目的基因的连接与转化
- 格式:ppt
- 大小:821.50 KB
- 文档页数:14
第2节基因工程的基本操作程序课标内容要求核心素养对接阐明基因工程的基本操作程序主要包括目的基因的筛选与获取、基因表达载体的构建、将目的基因导入受体细胞和目的基因的检测与鉴定。
1。
科学思维:结合生产实例,举例说出基因工程的基本操作程序。
2.科学探究:针对人类生产和生活的某一需求,尝试提出初步的基因工程构想,完成初步设计。
一、目的基因的筛选与获取1.目的基因(1)概念:用于改变受体细胞性状或获得预期表达产物等的基因。
(2)实例:培养转基因抗虫棉用到的目的基因是Bt抗虫蛋白基因.2.筛选合适的目的基因(1)较为有效的方法:从相关的已知结构和功能清晰的基因中进行筛选。
(2)实例:在培育转基因抗虫棉之前,科学家不仅掌握了Bt基因的序列信息,也对Bt基因的表达产物—-Bt抗虫蛋白有了较为深入的了解。
(3)认识基因结构和功能的技术方法:DNA测序技术、遗传序列数据库、序列比对工具。
3.利用PCR获取和扩增目的基因(1)PCR的含义:PCR是聚合酶链式反应的缩写,它是一项根据DNA半保留复制的原理,在体外提供参与DNA复制的各种组分与反应条件,对目的基因的核苷酸序列进行大量复制的技术.(2)条件:DNA模板、分别与两条模板链结合的2种引物、四种脱氧核苷酸、耐高温的DNA聚合酶。
(3)过程:①变性:温度上升到90 ℃以上,目的基因DNA受热变性后解为单链.②复性:温度下降到50 ℃左右时,两种引物通过碱基互补配对与两条单链DNA结合。
③延伸:温度上升到72 ℃左右时,溶液中四种脱氧核苷酸在耐高温的DNA聚合酶的作用下加到引物的3′端合成子链.④重复循环多次。
(4)结果:每次循环后目的基因的量增加一倍,即成指数形式扩增(约为2n)。
二、基因表达载体的构建1.构建基因表达载体的目的(1)使目的基因在受体细胞中稳定存在,并且可以遗传给下一代。
(2)使目的基因能够表达和发挥作用。
2.基因表达载体的组成[填图]3.基因表达载体的构建首先用一定的限制酶切割载体,使它出现一个切口,然后用同种限制酶或能产生相同末端的限制酶切割目的基因的DNA片段,再利用DNA连接酶将目的基因片段拼接到载体的切口处。
题目:目的基因与载体的连接转化及工程菌导入体现并 PCR 验证。
一.实验目的:1.学习目的基因连接转化载体的原理和办法。
2.学习制备感受态细胞并将质粒导入工程菌的原理和办法。
3.学习菌落 PCR 鉴定阳性克隆的办法和环节二.实验原理1.DNA的连接重组:含有相似粘性末端的两段 DNA 分子在 DNA 连接酶的作用下能够连接在一起。
由于相似的粘性末端同一通过碱基互补配对形成一种相对稳定的构造。
连接温度的选择,理论上的最适温度是连接酶的最适温度---37 摄氏度,但是该温度下粘性末端形成的配对构造稳定,因此在室温下(12~16 度)既可最大程度发挥连接酶的活性,又有助于短暂配对构造的稳定。
2.感受态细胞的制备:将快速生长的大肠杆菌置于经低温(0℃)预解决的低渗氯化钙溶液中,便会造成细胞膨胀,同时 Ca2+会使细胞膜磷脂双分子层形成液晶构造,促使细胞外膜与内膜间隙中的部分核酸酶解离开来,离开所在区域,诱导细胞成为感受态细胞,细胞膜通透性发生变化,极易与外源 DNA 相粘附并在细胞表面形成抗脱氧核糖核酸酶的羟基-磷酸钙复合物。
联合其它的二价金属离子(如 Mn、C o)、DMSO 或还原剂等物质解决细菌,则可使转化率提高100~1000 倍。
