模式识别发展及现状综述
- 格式:pdf
- 大小:223.61 KB
- 文档页数:4
150数据库技术Database Technology电子技术与软件工程Electronic Technology & Software Engineering1 引言模式识别是人工智能领域的基础技术,以寻找数据模式作为基本问题,以机器识别和感知为基本结果。
模式识别和机器学习作为基本方法在感知数据之外的数据中也有使用,例如在大量数据中搜索信息的数据挖掘学科。
近年来随着计算机技术的快速发展和算法技术的研究,模式识别技术进入了一个新的高速发展期。
无论是模式识别本身的理论和方法,还是应用场景的拓宽,都取得了长足的发展。
2 模式识别基础理论和方法的研究现状模式识别的基础理论主要包括特征学习、分类器、聚类等,为了达到更好分类的目的,研究目标整体为高效性,鲁棒性的改善。
2.1 分类器分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别 [1]。
分类器最热门的就是现在广泛使用的深度学习算法,在整个人工智能领域都取得了很多应用成果,远超先前相关技术。
其作为一种模式识别分析手段,包括卷积神经网络,递归神经网络和无监督预训练三种方法。
其中经典模型“卷积神经网络模型”灵感是来自视觉系统的结构。
关于深度学习的研究虽然基本理论较为固定,但是一直有着算法性能上的特化和改进,偶尔有优化深度学习架构的尝试。
在深度学习架构的优化中,神经网络作为一种更加强大的模型,能对更加丰富的函数簇建模[2]。
此外,在深度学习大框架模型中,可算性理论研究也很多。
这些研究方法有助于提前估算所选择的具体方法和数据范围,提高了效率。
在研究具体问题时,多种分类器合作结果也是常用的,这种运用方式称之为集成学习,其往往也能得到更好的训练结果[3]。
2.2 聚类聚类基本思想是定一个由样本点组成的数据集,通过聚类分成的簇是一组数据集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异,其作为简化计算和加快收敛方式在研究中很常用。
自动识别技术发展现状自动识别技术是指利用计算机视觉、语音识别、自然语言处理等技术实现对文字、图片、声音等媒体数据的智能识别和处理。
随着人工智能和大数据等技术的发展,自动识别技术得到了广泛应用和快速发展。
以下是自动识别技术发展现状的几个方面:一、计算机视觉技术:计算机视觉技术主要应用于图片和视频的自动识别。
通过深度学习、卷积神经网络等技术,计算机能够自动识别图片中的目标物体、人脸特征、文字等,并实现自动分类、自动标注等功能。
同时,计算机视觉技术还被应用于无人驾驶、人脸识别、图像搜索等领域。
二、语音识别技术:语音识别技术可以将语音转化为文字的形式,实现对语音数据的自动识别和处理。
随着深度学习等技术的应用,语音识别技术取得了显著进展,具备了较高的准确率和实时性。
语音识别技术已经广泛应用于智能音箱、语音助手、语音翻译等场景,并且正在逐步渗透到更多领域,如医疗、教育、游戏等。
三、自然语言处理技术:自然语言处理技术可以对文本数据进行智能分析和处理,实现对自然语言的自动理解和回答。
通过自然语言处理技术,计算机可以实现智能问答、文本分类、情感分析等功能。
自然语言处理技术已经广泛应用于智能客服、智能搜索、信息推荐等场景,并在机器翻译、自动摘要、知识图谱等方面取得了重大突破。
四、人机交互技术:人机交互技术是实现人与计算机、机器之间交流和互动的技术。
随着自动识别技术的发展,人机交互技术也在不断创新和完善。
虚拟现实、增强现实技术的兴起,使得人机交互越来越丰富多样化,提供了更加直观、沉浸式的交互体验。
同时,手势识别、眼动识别等新兴技术也在拓展人机交互的边界。
总体来说,自动识别技术在不同领域取得了显著进展,得到了广泛应用。
然而,仍然存在一些挑战和问题,比如对复杂场景的识别能力有待提升,对隐私保护的要求日益增加等。
因此,未来需要进一步加大研发力度,促进自动识别技术的创新和应用,以满足人们对智能化、便利化的需求。
模式识别技术在医学图像处理中的应用随着人工智能和数据处理技术的迅猛发展,模式识别技术在医学图像处理中的应用也越来越广泛。
模式识别技术能够自动分析和识别医学图像中的不同结构和特征,从而提高医生的诊断准确性和效率。
本文将介绍模式识别技术在医学图像处理中的应用现状和未来趋势。
一、什么是模式识别技术?模式识别技术是指通过计算机程序学习识别模式和规律的方法。
在医学图像处理中,模式识别技术可以通过学习和分析医学图像中的特征和结构,自动识别并分类不同类型的组织和病变。
模式识别技术主要包括分类、聚类、降维等算法,可以根据不同领域和应用,选择适合的算法和模型进行医学图像分析。
二、模式识别技术在医学图像处理中的应用现状1. 肿瘤诊断肿瘤的早期诊断对患者的治疗和康复至关重要。
传统的肿瘤诊断主要依靠医生根据医学图像进行判断,但是由于肿瘤形态和位置的复杂性,诊断难度较大。
近年来,利用模式识别技术对医学图像进行分析和诊断的方法得到了广泛的应用。
