1931 C.I.E XYZ色域坐标图1931 C.I.E XYZ色域坐标图
- 格式:pdf
- 大小:6.43 MB
- 文档页数:1
CIE 1931色度坐标介绍1. 意义图中的颜色,包括了自然所能得到的颜色。
这是个二维平面空间图,由x-y直角标系统构成的平面。
为了适应人们习惯于在平面坐标系中讨论变量关系,而设计出来的。
在设计出该图的过程中,经过许多数学上的变换和演算。
此图的意义和作用,可以总结成两句话:(1)表示颜色视觉的基本规律。
(2)表示颜色混合与分解的一般规律。
2. 坐标系——x ,y直角坐标系。
x——表示与红色有关的相对量值。
y——表示与绿色有关的相对量值。
z——表示与蓝色有关的相对量值。
并且z=1-(x+y)3. 形状与外形轮廓线形状——舌形,有时候也称“舌形曲线”图。
由舌形外围曲线和底部直线包围起来的闭合区域。
舌形外围曲线——是全部可见光单色光颜色轨迹线,每一点代表某个波长单色光的颜色,波长从390nm到760nm。
在曲线的旁边。
标注了一些特征颜色点的对应波长。
例如图中510nm——520nm——530nm等。
底部直线——连接390nm点到760nm点构成的直线,此线称为紫红线。
4. 色彩这是一个彩色图,区域内的色彩,包括了一切物理上能实现的颜色。
很遗憾的是,很难得真正标准的这种资料,经常由于转印而失真。
5. 应用价值——颜色的定量表示。
用(x,y)的坐标值来表示颜色。
白色应该包含在“颜色”这个概念范围内。
6. 若干个特征点的意义(1)E点—等能白光点的坐标点E点是以三种基色光,以相同的刺激光能量混合而成的。
但三者的光通量并不相等。
E点的CCT=5400K。
(2)A点—CIE规定一种标准白光光源的色度坐标点这是一种纯钨丝灯,色温值CCT=2856。
(3)B点—CIE规定的一种标准光源坐标点B点的CCT=4874K,代表直射日光。
(4)C点—CIE确认的一种标准日光光源坐标点(昼光)C点的CCT=6774K。
(5)D点—有时候也标为D光源称为典型日光,或重组日光;CCT=6500K。
7. 三条特殊线(1)黑体色温轨迹线:在舌形曲线的中部,跨过白色区,有一条向下弯的曲线,这就是黑体色温轨迹线。
色度图波长对应坐标值部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑二、 1931CIE-XYZ标准色度系统所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值和色度坐标r、g、b均变为正值。
<一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色<三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。
它们在图5-27中的色度坐标分别为:从图5-27中可以看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。
因此整个光谱色变成了以XYZ三角形作为色域的域内色。
在XYZ系统中所得到的光谱三刺激值、、、和色度坐标x、y、z将完全变成正值。
经数学变换,两组颜色空间的三刺激值有以下关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………<5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=<0.490r+0.310g+0.200b)/<0.667r+1.132g+1.200b)y=<0.117r+0.812g+0.010b)/<0.667r+1.132g+1.200b)………………(5-9>z=<0.000r+0.010g+0.990b)/<0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,所以,只要知道某一颜色的色度坐标r、g、b,即可以求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。
通过式<5-9)的变换,对光谱色或一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是<0.33,0.33),没有改变。
二、1931CIE-XYZ標準色度系統所謂1931CIE-XYZ系統,就是在RGB系統的基礎上,用數學方法,選用三個理想的原色來代替實際的三原色,從而將CIE-RGB系統中的光譜三刺激值和色度坐標r、g、b均變為正值。
(一)、CIE-RGB系統與CIE-XYZ系統的轉換關係選擇三個理想的原色(三刺激值)X、Y、Z,X代表紅原色,Y代表綠原色,Z代表藍原色,這三個原色不是物理上的真實色,而是虛構的假想色。
它們在圖5-27中的色度坐標分別為:從圖5-27中可以看到由XYZ形成的虛線三角形將整個光譜軌跡包含在內。
因此整個光譜色變成了以XYZ三角形作為色域的域內色。
在XYZ系統中所得到的光譜三刺激值、、、和色度坐標x、y、z將完全變成正值。
經數學變換,兩組顏色空間的三刺激值有以下關係:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B兩組顏色空間色度坐標的相互轉換關係為:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)這就是我們通常用來進行變換的關係式,所以,只要知道某一顏色的色度坐標r、g、b,即可以求出它們在新設想的三原色XYZ顏色空間的的色度坐標x、y、z。
