语言,使读者能够轻松理解和消化文章的内容。
通过以上介绍,读者将能够清晰地了解本文的结构和各个部分的内容,为后续的阅读和理解提供指导。
接下来,将进入正文部分,详细介绍什么是磁导率。
电力电子电路常用磁芯元件的设计一、常用磁性材料的基本知识磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。
磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。
1.低碳钢低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。
硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。
磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。
这种材料大多应用于低频场合,工频磁性元件常用这种材料。
2.铁氧体随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。
铁氧体是一种暗灰色或者黑色的陶瓷材料。
铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。
这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。
铁氧体材料非常容易磁化,并且具有相当高的电阻率。
这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。
高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。
比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。
但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。
3.粉芯材料粉芯材料是将一些合金原料研磨成精细的粉末状颗粒,然后在这些颗粒的表面覆盖上一层绝缘物质(它用来控制气隙的尺寸,并且降低涡流损耗),最后这些粉末在高压下形成各种磁芯形状。
电子元器件系列知识--------电感电感组件的分类概述:凡是能产生电感作用的原件统称为电感原件,常用的电感组件有固定电感器,阻流圈,电视机永行线性线圈,行,帧振荡线圈,偏转线圈,录音机上的磁头,延迟线等。
1 固定电感器 :一般采用带引线的软磁工字磁芯,电感可做在10-22000uh之间,Q值控制在40左右。
2 阻流圈:他是具有一定电感得线圈,其用途是为了防止某些频率的高频电流通过,如整流电路的滤波阻流圈,电视上的行阻流圈等。
3 行线性线圈:用于和偏转线圈串联,调节行线性。
由工字磁芯线圈和恒磁块组成,一般彩电用直流电流1.5A电感116-194uh频率:2.52MHZ4 行振荡线圈:由骨架,线圈,调节杆,螺纹磁芯组成。
一般电感为5mh调节量大于+-10mh.电感线圈的品质因子和固有电容 :(1)电感量及精度线圈电感量的大小,主要决定于线圈的直径、匝数及有无铁芯等。
电感线圈的用途不同,所需的电感量也不同。
例如,在高频电路中,线圈的电感量一般为0.1uH—100Ho 电感量的精度,即实际电感量与要求电感量间的误差,对它的要求视用途而定。
对振荡线圈要求较高,为o.2-o.5%。
对耦合线圈和高频扼流圈要求较低,允许10—15%。
对于某些要求电感量精度很高的场合,一般只能在绕制后用仪器测试,通过调节靠近边沿的线匝间距离或线圈中的磁芯位置来实现o(2)线圈的品质因子品质因子Q用来表示线圈损耗的大小,高频线圈通常为50—300。
对调谐回路线圈的Q 值要求较高,用高Q值的线圈与电容组成的谐振电路有更好的谐振特性;用低Q值线圈与电容组成的谐振电路,其谐振特性不明显。
对耦合线圈,要求可低一些,对高频扼流圈和低频扼流圈,则无要求。
Q值的大小,影响回路的选择性、效率、滤波特性以及频率的稳定性。
一般均希望Q值大,但提高线圈的Q值并不是一件容易的事,因此应根据实际使用场合、对线圈Q值提出适当的要求。
线圈的品质因子为:Q=ωL/R式中:ω——工作角频;L——线圈的电感量;R——线圈的总损耗电阻线圈的总损耗电阻,它是由直流电阻、高频电阻(由集肤效应和邻近效应引起)介质损耗等所组成。
一文让你看懂电感磁芯材料展开全文1、磁芯材料基本概念ui值磁芯的初始透磁率,表示材料对于磁力线的容纳与传导能力。
(ui=B/H)AL值:电感系数。
表CORE成品所具备的帮助线圈产生电感的能力。
其数值等于单匝电感值,单位是nH/N2。
磁滞回线:1﹕B-H CURVES (磁滞曲线)Bms:饱和磁束密度,表示材料在磁化过程中,磁束密度趋于饱和状态的物理量,磁感应强度单位﹕特斯拉=104高斯。
我们对磁芯材料慢慢外加电流,磁通密度(磁感应强度)也会跟着增加,当电流加至某一程度时我们会发现磁通密度会增加很慢,而且会趋近一渐进线,当趋近这一渐进线时这个时候的磁通密度我们就称为的饱和磁通密度(Bms)Bms高:表明相同的磁通需要较小的横截面积,磁性组件体积小。