例如,可以通过模式识别技术自动检测和诊断乳腺癌、肺癌等,从而提高准确性和效率。
2. 心脏病诊断心脏病在现代社会中呈现出愈发严重的趋势。
心脏病的复杂性和多样性是诊断和治疗的主要挑战之一。
而通过模式识别技术对心脏病医学图像的分析和诊断,可以帮助医生准确地评估心脏病的类型和严重程度。
例如,可以利用模式识别技术对心脏病的心血管系统进行分析和诊断,从而判断病情的积极和消极情况。
3. 脑部疾病诊断脑部疾病的复杂性和多样性常常使诊断变得十分困难,而这是一件非常危险的事情,因为不能及时发现的病情可能会造成严重的后果。
现代医学技术和模式识别技术的结合可以帮助医生从医学图像中读取和分析脑部疾病的结构和特征。
例如,可以利用模式识别技术对脑卒中、脑白质病、脑瘤等进行诊断和分类,从而及时发现疾病并选择正确的治疗方案。
三、模式识别技术在医学图像处理中的未来趋势随着科技的不断进步和千禧一代的崛起,人工智能、大数据、云计算等新技术为医学图像处理的发展带来了更多的机会和挑战。
模式识别在门禁系统中的应用现状摘要:人脸识别技术作为模式识别技术之一,在现代自动智能门禁控制系统中应用广泛。
本文主要介绍了人脸识别技术的发展现状,主要原理和技术特征,并搭建了一套基于ARM处理器的人脸识别平台设备。
关键词:人脸识别模式识别门禁系统随着现代科学技术的发展,模式识别技术在门禁安防系统中的应用越来越广阔。
在门禁安防系统中,模式识别(即计算机图像辨识与处理技术)主要应用有人脸识别,指纹识别,车辆牌照识别等方面。
本文重点介绍人脸识别在现代门禁安防系统中的应用。
人脸识别是指利用计算机分析人脸图像,进而从中提取出有效的识别信息,用来辨认身份的一门技术。
人脸作为人类最重要的表达器官,可以向我们提供重要的信息,如性别、种族、情绪、年龄和性格等等,因此人脸识别技术也就必然成为人机交互的重要手段。
在现代科学中,人脸识别的研究已经成为众多学科中的热点问题,计算机技术的发展为人脸识别技术的研究提供了高效的工具。
使用计算机模拟人类大脑的认知过程和相关算法使得人脸识别技术才得以飞速发展,并产生了一系列卓著的成果,在社会各个方面得到了广泛应用,如银行和军事重地的自动门禁系统和监视系统、用于公共安全的嫌疑人识别系统、以及电子商务的网络在线验证、计算机安全防护以及三维动画技术等等。
1 人脸识别在门禁系统应用的基本原理作为生物特征识别技术的一个分支,人脸识别技术在智能门禁系统中,有着重要的应用。
通过人脸识别系统的验证,可以判断用户是否是可以进入,大大增加重要场所的安全性。
以2008年北京奥运会入场时采用的人脸识别系统为例。
该系统事先获取入场券持有者的人脸照片,并提取人脸特征,然后将这些特征输入数据库。
在入场券持有人进入现场时,摄像头会对入场券持有者进行人脸图像采集,并与数据库中的数据进行对比,从而实现人脸身份识别。
以保证场馆的安全。
人脸识别属于生物认证方式。
人脸识别的优势在于其自然性和不被检测个体察觉的特点,这是其他认证方法所无法比拟的。
模式识别技术研究及应用现状分析随着人工智能技术的发展,模式识别技术逐渐成为研究热点。
所谓模式识别,是指通过对大量数据进行学习和分析,从中提取出特征并建立相应的数学模型,最终实现对未知数据的自动识别和分类。
在现代科技、医学、工业、军事等领域,模式识别技术已经得到了广泛应用。
本文将主要从技术原理、应用领域和发展趋势三个方面阐述模式识别技术的研究及应用现状。
一、技术原理模式识别技术主要包括特征提取、模型建立和分类判别三个步骤。
其中,特征提取是模式识别的关键,它通常是通过对数据进行处理和转换,选取最具代表性的特征来描述数据集。
常用的特征提取方法包括傅里叶变换、小波变换、主成分分析等。
模型建立是指根据所选取的特征,构建合适的数学模型,通常采用人工神经网络、支持向量机、决策树等算法。
分类判别是指将未知数据样本归入已知类别的过程,在实际应用中,通常需要通过学习训练样本进行分类器的训练和调优。
二、应用领域模式识别技术在各个领域的应用日益广泛。
以下主要介绍几个领域。
1.医学领域医学影像诊断是目前医学领域中最重要的应用之一。
基于模式识别技术的医学影像分析能够实现对肿瘤、心脏、神经等疾病的诊断和治疗。
此外,模式识别技术还常被用于分析生物信号,如心电图、脑电图、眼电图等,从中提取出有助于诊断的特征。
2.金融领域金融风险控制是模式识别技术在金融领域中的重要应用之一。
基于模式识别技术的风险管理模型能够实现对信用风险、市场风险、操作风险等各种风险的监测和控制。
此外,模式识别技术还可以对市场和投资进行预测和分析,帮助投资者制定出最优化的投资策略。
3.智能制造领域智能制造是将物联网、云计算、大数据等技术应用于制造业的转型升级。
模式识别技术在智能制造中的应用主要包括工业设备故障诊断、工业自动化控制、产品质量检测等。
通过应用模式识别技术,能够实现对制造过程中各环节的监控和自动化控制,从而提高制造效率和产品质量。
三、发展趋势随着数据量的不断增加和计算能力的提高,模式识别技术将有望迎来更广泛的应用。
