2012-2017年高考文科数学真题汇编:数列高考题老师版
- 格式:doc
- 大小:706.07 KB
- 文档页数:10
欢迎共阅数列高考题近几年全国高考文科数学数列部分考题统计及所占分值二.填空题7.[2015.全国I 卷.T13]在数列{}n a 中,1n 1n 2,2a a a +==,n S 为{}n a 的前n 项和。
若-n S =126,则n =. 8.[2014.全国II 卷.T14]数列{}n a 满足121,21n na a a +==-,则1a = 9.[2013.北京卷.T11]若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =;前n 项和n S =。
10.[2012.全国卷.T14]等比数列{}n a 的前n 项和为n S ,若32S 3S 0+=,则公比q = 11.[2012.北京卷.T10]已知{}n a 为等差数列,n S 为其前n 项和,若211=a ,23S a =,则2a =,n S =_______。
12.[2011.北京卷.T12]在等比数列{}n a 中,若141,4,2a a ==则公比q =;12n a a a ++⋯+=.13.[2009.北京卷.T10]若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a =;前8项的和8S =.(用数字作答) 三.解答题14.[2016.全国II 卷.T17](本小题满分12分)等差数列{}n a 其中[]x 表示不超过x 15.[2016.全国III (I )求23,a a ;(II )求{}n a 15.[2016.北京卷已知{}n a (Ⅰ)求{}n a (Ⅱ)设n n c a =16.[2015.北京卷(Ⅰ)求{a (Ⅱ)设等比数列{}n b 满足2337,b a b a ==.问:6b 与数列{}n a 的第几项相等? 17.[2014.全国I 卷.T17](本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
第25课 河中石兽 教学目标 1. 理解实践出真知道的道理。
2. 积累文言词汇,掌握古汉语的意义和用法。
3. 训练阅读浅近文言文的能力。
教学重、难点1. 重点 (1) 积累文言词汇,掌握古汉语的意义和用法。
(2) 训练阅读浅近文言文的能力。
2.难点:理解实践出真知道的道理。
课时划分 二课时 教学投计 第一课时 教学过程 一、预习 1.熟读课文,读准下列加点字的读音。
圮(pǐ)募(mù) 棹(zhào)(fèi) 湮(yān) 啮(niè) 溯(sù)欤(yù)2.查字典,看课文注释,试翻译课文。
二、导语 俗话说:“没有调查,就没有发言权”。
有一则故事记载,某土地庙前石兽因河岸崩塌掉入河中。
十多年后重修山门,寻找石兽,它却不在原落水处,也不在下游。
一位老兵说,应该在上游寻找,依他的话,果然捞出了石兽。
石兽为什么会向上游“跑”呢?今天我们来学习《河中石兽》一文,从中找出答案。
三、正课 1.交流作家作品资料。
作者纪的,字晓岚。
乾隆十九年(1754)进士。
学部渊博,曾任翰林院编修、侍读学士。
因获罪遗戍乌鲁木齐。
释放回京后,任《四库全书》总纂官,编定《四库全书\总目提要》在目录上学上贡献很大。
著有《阅微草堂笔记》等。
本文选自《阅微草堂笔》,是纪昀晚年所作的一部文言笔记小说,题材料妖怪鬼狐为主,但于人事异闻、名物典故等也有记述,内容相当广泛。
2. 朗读课文。
3.就课文不理解的词语质疑。
现在小组内质疑小组不有解决的交全班讨论。
四、课堂小结 1. 古今异义 :古义:一起 二石兽并沉焉。
今义:并列 阅:古义:经历 阅十余今义:阅读 是非木柿 是:古义:代词 这今义:判断词 是 盖:古义:发语词 盖石性坚重 今义:有遮蔽作用的器物 但:古义:只 但矢其一 今义:表转折 但是,却 2. 一词多义 去:岂有为暴涨携之去 离去 西蜀之去南海 距离为:岂能为暴涨携之去 被 必于石下迎水外啮沙为坎穴 成为 橘生于淮南则为橘 是 为其来也 在 3.词性活用 棹 名词用为动词 划船4.汉字能假 同“癫”,疯 五、布置作业 1. 完成课后理解与探究第三题。
2012高考试题分类汇编:5:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2 (C ) 4 (D )8 【答案】A【解析】2231177551616421a a a a a a =⇔=⇔==⨯⇔=。
2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B【解析】因为n n n S S a -=++11,所以由12+=n n a S 得,)(21n n n S S S -=+,整理得123+=n n S S ,所以231=+n n S S ,所以数列}{n S 是以111==a S 为首项,公比23=q 的等比数列,所以1)23(-=n n S ,选B.3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830 【答案】D【解析】由12)1(1-=-++n a a n nn 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a n n ,即1212)1(2++--=++n n a a n n n )(,也有3212)1(13+++--=+++n n a a nn n )(,两式相加得44)1(2321++--=++++++n a a a a nn n n n ,设k 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(14443424141460=+=+++=∑∑=++++=k a a a aS K k k k k K4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24【答案】B 【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
2012高考试题分类汇编:5:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2 (C ) 4 (D )8 【答案】A【解析】2231177551616421a a a a a a =⇔=⇔==⨯⇔=。
2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B【解析】因为n n n S S a -=++11,所以由12+=n n a S 得,)(21n n n S S S -=+,整理得123+=n n S S ,所以231=+n n S S ,所以数列}{n S 是以111==a S 为首项,公比23=q 的等比数列,所以1)23(-=n n S ,选B.3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830 【答案】D【解析】由12)1(1-=-++n a a n n n 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a n n ,即1212)1(2++--=++n n a a n n n )(,也有3212)1(13+++--=+++n n a a nn n )(,两式相加得44)1(2321++--=++++++n a a a a n n n n n ,设k 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(14443424141460=+=+++=∑∑=++++=k a a a aS K k k k k K4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24【答案】B【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
