八年级数学上册第四章一次函数4一次函数的应用教案(新版)北师大版
- 格式:doc
- 大小:348.50 KB
- 文档页数:11
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
北师大版数学八年级上册《4.4一次函数的应用》教学设计一. 教材分析北师大版数学八年级上册《4.4一次函数的应用》这一节的内容,主要让学生掌握一次函数在实际生活中的应用,培养学生的实际问题数学化能力。
教材通过生活实例,引导学生认识一次函数在实际生活中的重要性,并通过例题和练习,让学生学会如何用一次函数解决问题。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有一定的认识和理解。
但是,将函数应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用一次函数进行解答。
三. 教学目标1.了解一次函数在实际生活中的应用,培养学生的实际问题数学化能力。
2.学会用一次函数解决实际问题,提高学生的数学应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
四. 教学重难点1.一次函数在实际生活中的应用。
2.如何将实际问题转化为数学问题,并用一次函数解决。
五. 教学方法采用案例教学法,通过生活实例,引导学生认识一次函数在实际生活中的应用,然后通过例题和练习,让学生学会如何用一次函数解决问题。
在教学过程中,注重学生的参与和实践,提高学生的动手能力和实际问题数学化能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备PPT,用于展示和讲解。
3.准备练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过一个生活实例,引出一次函数在实际生活中的应用。
例如,一家商店进行打折活动,打折力度与顾客购买的金额有关,可以设打折力度为一次函数,让学生思考如何表示这个关系。
2.呈现(10分钟)通过PPT,呈现一次函数在实际生活中的其他应用,如温度与海拔的关系、速度与时间的关系等。
引导学生认识到一次函数在生活中的重要性。
3.操练(10分钟)给出一个实际问题,让学生尝试用一次函数解决。
例如,一家工厂的生产成本与生产数量有关,可以设生产成本为一次函数,让学生求解在某一生产数量下的成本。
4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。
北师大版八年级数学上册:4.4《一次函数的应用》教学设计一. 教材分析《一次函数的应用》这一节的内容,主要让学生了解一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
北师大版八年级数学上册的教材,通过生动的实例,引导学生理解一次函数的定义,掌握一次函数的性质,并能够运用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前期内容,对数学知识的接受能力较强。
但是对于一次函数的应用,部分学生可能会觉得抽象难懂,因此,在教学过程中,需要教师通过生动的实例,让学生感受一次函数的实际意义,从而提高学生的学习兴趣和理解能力。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.通过实例,让学生感受数学与生活的紧密联系,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际生活中的应用。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解一次函数的定义和性质,通过实际问题的解决,让学生掌握一次函数的应用。
同时,采用小组合作的学习方式,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例,如购物、出行等问题。
2.准备一次函数的图片或模型,帮助学生直观理解一次函数。
3.准备练习题,巩固学生对一次函数的应用。
七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学知识解决实际问题。
例如,一件商品原价80元,降价20%,求降价后的价格。
让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)呈现一次函数的定义和性质,通过图片或模型,让学生直观理解一次函数。
同时,引导学生发现生活中的线性关系,如速度、时间、路程的关系,加深学生对一次函数的理解。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用一次函数的知识解决问题。
例如,一组选择出行问题,一组选择购物问题。