模式识别的研究现状与发展趋势模式识别是一种利用计算机技术来识别和分类模式或数据的研究领域。
它广泛应用于许多领域,如图像处理、语音识别、自然语言处理等。
在过去几十年中,模式识别经历了快速发展,并取得了许多重要的研究成果。
同时,模式识别领域面临着一些挑战,需要进一步的研究和发展。
目前,模式识别的研究主要集中在以下几个方面:1.特征提取与选择:特征提取是模式识别的关键步骤之一、目前,有许多不同的特征提取方法,如主成分分析(PCA)、线性判别分析(LDA)等。
此外,还有一些新的特征选择方法被提出,如稀疏编码、深度学习等。
研究人员正在努力提高特征提取和选择的效果,以提高模式识别的性能和准确性。
2.分类算法:分类算法是模式识别的核心部分。
目前,有许多不同的分类算法可供选择,如支持向量机(SVM)、神经网络、k近邻算法等。
研究人员正在研究新的分类算法,以提高模式识别的效果。
3.多模态模式识别:多模态模式识别是指利用多种类型的信息(如图像、语音、文本等)进行模式识别的研究。
多模态模式识别在人脸识别、情感分析等领域有广泛应用。
目前,研究人员正在探索更有效的多模态模式识别方法,以提高准确性和鲁棒性。
4.深度学习:深度学习是一种基于神经网络的模式识别方法,近年来取得了很大的突破。
深度学习可以自动从数据中提取特征,并具有极强的表征能力。
它在图像处理、语音识别等领域取得了很好的效果。
未来,深度学习有望在更多应用领域得到广泛应用。
未来,模式识别的发展趋势主要体现在以下几个方面:1.多模态与跨模态模式识别:随着信息技术的发展,多模态数据的应用越来越普遍。
未来的模式识别趋势将更加注重多模态数据的处理和利用,以更全面地理解所研究问题。
2.深度学习的进一步应用:深度学习在模式识别中有着广泛应用的潜力。
未来,研究人员将会进一步探索和发展深度学习的新算法和方法,以提高模式识别的性能。
3.跨学科研究的持续发展:模式识别涉及多个学科领域,如计算机科学、数学、统计学等。
模式识别人工智能论文
模式识别是计算机视觉(CV)领域中重要的研究内容,也是人工智能(AI)领域中关键技术之一、模式识别通过分析不同类型的数据,识别出
其中的模式,以便对输入的特征或材料进行分类和分析。
它被用于更广泛
的计算机视觉应用,如图像分割,图像检索,图像检测,图像建模,图像
深度学习,机器视觉,以及计算机自动控制等应用。
目前,深度学习技术在模式识别领域取得了重大进展。
深度学习模型
具有有效的表示学习能力,可以从大量复杂数据中学习特征,从而更加准
确地预测和分析出数据中的模式。
例如,深度学习模型可以用于图像识别,通过训练模型来学习图像中各个对象的特征,从而可以准确地识别和分类
图像中的对象。
另外,语音识别也可以借助深度学习模型,根据不同语音
的特征,识别出不同的语音。
此外,深度学习模型可以用于识别和分析文本,可以分析文本中的主题,情感,语义等信息。
随着计算机视觉和人工智能的快速发展,模式识别技术也在不断地演
进和创新,提高了视觉计算和人工智能的性能。
模式识别发展及现状综述
目前,模式识别已经成为数据处理和分析技术中一个重要的组成部分,它在不同的应用领域中得到了广泛的应用,比如生物识别,自动机器人,
语音识别等。
模式识别是一种使机器获得能力,以识别和理解事物的能力,它把视觉,听觉,触觉等信息的处理过程变成可实现的机器任务,从而从
大量的信息中提取有用的信息,达到其中一种有意义的目的。
模式识别的研究有着悠久的历史,其发展历程大致可分为四个阶段:
传统模式识别,统计机器学习、深度学习和智能,每一阶段都为模式识别
技术的发展奠定了基础。
传统模式识别可以追溯到1900年以前,主要是通过规则来识别特征
或分类样本。
在传统模式识别阶段,主要有基于特征的模式识别、基于模
型的模式识别和基于结构的模式识别。
基于特征的模式识别主要是提取具
有代表性的特征,并根据特征判断类别之间的差异;基于模型的模式识别
则是根据建立的模型,通过最小二乘法或最小化误差函数,识别特征;基
于结构的模式识别则是抽取数据中的空间结构特征,从而实现类样本的聚
类分离。
随着计算机处理速度的不断提高,统计机器学习技术也取得了很大的
进展。
毕业设计基于模式识别的水果智能分类系统基于模式识别的水果智能分类系统摘要本论文综合运用了数字图像处理,模式识别的理论来构建起一个简单的水果智能分类系统。
实现了在相同条件下拍摄的水果图片的特征提取和种类识别,在此基础上设计出了基于人工神经网络的水果智能分类器,由计算机自动调整神经网络中各个权值,达到水果种类识别的自动化。
数字图像处理对源位图进行了加工,是特征提取的基础。
数字图像处理的理论涉及到彩色图像的灰度化、中值滤波、二值化、轮廓提取、种子填充、轮廓跟踪等。
其中,二值化采用了基本自适应门限的方法。
模式识别包括了特征提取和分类器的设计,是种类识别的关键。
特征提取主要利用了水果的几何特征,反映了水果的大小和形状。
分类器的设计主要采用了人工神经网络的方式来实现,具体说来是利用了神经网络中反向传播算法来进行网络训练,并利用训练结果完成了水果种类的智能识别。