Brms:残留磁束密度,也叫剩余磁束密度,表示材料在磁化过程结束以后,外磁场消失,而材料内部依然尚存少量磁力线的特性。
Hms:能够使材料达到磁饱和状态的最小外磁场强度,单位﹕A/m=104/2π奥斯特。
Hc:矫顽力,也叫保持力,是磁化过程结束以后,外磁场消失,因残留磁束密度而引起的剩余磁场强度。
因为剩余磁场的方向与磁化方向一致,所以,必须施加反向的外部磁场,才可以使残留磁束密度减小到零。
从磁滞回线我们可以看出:剩磁大,表示磁芯ui值高。
磁滞回线越倾斜,表示Hms越大磁芯的耐电流大。
矫顽力越大,磁芯的功率损耗大。
铁粉芯:铁粉芯是磁芯材料四氧化三铁的通俗说法,主要成分是氧化铁,价格比较低,饱和磁感应强度在1.4T左右:磁导率范围从22-100,初始磁导率ui值随频率的变化稳定性好,直流电流迭加性能好,但高频下消耗高。
该材料可以从涂装颜色来辨认材质,例如:26材:黄色本体/白色底面,52材:绿色本体/蓝色底面。
该类材料价格便宜,如果感量不很高,该材料是首选。
可以根据感量大小和IDC要求,选择所需材料,8材耐电流最好,26材最差,18材在两者之间,但8材AL值很低。
起始磁导率μi初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即μi =01μ×HB ∆∆ ()0→∆H式中μ0为真空磁导率(m H /7104-⨯π)∆H 为磁场强度的变化率(A/m )∆B 为磁感应强度的变化率(T )有效磁导率μe在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表示磁芯的性能。
e μ =AeLeN L 20⋅μ 式中L 为装有磁芯的线圈的电感量(H ) N 为线圈匝数Le 为有效磁路长度(m ) Ae 为有效截面积 (m 2)饱和磁通密度Bs (T )磁化到饱和状态的磁通密度。
见图1。
HHc图 1剩余磁通密度Br (T )从饱和状态去除磁场后,剩余的磁通密度。
见图1。
矫顽力Hc (A/m )从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁感应强度减为零,此时的磁场强度称为矫顽力。
见图1。
损耗因子tan δ损耗系数是磁滞损耗、涡流损耗和剩余损耗三者之和。
tan δ= tan δh + tan δ e + tan δr 式中tan δh 为磁滞损耗系数 tan δe 为涡流损耗系数 tan δr 为剩余损耗系数相对损耗因子 tan δ/μi比损耗因子是损耗系数与与磁导率之比:tan δ/μi (适用于材料)tan δ/μe (适用于磁路中含有气隙的磁芯)品质因数 Q品质因数为损耗因子的倒数: Q = 1/ tan δ温度系数αμ( 1/K)温度系数为T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量:αμ=112μμ-μ.12T T 1- 式中μ1为温度为T1时的磁导率 μ2为温度为T2时的磁导率相对温度系数αμr(1/K)温度系数和磁导率之比,即αμr =2112μμ-μ.12T T 1-减落系数 DF在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即DF =212121μ1T T log μμ⨯- (T2>T1) μ1为退磁后T1分钟的磁导率 μ2为退磁后T2分钟的磁导率居里温度Tc (℃)在该温度时材料由铁磁性(或亚铁磁)转变为顺磁性,见图2。
磁导率与电感的计算公式
一、磁导率相关知识。
1. 磁导率的定义。
- 磁导率是表示磁介质磁性的物理量。
设磁场强度为H,磁感应强度为B,则磁导率μ=(B)/(H),在国际单位制(SI)中,磁导率的单位是亨利每米(H/m)。
- 对于真空磁导率μ_0 = 4π×10^-7H/m。
2. 相对磁导率。
- 对于某种磁介质,其磁导率μ与真空磁导率μ_0之比称为相对磁导率
μ_r=(μ)/(μ_0)。
- 不同材料的相对磁导率差异很大,例如铁磁材料的相对磁导率μ_r可以达到几百甚至上千,而顺磁材料的相对磁导率略大于1,抗磁材料的相对磁导率略小于1。
二、电感的计算公式。
1. 螺线管电感的计算(长直螺线管近似)
- 对于一个长直螺线管,匝数为N,长度为l,横截面积为S,内部充满磁导率为μ的磁介质。
- 其电感L=frac{μ N^2S}{l}。
2. 环形螺线管电感的计算。
- 对于环形螺线管,平均半径为r,匝数为N,横截面积为S,磁导率为μ。
- 其电感L = frac{μ N^2S}{2π r}。
3. 一般电感计算(基于磁链与电流关系)
- 根据电感的定义L=(varPhi)/(I),其中varPhi是磁链(varPhi = Nφ,φ是单匝线圈的磁通),I是电流。
- 当已知磁场分布时,通过计算磁通φ=∫_SB· dS(S是线圈所包围的面积),进而得到磁链varPhi,从而计算电感L。