第四章一次函数4一次函数的应用第1课时确定一次函数表达式教学目标教学反思1.了解确定一次函数的条件,能用待定系数法求出一些简单的一次函数的表达式;2.能通过函数图象获取信息,解决简单的实际问题;3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.教学重难点重点:1.了解确定一次函数的条件;2.能用待定系数法求出一些简单的一次函数的表达式.难点:能利用一次函数解决简单的实际问题.教学过程导入新课知识回顾1.什么是一次函数?什么是正比例函数?2.一次函数的图象是什么?正比例函数的图象呢?3.表示函数的方法有哪些?4.画出y=-2x-4的图象,根据图象回答下列问题:(1)y的值随x值的增大而__________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是_________;(3)判断下列各点是否在函数y=-2x-4的图象上.A(1,-6);B(-3,1)学生思考,给出答案.1.若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.当b=0时,即y=kx,称y是x的正比例函数.2.一次函数的图象是一条直线;正比例函数的图象是过原点的一条直线.3.列表法、图象法和关系式法.4.(1)减小;(2)(-2,0),(0,-4);(3)A.探究新知假定甲、乙二人在一项赛跑中路程与时间的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.想一想:1.确定正比例函数的表达式需要几个条件?(1个)2.确定一次函数的表达式呢?(2个)例1某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?【解】(1)设函数表达式为v=kt (k为常数且k≠0).∵(2,5)在图象上,把点(2,5)的坐标代入,得5=2k,∴ k=2.5,∴v=2.5 t.(2)当t=3s时,v=2.5×3=7.5(m/s).所以下滑3s时物体的速度是7.5 m/s.例2在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,一根弹簧不挂物体时长14.5 cm;当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b(k≠0),由题意,得14.5=b, 16=3k+b,解得b=14.5 ,k=0.5.所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即当所挂物体的质量为4 kg时,弹簧长度为16.5 cm.教师总结:教学反思求一次函数表达式的步骤 :1.设——设一次函数表达式为y =kx +b (k ≠0);2.代——将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解——解方程组求出k ,b 值;4.定——把求出的k ,b 值代回到表达式中即可.像这种求函数表达式的方法叫做待定系数法.课堂练习 1.若一次函数y =2x +b 的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0).2.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)=b ,=k ,所以函数关系式为___________;(2)当x =30时,=y ;(3)当y =30时,=x .3.如图,直线l 是一次函数y =kx +b 的图象,求它的表达式.4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.5.某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费,请根据图象回答下列问题:(1)求出租车的起步价是多少元,并求当x >3时,y 关于x 的函数表达式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.参考答案1.3,5,-1.5教学反思2.(1)2,23-,y =23x -+2 (2)-18 (3)-423.解:y =-3x4.解:设一次函数的表达式为y =kx +b (k ≠0), ∵一次函数y =kx +b 的图象过点(0,2),∴ b =2.∵一次函数的图象与x 轴的交点是2,0k ⎛⎫- ⎪⎝⎭,∴ 12222k⨯-⨯=,解得k =1或-1.∴ 一次函数的表达式为y =x +2或y =-x +2. 5.解:(1)8,y =2x +2;(2)令y =32,则2x +2=32,x =15,∴ 这位乘客乘车的里程为15 km.课堂小结(学生总结,老师点评)用待定系数法确定一次函数表达式的步骤布置作业习题4.5 必做题:第2题 选做题:3,4题任选一题板书设计第四章 一次函数4 一次函数的应用第1课时 确定一次函数表达式用待定系数法确定一次函数表达式的步骤: 1.设—— 设一次函数表达式为y =kx +b (k ≠0);2.代—— 将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解—— 解方程组求出k ,b 值;4.定—— 把求出的k ,b 值代回到表达式中即可.。