关键词:特征提取人工神经网络二值化基本自适应门限反向传播算法A Intellective System for Fruit ClassificationBased on Pattern RecognitionAbstractIn this paper, we apply the theory of digital image processing and pattern recognition to construct a simply and intellective system for fruit classification based on pattern recognition. We have already fulfilled characteristic withdrew and type recognition for the pictures of fruit which are photographed under the same condition .We have also designed a categorize machine based on artificial neuro-network , which can adjust the weights of neuro-network automatically by computer in order to recognize the type of the fruit.Digital image processing deals with the original bitmap ,which is the basis of characteristic withdrew .The theory of digital image processing refers to the gradation of color image ,median filter ,image binary, outline withdrew ,the seed fills ,outline track and so on. Among them, image binary makes use of the basic auto-adapted threshold method.Pattern recognition involves characteristic withdrew and the design of categorize machine, which are the keys of type recognition. The characteristic withdrew has mainly used fruit's geometry characteristics ,which reflect fruit’s size and shape .The categorize machine is designed by means of artificial neuro-network, which uses the algorithm of Back-Propogation in detail and completes the fruit type intelligent recognition by using the training results. Keywords:characteristic withdrew, artificial neuro-network, image binary, basic auto-adapted threshold, the algorithm of Back-Propogation.目录摘要 (I)Abstract (III)第1章绪论 (6)模式识别的发展情况 (6)模式识别和模式的概念 (6)模式识别的应用 (7)水果智能分类系统的研究情况 (7)国内研究现状 (7)国外研究现状 (8)第2章图像采集 (9)图像采集的几种方法 (9)本课题所采用的图像采集方法 (9)第3章图像预处理 (11)数字图像处理的基本内容 (11)常用的几种图像文件 (11)与设备无关位图 (12)位图的显示 (14)彩色图像的颜色空间转换 (15)彩色图像的灰度化处理 (17)将伪彩色图像转化为灰度图 (17)将24位真彩位图转化为灰度图 (17)中值滤波 (18)图像的二值化处理 (18)基本全局门限 (19)基本自适应门限 (20)第4章图像分割与特征提取 (21)消除小杂质区域面积 (21)二值图像的区域标记 (21)二值图像的小区域消除 (22)消除大杂质区域 (22)轮廓提取 (23)种子填充 (24)消除杂质区域 (25)特征提取简介 (25)本系统的特征提取 (26)特征形成 (26)特征获取 (26)第5章分类器的设计 (28)人工神经网络基础 (28)人工神经元 (28)前馈神经网络 (29)反向传播算法的应用(BP法) (29)数据归一化 (29)BP算法 (30)神经网络设计思路 (32)结论 (34)致谢 (36)参考文献 (35)附录 (32)第1章绪论1.1模式识别的发展情况模式识别[1]诞生于20世纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。