历年高考新课标I 卷试题分类汇编(文)一数列1、(2010年第17题)设等差数列{q }满足4 =5,%。
=一9.(II )求{4}的前,项和S”及使得S 〃最大的序号〃的值。
「+2,/=5 9解:(1)由 am=aI+(.n-1) d 及 ai=5, aw=-9 得 i 4]+9d=_9 解得 t d=—2数列{am }的通项公式为a n =ll-2n o ... 6分(2)由(1)知 Sm=nai+———-d=10n-n 2因为 Sm=-(n-5)2+25. 所以n=5时,Sm 取得最大值。
……12分2、(20H 年第17题)已知等比数列{〃}中,6 =1,公比q = L.1 — </(I ) S 〃为{%}的前〃项和,证明:s n =——2(II ) h n = log 3 67, + log 3 «2 + .. - + log 3 ,求数列2 的通项公式。
(I )证明:因为q=L, q = L 所以数列{祗}的通项式为3 331(1-—)故 s.=T 1—3z IT x. 7J f , 八 八 c 、 n(n + l) .. , 〃(〃 + l) (II ) 解:b n = log 3+ log 3 a 2 + ... + log 3a n =一(1 + 2 + 3+—・ + 〃)=- --- 故a=-- -------- 223、(2012年第12题)数列{6}满足q*+(—l )〃氏=2〃 —1,则{«,}的前60项和为(D ) A. 3690 B. 3660 C. 1845 D. 18304、(2012年第14题)等比数列伯力的前n 项和为数,若S3+3Sz=0,则公比q= -2 ・5、(2013年第6题)设首项为1,公比为错误!未找到引用源。
的等比数列{〃〃}的前〃项和为S 〃,则(D )(A) S n = 2a n — 1 (B) S n = 3(0-2 (C) S 〃=4-3。
实用文档2 012高考试题分类汇编:5:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =(A ) 1 (B )2 (C ) 4 (D )8 【答案】A【解析】2231177551616421a a a a a a =⇔=⇔==⨯⇔=。
2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B【解析】因为n n n S S a -=++11,所以由12+=n n a S 得,)(21n n n S S S -=+,整理得123+=n n S S ,所以231=+n n S S ,所以数列}{n S 是以111==a S 为首项,公比23=q 的等比数列,所以1)23(-=n n S ,选B.3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830 【答案】D实用文档【解析】由12)1(1-=-++n a a n n n 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a n n ,即1212)1(2++--=++n n a a n n n )(,也有3212)1(13+++--=+++n n a a n n n )(,两式相加得44)1(2321++--=++++++n a a a a n n n n n ,设k 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(14443424141460=+=+++=∑∑=++++=k a a a aS K k k k k K4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24 【答案】B 【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
2012高考文科试题解析分类汇编:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2 (C ) 4 (D )8 【答案】A2231177551616421a a a a a a =⇔=⇔==⨯⇔=2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B【命题意图】本试题主要考查了数列中由递推公式求通项公式和数列求和的综合运用。
【解析】由12n n S a +=可知,当1n =时得211122a S == 当2n ≥时,有12n n S a += ① 12n n S a -= ②①-②可得122n n n a a a +=-即132n n a a +=,故该数列是从第二项起以12为首项,以32为公比的等比数列,故数列通项公式为2113()22n n a -⎧⎪=⎨⎪⎩(1)(2)n n =≥,故当2n ≥时,1113(1())3221()3212n n n S ---=+=-当1n =时,11131()2S -==,故选答案B3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830 【答案】D【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题. 【解析】【法1】有题设知21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9,76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=,……∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…,∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,…是首项为8,公差为16的等差数列, ∴{n a }的前60项和为11521581615142⨯+⨯+⨯⨯⨯=1830. 【法2】可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+112341515141010151618302b a a a a S ⨯=+++=⇒=⨯+⨯= 4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24 【答案】B【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