第四章一次函数第四节一次函数的应用教案一次函数的应用教案一、教学目标1. 理解一次函数的应用问题,掌握如何将实际问题转化为数学模型。
2. 掌握一次函数的应用方法,能够运用其解决实际问题。
3. 培养学生的数学应用能力,提高学生的逻辑思维和解决问题的能力。
二、教学重点和难点1. 教学重点:一次函数的应用方法和实际应用。
2. 教学难点:将实际问题转化为数学模型,并能够正确运用一次函数解决实际问题。
三、教学过程1. 引入问题:通过实际问题的引入,让学生了解一次函数的应用背景和意义,激发学生解决问题的兴趣。
2. 分析问题:引导学生分析实际问题中的数量关系,将其转化为一次函数的形式,讲解一次函数的应用方法。
3. 探究模型:通过具体问题的解决,让学生了解如何将实际问题转化为数学模型,并能够通过模型求解问题的答案。
4. 拓展应用:举例说明一次函数在实践中的应用,例如,在物理学中的速度-时间问题、经济学中的成本与收益问题等,让学生理解其实际应用的价值。
5. 巩固练习:通过小组讨论、个人作业等方式,让学生进行练习和巩固,加深对知识的理解和掌握。
6. 课堂总结:回顾一次函数的应用方法、实际应用及数学建模的过程,强调其重要性和应用价值。
四、教学方法和手段1. 讲解法:通过讲解一次函数的应用方法和数学建模的过程,使学生理解其基本原理。
2. 实例分析法:通过分析具体问题的例子,帮助学生理解如何运用一次函数解决实际问题。
3. 图像观察法:引导学生观察一次函数的图像,通过观察和分析图像,让学生理解其性质和规律。
4. 小组讨论法:组织学生进行小组讨论,促进相互交流和学习,加深学生对知识的理解和应用。
5. 互动问答法:鼓励学生提出疑问,组织课堂讨论,激发学生的学习热情和参与意识。
五、课堂练习、作业与评价方式1. 基础练习:选择一些基本的应用题,让学生练习一次函数的应用方法和数学建模。
2. 提高练习:给出一些较为复杂的实际问题,让学生在课堂上进行小组讨论并解决。
4.4 一次函数的应用(第1课时)一、学生起点分析本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.二、教学任务分析本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于k、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.本节课的教学目标是:①了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.②经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;③经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.三、教学过程设计本节课设计了六个教学环节:本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结。
北师大版八年级上册4一次函数的应用教学设计教学背景在数学课程中,一次函数是基础中的基础。
本次教学是在北师大版八年级上册第四单元“一次函数”的基础上进行的。
在这个单元中,学生已经学习了一次函数的定义、性质以及图像特征。
而在这里,我们将通过解决实际问题来运用所学的一次函数知识。
教学目标•理解一次函数在实际问题中的应用;•培养学生解决实际问题的能力。
教学重点•学生能够理解一次函数在实际问题中的应用;•学生能够运用一次函数知识解决实际问题。
教学难点•如何运用一次函数知识解决实际问题。
教学内容与方法教学内容1.从实际问题入手理解一次函数;2.运用一次函数知识解决实际问题;3.运用一次函数画出函数图像。
教学方法1.课堂讲解法;2.情境模拟法;3.问题导向法;4.合作学习法;5.计算机辅助教学法。
教学过程与步骤第一步:引入介绍一次函数的定义和性质,并讲解一次函数在实际问题中的应用。
第二步:情境模拟1.提出一次函数的应用情境,如计算百货商品打折后的价格,货物的售价与进价之间的关系等;2.让学生试图从实际情境中理解一次函数,并解决应用问题。
第三步:问题导向1.提出问题,如“某店的销售数据如下,问该店的销售额与时间的关系满足怎样的一次函数?”;2.让学生解决问题,并给予指导。
第四步:计算机辅助教学1.使用Excel制作一个表格,记录商品折扣后的价格;2.使用一次函数公式来推算商品价格;3.让学生通过计算机模拟实际情境,理解一次函数的应用。
第五步:合作学习1.让学生组成小组,在实际情境中解决问题;2.让学生自由讨论并互相交流,以培养学生解决问题的能力。
第六步:总结让学生回顾今天所学的内容,总结一次函数在实际问题中的应用方法和技巧,并可以通过一次函数画出函数图像。
教学评价1.课堂作业,需要运用所学的一次函数知识来解决实际问题;2.小组合作得分,以检验学生解决问题的能力;3.实验室报告,记录和分析使用计算机模拟实际情境的体验和成果。