模式识别发展及现状综述xxx(xxxxxxxxxxxxxxxxxxx)摘要[摘要]:通过对模式识别的发展及现状进行调查研究,了解到模式识别的理论和方法在很多科学和技术领域中得到了广泛的应用,极大的推动了人工智能系统的发展,同时扩大了计算机应用的可能性。
模式识别的研究主要集中在研究生物体(包括人)是如何感知对象的,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。
本文详细的阐述了模式识别系统的组成结构以及模式识别的现状并展望了未来的模式识别的发展趋势。
[关键词]:模式识别;模式识别的应用Abstract[Abstract]:through the investigation and Study on the present situation and development of pattern recognition, knowing that the theory and method of pattern recognition has been widely used in many fields of science and technology and greatly promoting the development of artificial intelligence systems as well as expanding the fields of computer applied to.The research of pattern recognition mainly concentrated on the research of the theory and method of pattern recognition which how the organisms(including humans)to perceive objects as well as,in a given task,how to realize the pattern recognition with computer.This paper expounds the present situation and system structure of the pattern recognition as well as prospects the development trend in the future of pattern recognition.[keyword]:pattern recognition;pattern recognition applications1前言模式识别诞生于20世纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。
什么是模式和模式识别呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)[1]。
而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。
经过多年的研究和发展,模式识别技术已广泛被应用于人工智能、计算机工程、机器人学、神经生物学、医学、侦探学以及高能物理、考古学、地质勘探、宇航科学和武器技术等许多重要领域,如语音识别、语音翻译、人脸识别、指纹识别、生物认证技术等。
模式识别的技术对国民经济建设和国防科技发展的重要性已得到了人们的认可和广泛重视。
本文将就模式识别所涉及的基本问题、研究的领域及其当前进展现状进行详细的介绍,并对模式识别的发展趋势进行展望。
2模式识别2.1模式识别系统一个计算机模式识别系统基本上是由三个相互关联而又有明显区别的过程组成的,即数据生成、模式分析和模式分类。
有两种基本的模式识别方法,即统计模式识别方法和结构(句法)模式识别方法,与此相对应的模式识别系统都由两个过程所组成,即设计和实现。
2.2模式识别的一些基本问题。
关于模式识别的一些基本问题主要包括模式类的紧致性、相似与分类、特征的生成。
a模式类的紧致性为了能在某个空间中进行分类,通常假设同一类的各个模式在该空间中组成一个紧致集。
从这个紧致集中的任何一点可以均匀的过度到同一集中的另外一点,而在过渡途中的所有各点都仍然属于这个紧致集即属于同一模式类。
此外当紧致集中各点在任意方向有某些不大的移动时它仍属于这个集合。
b相似与分类模式识别是把具体事物归入某一类的过程。
研究相似与分类这样的认知基本问题,有助于更深入的理解模式识别。
c特征的生成特征是决定相似性与分类的关键。
为了通过学习获得新的特征,我们需要充分的底层次特征。
如果低层次特征足够丰富,通过选择和简单的运算就可以得到高层次的新特征,同时新特征又可以成为更高层次特征的基础。
3模式识别的现状由于模式识别具有广泛的应用价值和发展潜力,因次模式识别受到了人们极大的重视。