2012年高考文科数学解析分类汇编:数列一、选择题1 .(2012年高考(四川文))设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则=++721a a a ( )A .0B .7C .14D .212 .(2012年高考(上海文))若)(sin sin sin 7727*∈+++=N n S n nπππ ,则在10021,,,S S S 中,正数的 个数是 ( ) A .16.B .72.C .86.D .100.3 .(2012年高考(辽宁文))在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A .12B .16C .20D .244 .(2012年高考(课标文))数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为( )A .3690B .3660C .1845D .18305 .(2012年高考(江西文))观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4 , |x|+|y|=2的不同整数解(x,y)的个数为8, |x|+|y|=3的不同整数解(x,y)的个数为12 .则|x|+|y|=20的不同整数解(x,y)的个数为 ( ) A .76 B .80 C .86 D .926 .(2012年高考(湖北文))定义在(,0)(0,)-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}{},()n n a f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在(,0)(0,)-∞⋃+∞上的如下函数:①2()f x x =;②()2xf x =;③()f x =④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序号为 ( )A .①②B .③④C .①③D .②④7 .(2012年高考(福建文))数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2012S 等于( ) A .1006B .2012C .503D .08 .(2012年高考(大纲文))已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =( )A .12n -B .132n -⎛⎫⎪⎝⎭C .123n -⎛⎫ ⎪⎝⎭D .112n -9 .(2012年高考(北京文))某棵果树前n 年得总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( )A .5B .7C .9D .1110.(2012年高考(北京文))已知{}n a 为等比数列.下面结论中正确的是( )A .1322a a a +≥B .2221322a a a +≥ C .若13a a =,则12a a =D .若31a a >,则42a a >11.(2012年高考(安徽文))公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( )A .1B .2C .4D .8二、填空题12.(2012年高考(重庆文))首项为1,公比为2的等比数列的前4项和4S =______13.(2012年高考(上海文))已知x f =1)(.各项均为正数的数列}{n a 满足11=a ,)(2n n a f a =+.若20122010a a =,则1120a a +的值是_________.14.(2012年高考(辽宁文))已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n+2)=5a n+1 ,则数列{a n }的公比q = _____________________.15.(2012年高考(课标文))等比数列{n a }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 16.(2012年高考(江西文))等比数列{}n a 的前n 项和为n S ,公比不为1。
1
(
+-
100
我国古代数学名著《算法统宗》中有如下问题:增,共灯三百八十一,请问尖头几盏灯?
倍,则塔的顶层共有灯
1
2
(2017·江苏)等比数列
【答案】32【解析】设
).
所以61642128b -=⨯=.由12822n =+,得63n =.所以6b 与数列{}n a 的第63项相等.
37、(2016年全国I 卷)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111
==3
n n n n b b a b b nb +++=1,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和. 解:(I )由已知,1221121,1,,3a b b b b b +===
得1221121
,1,,3
a b b b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-. (II )由(I )和11n n n n a b b nb +++= ,得13n n b b +=
,因此{}n b 是首项为1,公比为1
3
的等比数列.记{}n b 的前n 项和为n S ,则11
1()313.122313
n
n n S --==-⨯- 38、(2016年全国III 卷)已知各项都为正数的数列{}n a 满足11a =,2
11(21)20n
n n n a a a a ++---=. (I )求23,a a ; (II )求{}n a 的通项公式.
39、(2016年全国II 卷)等差数列{n a }中,34574,6a a a a +=+=.
(Ⅰ)求{n a }的通项公式;解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得
121,5a d ==,所以{}n a 的通项公式为23
5
n n a +=
. 40.(2015年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2
2
n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.
【答案】(Ⅰ)2n a n =+;(Ⅱ)2101.
【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首
先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n
n b n =+,故可采取分组求
和法求其前10项和.
试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11
14
3615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.
所以()112n a a n d n =+-=+.
考点:1、等差数列通项公式;2、分组求和法.
41、(2016年北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (Ⅰ)求{a n }的通项公式;(Ⅱ)设c n = a n + b n ,求数列{c n }的前n 项和. 解:(I )等比数列{}n b 的公比329
33b q b =
==,所以211b b q
==,4327b b q ==. 设等差数列{}n a 的公差为d .因为111a b ==,14427a b ==,所以11327d +=,即2d =. 所以21n a n =-(1n =,2,3,⋅⋅⋅).
(II )由(I )知,21n a n =-,13n n b -=.因此1
213n n n n c a b n -=+=-+.
从而数列{}n c 的前n 项和()1
1321133
n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+
()12113213n n n +--=+-学科网
2
31
2
n n -=+.
).(II )项和n S 满足S 121
1
}n a -+的前。