通過式(5-9)的變換,對光譜色或一切自然界的色彩而言,變換後的色度坐標均為正值,而且等能白光的色度坐標仍然是(0.33,0.33),沒有改變。
表5-3是由CIE-RGB系統按表5-2中的數據,由式(5-9)計算的結果。
從表5-3中可以看到所有光譜色度坐標x(l),y(l),z(l)的數值均為正值。
二、1931CIE-XYZ标准色度系统所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB 系统中的光谱三刺激值和色度坐标r、g、b均变为正值。
(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。
它们在图5-27中的色度坐标分别为:r g bX 1.275 -0.278 0.003Y -1.739 2.767 -0.028Z -0.743 0.141 1.602从图5-27中可以看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。
因此整个光谱色变成了以XYZ三角形作为色域的域内色。
在XYZ系统中所得到的光谱三刺激值、、、和色度坐标x、y、z将完全变成正值。
经数学变换,两组颜色空间的三刺激值有以下关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐目标相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,所以,只要知道某一颜色的色度坐标r、g、b,即可以求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。
通过式(5-9)的变换,对光谱色或一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。
表5-3是由CIE-RGB系统按表5-2中的数据,由式(5-9)计算的结果。
CIE 1931 色度图 (2维标准观测)目的这个工程的目的就是证明如何显示一个1931 CIE(Commission International de l'Eclairage 国际照明协会)的色度图,同样还包括1960和1976介绍中对其的改革。
额外地,这个图可以使用1931的2维标准观测来显示,也可以用1964年的10维标准观测来显示,我们还试着解释它们之间的不同。
背景标准观测(Standard Observer)。
CIE标准观测是基于协会和建造者的表格的二维区域。
CIE 1964标准观测是10维的。
引导到1931标准观测的实验只使用了视网膜中的一个小凹槽,覆盖了视野的2维。
1964年附加的标准观测是基于视网膜10维区域的色彩比配实验。
观测忽略了中央的2维点。
当视觉感受被期望为4维时,1964的标准观测就被推荐出来了。
CIE标准观测通常都基于许多实验,这些实验是用少数拥有普通视力的人做出的。
没有真正的观测是也CIE标准观测一样的。
请参考[Judd75, pp. 153-157] or [Billmeyer81, pp.42-45]。
关于新闻组的投递,Danny提出“1964观测有50个观测者左右,而1931只有一打。
1964的工作包括一些外国的已经获得博士学位的同事,但是早期的工作只有包括伦敦附近的一些英国人”。
根据[Foley96, p. 580], 1964的表格并不是普遍为计算机使用的,因为它强调很大的一个颜色区域,这个区域里的大多数颜色并不是图象中能够找到的。
下面的图能够被“标准”表格色度程序显示,当程序被校准了以后尺寸也就正确了。
CIE 1931 2-Degree Field of ViewCIE 1964 10-Degree Field of View要得到附加的CIE1931和1964观测信息,请看[Judd75, p. 155] or [Billmeyer81, p. 42]。
1931CIE-XYZ标准色度系统所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值和色度坐标r、g、b均变为正值。
(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。
它们在图5-27中的色度坐标分别为:r g bX 1.275 -0.278 0.003Y -1.739 2.767 -0.028Z -0.743 0.141 1.602从图5-27中可以看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。
因此整个光谱色变成了以XYZ三角形作为色域的域内色。
在XYZ系统中所得到的光谱三刺激值、、、和色度坐标x、y、z将完全变成正值。
经数学变换,两组颜色空间的三刺激值有以下关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,所以,只要知道某一颜色的色度坐标r、g、b,即可以求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。
通过式(5-9)的变换,对光谱色或一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。
表5-3是由CIE-RGB系统按表5-2中的数据,由式(5-9)计算的结果。
1931CIE-XYZ标准色度系统所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值和色度坐标r、g、b均变为正值。