3.质粒的导入在冰上融化感受态细胞,通过 42 度短暂热激后,由于细胞膜处在液晶态产生裂缝,外源DNA 黏附于细胞表面,而后立刻冰浴,促使细胞膜愈合。
然后将菌体放入适宜的培养基中培养,以增进细胞的愈合恢复。
4.阳性转化的培养基筛选办法。
普通的大肠杆菌难以在含有 Kana 的 LB 培养基上存活繁殖,但由于载体质粒含有 Kana 霉素的抗性基因,因此成功导入载体质粒的大肠杆菌能够在含有 Kana 的 LB 培养基上形成菌落,即转化阳性,但是由于成功导入的质粒不一定携带了目的基因,因此可能会出现伪阳性,故需要进行 PCR 鉴定。
5.菌落PCR的原理通过目的基因的引物进行菌落 PCR,如果菌体成功导入了目的基因,则能够通过 PCR 获取大量目的基因片段,而不含有目的基因的菌落不会扩增出目的基因片段。
获取目的基因片段的方法引言在生物研究中,获取目的基因片段是一项重要的任务。
目的基因片段的获取可以用于基因克隆、基因表达、基因测序等多个领域的研究。
本文将介绍几种常用的方法来获取目的基因片段,包括PCR(聚合酶链式反应)、基因片段合成和基因组编辑等方法。
1. PCR(聚合酶链式反应)PCR是一种常用的方法,通过逐渐扩增目的基因片段。
以下是PCR的步骤:1.设计引物:根据目的基因片段的序列,设计一对引物,分别位于目的基因片段的起始和终止位置。
引物应具有互补性,能够特异性地结合到目的基因片段上。
2.反应体系准备:准备PCR反应体系,包括DNA模板、引物、dNTPs(脱氧核苷酸三磷酸盐)、聚合酶、缓冲液和镁离子等。
根据实验需求,可以添加其他辅助试剂,如引物浓度平衡剂、增强剂等。
3.PCR扩增:将反应体系置于PCR仪中,按照一定的温度程序进行扩增。
PCR的温度程序通常包括变性、退火和延伸阶段。
在变性阶段,DNA双链被变性为单链;在退火阶段,引物与目的基因片段特异性结合;在延伸阶段,聚合酶沿着DNA模板合成新的DNA链。
4.PCR产物检测:扩增反应结束后,可以通过琼脂糖凝胶电泳等方法检测PCR产物。
琼脂糖凝胶电泳可以根据PCR产物的大小和形状来判断是否成功扩增了目的基因片段。
PCR方法具有简单、快速、灵敏的特点,适用于获取较短的目的基因片段。
2. 基因片段合成基因片段合成是通过化学合成的方法来获取目的基因片段。
以下是基因片段合成的步骤:1.设计目的基因片段:根据研究需求,设计目的基因片段的序列。
可以通过计算机软件进行序列设计,优化序列的GC含量、二级结构和启动子等。
2.合成基因片段:将目的基因片段的序列发送给合成公司,由合成公司进行化学合成。
合成公司通常使用固相合成法合成DNA片段。
合成的基因片段可以经过纯化和修饰等步骤,得到高质量的目的基因片段。
3.克隆基因片段:将合成的基因片段与载体进行连接。
可以使用限制性内切酶切割载体和基因片段的末端,然后通过DNA连接酶将基因片段连接到载体上。
基因与载体连接方法及其原理基因与载体连接方法是分子生物学实验中常用的技术,它可以将目的基因或序列插入到合适的载体中,从而实现基因的克隆、表达或功能分析。
基因与载体连接方法主要依赖于DNA连接酶和限制性核酸内切酶的作用,以及DNA片段末端的互补配对。
根据DNA片段末端的性质不同,可以有以下几种基本的连接方法:一、粘性末端连接法粘性末端连接法是最常用的基因与载体连接方法,它利用限制性核酸内切酶在特定的序列上切割DNA,产生带有单链突出端的双链DNA片段,这些突出端称为粘性末端。
粘性末端可以与相同或相似的粘性末端互补配对,形成稳定的双链结构。
然后,DNA连接酶可以在这些配对的粘性末端上催化磷酸二酯键的形成,从而实现DNA片段的连接。