尤其是随着现今的计算机及其外部硬件环境的不断提高,科技不断发展,从事模式识别的研究的人员也越来越多。
因此在国内外都有许多政府机构、公司、大学、研究所等正在致力于此领域的研究当中。
目前模式识别已经在天气预报、卫星航空图片解释、工业产品检测、字符识别、语音识别、指纹识别、医学图像分析、数字水印技术等许多方面得到了成功的应用。
比较成熟的模式识别技术如下所述。
3.1语音识别技术模式识别中的一个重要应用是语音识别。
语音识别就是让计算机能听懂人说的话。
语音识别技术正逐步成为信息技术中人机接口的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。
3.1.1模式识别在语音识别应用中的方法。
目前出现的语音识别技术都是基于言语产生的模型,各种模板匹配、多模板聚类、隐含马尔可夫链、神经网络模型等被广泛应用,目前在语音识别领域非常活跃的课题为稳健语音识别、说话人自适应技术、大词汇量关键词识别算法、语音识别的可信度评测算法、基于类的语言模型和自适应语言模型以及深层次的自然语言的理解。
3.2生物认证技术生物认证技术本世纪最受关注的安全认证技术,它的发展是大势所趋。
人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。
国际数据集团(IDC)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100美元的市场规模。
3.2.1模式识别在生物认证技术应用中的方法。
由于化学模式识别对高维数据具有降维、分类和识别等特点,所以在生物认证中得到了广泛的应用。
其主要包括主成分分析、聚类分析、人工神经网络和SIMCA分类法。
3.3数字水印技术90年代以来才在国际上开始发展起来的数字水印技术是最具发展潜力与优势的数字媒体版权保护技术。
IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。
数字水印技术是将一些标识信息(即数字水印)直接嵌入数字载体(包括多媒体、文档、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。
通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。
数字水印是信息隐藏技术的一个重要研究方向。
4模式识别的发展趋势通过对近几年的学术研究进行总结分析可以清楚了解到模式识别在近几年的发展极为迅速,并且以模式识别为基础大力推动了人工智能的发展,并且应用方向越来越广泛。
工业领域尤其是制造业,已成功地使用了人工智能技术。
包括智能设计、虚拟制造、柔性制造、敏捷制造、在线分析、智能调度、仿真和规划等,这些都大大提高了生产效益。
人工智能对经济和金融的影响,专家系统的广泛使用功不可没。
据估计全世界通过这项技术每年可节省10亿美元以上。
例如,股票商利用智能系统辅助其进行分析、判断和决策,信用卡欺诈检侧系统得到普遍应用。
人工智能也渗透进了人们日常生活,如教育、医疗和通信我们已经亲眼目睹、亲身体会到智能技术给日常生活带来的深刻变化,它使得我们周围无处不在的计算机系统具有灵活而友好的多种智能用户界面,使计算机和人的交流更为容易和自然。
带有嵌入式计算机的家用电器的智能化和自动化,把我们从琐碎的家务劳动中解放出来。
人工智能技术帮助我们进行医疗保健帮助我们丰富儿重教育,帮助我们在浩如烟海的因特网中寻找真实、有用的信息,成为默默无闻的好助手它改变了传统的通信方式语。
还有模式识别在各个领域的应用现在也取得较好的成绩,因此模式识别在以后的发展中会被各国重点应用在各个领域当中,方便人们的生活。
以知识为基础的模式识别系统的出现和不断发展,标志着模式识别方法的更加智能化,是日益受到重视的发展方向。
5结语模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们在现拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。
参考文献1赵志宇模式识别系统的工作原理及发展趋势[J].科技风,2010.2刘迪模式识别综述[J].黑龙江科技信息,2012.3王岚,陈晶,王睿,卢小泉几种模式识别方法在生物信息中的应用[J].计算机与应用化学,20074杨海峰,张德祥模式识别理论和技术在语音识别研究中的应用[J].合肥学院学报(自然科学版)20095霍桂利现代模式识别发展的研究与探索[J].河北广播电视大学学报20126斯芸芸嵌入式语音识别系统的设计与实现[J].重庆大学20127李冬梅基于人工神经网络和模式识别方法的地震序列类型早期预测研究[J].中国地震局兰州地震研究所20128Soong F K.A Vector Quantization Approach to Speaker Recognition[C]//Proc of ICASSP-85,Tampa:IEEE,1985:387-390。