电感系数和磁导率的关系电感系数和磁导率是电磁学中重要的物理参数,它们分别描述了材料中的电磁性质和磁性质。
本文将从物理概念和数学公式两方面,深入讨论电感系数和磁导率之间的关系。
电感系数是指介质中的电感效应相对于真空的电感效应的比值,用符号$\mu_r$表示。
它的定义式为:$$\mu_r = \frac{L}{L_0}$$其中,$L$是介质中的电感值,$L_0$是真空中同样尺寸的电感值。
电感值是由电流在线圈中产生的磁场所确定的。
其中,$\mu_0$是真空的磁导率,$\mu_r$是介质的相对磁导率。
磁导率描述了材料对于磁场的响应能力,它与材料的磁性质有关。
电感系数和磁导率具有一定的物理意义。
电感系数描述了介质中电磁场传播速度的减缓,也描述了介质对于电磁场的吸收和反射。
磁导率则描述了介质对于磁场的抑制和放大作用。
电感系数和磁导率之间存在着紧密的关系,它们是相互联系的物理参数。
电感系数和磁导率的关系可以用下面的公式来描述:从上式可以看出,电感系数和磁导率之间通过电感值和真空的磁导率相互联系。
当材料的磁导率增大时,电感率也随之增加;当材料的磁导率较小时,电感率也相应较小。
同时,当两个材料的磁导率不同时,它们的电感系数也会有所不同。
这是因为电感系数与磁导率的乘积给出了该介质的电感。
电感系数和磁导率是电磁学中非常重要的物理参数,它们在实际应用中被广泛地运用。
在电子电路中,电感和电感变压器是基本电路元件之一,电感系数的稳定性和一致性决定了电路性能的好坏。
在通信领域,磁芯材料的磁导率和电感系数是影响天线性能和信号传输质量的关键因素。
在医学成像领域,磁共振成像中使用的磁性线圈和磁性材料,也非常依赖磁导率和电感系数等物理参数。
电感系数和初始导磁率
AL:电感系数。
ui:初始磁导率。
拿一个物体来做比喻,有质量,密度和体积,铁芯有AL,Ui和体积(看成是磁芯大小), 固定的物体一般密度是固定的,体积越大,质量越大;固定的铁芯材质Ui是固定的,体积越大,AL 越大。
ui值决定AL值,可以这样说吗?
不能这么说的绝对。
UA/L就是AL。
也就是说影响AL的还有截面积和磁路长度,ui只与材料有关.而AL不仅与材料有关.而且与尺寸有关.如R5材质.其UI值为5000.但他的AL可以是2000,3000NH等.而且AL值是可以调的.所以.各磁环供货商可以跟据不同要求做出不同的AL值出来.这是我个人的认识.
一般的CORE制造商都会依照国际标准来制作产品,所以其CORE的AL值和UI值也是参照国际标准而制定的。
AL值是可以用公式来计算的,例一个简单的IRON COIL之L值计算公式为:L=AL×N²,其反过来就是AL=L/N²
而ui值也是有公式可套用的:ui={[L(uh)×Le]/(4N²×Ae)}×10³
ui是材料的初始磁导率,是材料固有特性,每种材料都有一个ui值。
AL:磁芯的单匝电感值。
单位nH/N^2。
ui=C1*L/(4πN^2)
C1:磁芯常数,一般磁芯产品目录上有。
N^2,即N的平方
AL=0.4л*μi*Ae/Le
其中μi为初始磁导率Ae为磁芯中柱的横截面积Le为磁路的平均长度
体积大不一定代表AL大.你拿T13*7*5和T16*12*8的AL做比较你就知道了
ui 是初始磁导率,AL 是磁芯的单圈感量,AL值是由磁芯的初始磁导率和其形状尺寸所决定的。
大多磁芯厂家的产品目录上都有详细介绍!
简单的例子:
AL=K*ui与I=U/R类似==>K系数为假设的某个参数。
代表AL值与ui之间的某种关系大家都知道想要提高电流只有提高电压或减小电阻。
如果公式这样写呢?R=U/I如果这样写会不会出现原本是10欧的电阻因为电压的改变而导致电阻的弯化呢?相信大家知道R是材料本身的特性。
不管如何改变U与I其都不会改<不考虑温升而导致的变化>。
ui值与之类似,其亦为材料的一本质特性。
如果一个材料做好之后在同一频率点测试他的ui 值是不会变化的<不考虑应力与温度影响>。
楼主是否碰到客规定了尺寸与电感。
而现在又找不到合适的材料?如果这样那你就要改相同尺寸的其它材料了。
若之前是铁粉芯那就用MPP等材料、NIZN、MNZN也可以如果还不行那就用非晶态的材料。
总有一款能适合你吧!
AL值是具有一定体积和尺寸的磁性材料单圈所产生的电感量,ui值是磁性材料在磁化曲线始端的极限值, 不知道我这样说对不对?请各位多多赐教,谢谢!
1. 在任何情况下,AL值均以在10KHZ的频率下及10高斯(1MT)的AC通量密度峰值为依据。
2. E型磁芯以100T作为测试标准。
单匝电感量=电感量÷匝数平方或AL=L/N*N
ui是初始磁导率,表示磁性材料的材质,与B/H曲线有关,其次与温度,频率等也有关。
AL是电感系数,和你生产的磁心的形状,大小,研磨面的光洁程度等有关,而且AL是可以通过研磨来调整的,当然AL还是与你选用材料的Ui是有关系的.一般的AL=L/n2(n为圈数);Ui与材料有关,一般不受其它因素影响.
转自SIXBROTHER的指教: AL=0.4*3.14*ui*Ae/Le 我根据这个公式算过,结果还蛮接近地。