粘性末端连接法的优点是具有较高的特异性和效率,因为只有相同或相似的粘性末端才能配对,而且配对后的结构较为稳定,不易被水解。
粘性末端连接法的缺点是需要选择合适的限制性核酸内切酶来切割目的基因和载体,而且不同的限制性核酸内切酶可能有不同的反应条件和缓冲液,需要进行优化和调节。
粘性末端连接法的具体步骤如下:1. 选择合适的限制性核酸内切酶来切割目的基因和载体。
一般来说,选择能在目的基因两端和载体多克隆位点上切割出相同或相似粘性末端的限制性核酸内切酶。
如果没有这样的限制性核酸内切酶,可以通过引物设计来在目的基因两端添加所需的限制性核酸内切酶位点,然后通过PCR扩增来获取带有粘性末端的目的基因。
2. 配制酶切反应体系,并在适当的温度和时间下进行反应。
一般来说,每个限制性核酸内切酶都有其特定的反应条件和缓冲液,需要按照说明书或厂家推荐进行操作。
如果使用两种或以上的限制性核酸内切酶进行双酶切或多酶切,需要选择能够同时满足所有限制性核酸内切酶反应条件和缓冲液要求的组合,或者进行分步反应,并在每次反应后纯化DNA。
3. 通过琼脂糖凝胶电泳来分离和回收目的基因和载体片段。
一般来说,使用1%~2% 的琼脂糖凝胶电泳可以有效地分离不同大小的DNA片段,并通过紫外光照射来观察DNA条带。
一、实验目的1. 了解转化连接的原理和过程;2. 掌握转化连接的操作步骤;3. 学习检测转化连接结果的方法。
二、实验原理转化连接是指将目的基因与载体连接,并将重组质粒导入受体细胞中,使其在受体细胞内表达目的基因的过程。
转化连接包括DNA连接和转化两个步骤。
1. DNA连接:利用DNA连接酶将目的基因与载体连接,形成重组质粒。
DNA连接酶能够催化两个DNA分子的末端以磷酸二酯键相连,形成完整的DNA分子。
2. 转化:将重组质粒导入受体细胞中,使其在受体细胞内表达目的基因。
转化方法有多种,如电转化、化学转化等。
三、实验材料1. 试剂:DNA连接酶、T4 DNA连接酶缓冲液、dNTPs、DNA分子量标准、限制性内切酶、琼脂糖凝胶电泳试剂等;2. 仪器:PCR仪、凝胶成像系统、紫外可见分光光度计、离心机、移液器等;3. 培养基:LB培养基、氨苄西林等。
四、实验步骤1. 目的基因和载体的制备:利用限制性内切酶分别切割目的基因和载体,获得具有相同黏性末端的DNA片段。
2. DNA连接:将目的基因和载体片段按照一定比例混合,加入DNA连接酶、T4 DNA连接酶缓冲液和dNTPs,在适当的温度下进行连接反应。
3. 重组质粒的制备:将连接反应产物进行PCR扩增,获得目的基因和载体的重组质粒。
4. 重组质粒的鉴定:利用琼脂糖凝胶电泳检测PCR产物,观察重组质粒的分子量是否与预期相符。
5. 转化:将重组质粒转化至受体细胞中,如大肠杆菌。
常用的转化方法有电转化、化学转化等。
6. 转化细胞的培养:将转化后的细胞在含有氨苄西林的LB培养基中培养,以便筛选含有重组质粒的转化细胞。
7. 阳性克隆的筛选:通过PCR或DNA测序等方法,检测转化细胞中是否含有目的基因,筛选出阳性克隆。
五、实验结果与分析1. 重组质粒的制备:通过PCR扩增获得重组质粒,琼脂糖凝胶电泳结果显示,PCR 产物与预期分子量相符。
2. 转化细胞培养:在含有氨苄西林的LB培养基中培养转化细胞,观察细胞生长情况。
第1篇一、实验目的1. 掌握基因连接与转化的基本原理和操作方法。
2. 学习目的基因与载体连接的实验操作步骤。
3. 熟悉转化实验的基本流程,包括感受态细胞的制备、转化、涂布培养和筛选等。