(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。
它们在图5-27中的色度坐标分别为:从图5-27中可以看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。
因此整个光谱色变成了以XYZ三角形作为色域的域内色。
在XYZ系统中所得到的光谱三刺激值、、、和色度坐标x、y、z将完全变成正值。
经数学变换,两组颜色空间的三刺激值有以下关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,所以,只要知道某一颜色的色度坐标r、g、b,即可以求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。
通过式(5-9)的变换,对光谱色或一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。
表5-3是由CIE-RGB系统按表5-2中的数据,由式(5-9)计算的结果。
从表5-3中可以看到所有光谱色度坐标x(l),y(l),z(l)的数值均为正值。
第四节CIE 标准色度学系统一、CIE1931RGB真实三原色表色系统颜色匹配实验把两个颜色调整到视觉相同的方法叫颜色匹配,颜色匹配实验是利用色光加色来实现的。
图5-24中左方是一块白色屏幕,上方为红R、%f^G、蓝B三原色光,下方为待配色光C,三原色光照射白屏幕的上半部,待配色光照射白屏幕的下半部,白屏幕上下两部分用一黑挡屏隔开,由白屏幕反射出来的光通过小孔抵达右方观察者的眼内。
人眼看到的视场如图右下方所示,视场范围在2。
左右,被分成两部分。
图右上方还有一束光,照射在小孔周围的背景白版上,使视场周围有一圈色光做为背景。
在此实验装置上可以进行一系列的颜色匹配实验。
待配色光可以通过调节上方三原色的强度来混合形成,当视场中的两部分色光相同时,视场中的分界线消失,两部分合为同一视场,此时认为待配色光的光色与三原色光的混合光色达到色匹配。
不同的待配色光达到匹配时三原色光亮度不同,可用颜色方程表示:C=R ( R) +G (G) +B (B) (5-1 )式中C表示待配色光;(R)、( G)、( B)代表产生混合色的红、绿、蓝三原色的单位量;R、G B分别为匹配待配色所需要的红、绿、蓝三原色的数量,称为三刺激值;“ o”表示视觉上相等,即颜色匹配。
图5-24颜色匹配实验(二)、三原色的单位量国际照明委员会(CIE)规定红、绿、蓝三原色的波长分别为700nm> 546.1nm、435.8nm,在颜色匹配实验中,当这三原色光的相对亮度比例为 1.0000 : 4.5907 : 0.0601时就能匹配出等能白光,所以CIE选取这一比例作为红、绿、蓝三原色的单位量,即(R : ( G): ( B) =1 : 1 : 1。
尽管这时三原色的亮度值并不等,但CIE却把每一原色的亮度值作为一个单位看待,所以色光加色法中红、绿、蓝三原色光等比例混合结果为白光,即( R) + (G) + (B) = (W。
(三)、CIE-RGB光谱三刺激值CIE-RGB光谱三刺激值是317位正常视觉者,用CIE规定的红、绿、蓝三原色光,对等能光谱色从380nm到780nm所进行的专门性颜色混合匹配实验得到的。
希望以上资料对你有所帮助,附励志名言3条:1931CIE-XYZ标准色度系统所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值和色度坐标r、g、b均变为正值。
(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。
它们在图5-27中的色度坐标分别为:r g bX 1.275-0.2780.003Y-1.739 2.767-0.028Z-0.7430.141 1.602从图5-27中可以看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。
因此整个光谱色变成了以XYZ三角形作为色域的域内色。
在XYZ系统中所得到的光谱三刺激值、、、和色度坐标x、y、z将完全变成正值。
经数学变换,两组颜色空间的三刺激值有以下关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,所以,只要知道某一颜色的色度坐标r、g、b,即可以求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。
通过式(5-9)的变换,对光谱色或一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。
敬赠
中国影音集成科技展
China Audio&Video Integration Technology Expo (CIT)2011 1931 C.I.E XYZ 色域坐标图是CIE(国际照明委员会)所制定的色彩标准中的关键部分,是视频调校工程师、视频爱好者与发烧友、家庭影院设计工程师等专业人员必不可少的视频调校参考工具。
通过1931 C.I.E XYZ 色域坐标图,就能够掌握显示设备色温坐标点的精确位置,了解显示设备的色彩范围,进而对显示设备作准确细致的调整,获得最理想的色彩表现。
以下更附带包括NTSC、EBU、SMPTE-C 以及ITU-R.709国际色域标准的参照表,让大家能够及时参照显示设备的色彩表现是否达到了国际标准,
更好地掌握显示设备性能表现。
附国际色域标准参照表
显示设备调校必备工具。