4. 了解基因表达载体的构建和鉴定方法。
二、实验原理基因连接转化实验是基因工程中重要的基本操作之一,其原理主要包括以下几个方面:1. 基因克隆:通过酶切、连接等操作,将目的基因与载体连接起来,构建成重组质粒。
2. 转化:将重组质粒导入宿主细胞,使其在宿主细胞内复制、表达。
3. 筛选:通过选择性培养基和分子生物学方法,筛选出含有目的基因的转化子。
4. 鉴定:对筛选出的转化子进行鉴定,确认其是否含有目的基因。
三、实验材料1. 试剂:限制性内切酶、T4连接酶、DNA连接缓冲液、DNA分子量标准、DNA聚合酶、PCR引物等。
2. 仪器:PCR仪、电泳仪、凝胶成像系统、离心机、移液器、培养箱、超净工作台等。
3. 细胞:感受态细胞(如大肠杆菌DH5α)。
4. 基因组DNA:目的基因片段和载体DNA。
四、实验步骤1. 目的基因片段的制备:采用PCR技术扩增目的基因片段。
2. 载体DNA的制备:提取载体DNA,进行酶切处理。
3. 基因连接:将酶切后的目的基因片段与载体连接。
4. 转化:将连接产物转化感受态细胞。
5. 涂布培养:将转化后的细胞涂布在选择性培养基上,培养过夜。
6. 筛选:挑选生长良好的单克隆菌落进行PCR检测。
7. 鉴定:对PCR检测阳性的菌落进行酶切和测序鉴定。
五、实验结果与分析1. PCR检测结果:根据PCR检测结果,筛选出含有目的基因的转化子。
2. 酶切鉴定:对PCR检测阳性的菌落进行酶切,观察酶切图谱,确认重组质粒是否构建成功。
3. 序列鉴定:对酶切鉴定阳性的菌落进行测序,与目的基因序列进行比对,验证其是否正确。
六、实验总结1. 通过本次实验,掌握了基因连接与转化的基本原理和操作方法。
2. 成功构建了含有目的基因的重组质粒,并对其进行了鉴定。
目的基因的获取方法目的基因的获取方法是生物工程领域中的重要技术之一,它可以帮助科研人员获取特定的基因序列,为基因编辑、转基因技术等研究提供重要的实验基础。
目的基因的获取方法主要包括PCR扩增、基因克隆、基因合成等多种技术手段,下面将对这些方法进行详细介绍。
首先,PCR扩增是一种常用的目的基因获取方法。
PCR(Polymerase Chain Reaction)是一种体外扩增DNA的技术,通过PCR扩增可以快速、高效地获取目的基因序列。
具体操作步骤包括,设计引物、DNA模板提取、PCR反应体系配置、PCR扩增程序设置等。
利用PCR扩增技术,科研人员可以从不同来源的DNA样品中获取目的基因序列,为后续的研究工作奠定基础。
其次,基因克隆也是一种常用的目的基因获取方法。
基因克隆是利用DNA重组技术将目的基因插入到载体DNA中,形成重组DNA分子的过程。
具体操作步骤包括,DNA片段切割、连接反应、转化等。
通过基因克隆技术,科研人员可以将目的基因插入到适当的载体中,实现对目的基因的获取和进一步研究。
此外,基因合成也是一种重要的目的基因获取方法。
基因合成是利用化学合成技术,按照设计的基因序列,通过逐步合成核苷酸,最终获得目的基因序列的过程。
基因合成技术可以克服目的基因长度限制、避免PCR扩增引物设计困难等问题,为获取大片段基因提供了新途径。
综上所述,目的基因的获取方法包括PCR扩增、基因克隆、基因合成等多种技术手段,每种方法都有其特点和适用范围。
科研人员可以根据实际需求,选择合适的方法来获取目的基因序列,为生物工程领域的研究工作提供有力支持。
希望本文介绍的内容能够对相关领域的研究工作有所帮助,也欢迎大家对目的基因获取方法进行进一步探讨和交流。