北师大数学八年级上册《一次函数的应用》教案教学目标:1.了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题;2.经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法.教学重难点:重点:是探究确定一次函数表达式的方法;难点:是将所学的确定一次函数表达式的方法进行灵活运用教法与学法指导:本节课采用了“学导练 当堂清”的教学模式,首先通过对一次函数的复习,提出了本课时的学习任务:通过图像、实际情景和表格来确定一次函数的表达式,关键是真正让小组之间的合作交流起来,发挥集体智慧,通过相互间的合作与交流,发展学生合作交流的能力和数学表达能力;教师通过组织、点拨、引导,促进学生主动探索,积极思考,总结规律,充分发挥学生的主体作用.课前准备:制作课件和导学案;教学过程:一、 问题导入,复习回顾师:1.下列函数中是一次函数的是( )A .y =2x 2-1B .y =-x 1C .y =31 xD .y =3x +2x 2-1 2.什么是一次函数?一次函数定义中要注意什么?3.一次函数图像是什么形状?画一次函数图像至少要几个点?4.一次函数具有什么性质?(学生回答,教师给与及时的评价)师:我们知道,已知一次函数的表达式可以画出函数图像并得到它的有关性质,如果给你函数相关信息,能否求出函数的表达式呢?要确定一次函数表达式需要几个条件呢?今天就让我们一起来探究这个问题。
设计意图:本节主要的内容是确定表达式,以学生已掌握的知识为切入点,提出问题,使学生明确这节课的学习任务.二、 自主学习,合作探究1.通过图像确定正比例函数的表达式师:多媒体显示:某物体沿一个斜坡下滑,它的速度v (米/秒)与其下滑时间t (秒 )的关系如图所示.(1)写出v 与t 之间的关系式;(2)下滑3秒时物体的速度是多少? 分析:首先此函数的图象过原点可知是正比例函数,因此v 与t 满足的关系式为:v =kt .其次点(2,5)在直线上又知这点的坐标满足关系式,把t .=2,v =5代入v =kt .中即可求出k 的值.生:展示合作结果;生1:这道题是某物体速度与下滑时间的关系,2秒时速度为5米/秒,1秒的速度就是2.5米/秒,所以V =2.5t ,当t =3时,V =2.5×3=7.5(米/秒).师征求其他学生意见,然后示范解:(1)设V=kt;∵(2,5)在图象上 ∴5=2k k =2.5 ∴V =2.5t(2) 当t =3时,V =2.5×3=7.5(米/秒).师:大家思考一下,确定正比例函数的表达式只要根据条件求出k 的值就行,那么需要几个条件可以确定k 的值?生2:知道一个点就行.师:实际上就是知道一个自变量和相对应的因变量的值,然后代入关系式,解出k 的值,如何确定一个一次函数的表达式呢?设计意图:由学生参与正比例函数关系式的形成过程,教师应做好应有的预设,就是学生不太可能去用待定系数法去求函数关系式,所以教师允许学生去说自己所想,然后将待定系数的思想渗透到教学中去.2.通过具体情境确定一次函数的表达式师:课件出示“范例导航”例1 在弹性限度内,弹簧的长度y (厘米)是所挂物体的质量x (千克)的一次函数,当所挂物体的质量为0千克时,弹簧长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.分析:生:认真读题后,小组展开讨论,探索出解题思路.然后各个小组派代表回答。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
北师大版八年级数学上册:4.4《一次函数的应用》说课稿一. 教材分析北师大版八年级数学上册4.4《一次函数的应用》这一节的内容,是在学生已经掌握了函数的基本概念、一次函数的定义、图像和性质等知识的基础上进行教学的。
本节课的主要内容是一次函数在实际生活中的应用,通过具体的实例让学生了解一次函数在实际生活中的重要性,提高学生解决实际问题的能力。
教材中给出了几个实际问题,让学生通过列一次函数的关系式来解决问题,从而加深对一次函数的理解和应用。
二. 学情分析八年级的学生已经具备了一定的函数知识,对于一次函数的基本概念和性质有一定的了解。
但是,对于如何将一次函数应用于实际问题中,可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生将理论知识与实际问题相结合,提高他们解决实际问题的能力。
三. 说教学目标1.让学生了解一次函数在实际生活中的应用,提高解决实际问题的能力。
2.通过对实际问题的分析,让学生加深对一次函数的理解。
3.培养学生的数学思维能力和团队协作能力。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数问题,并找出合适的解题方法。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过小组合作、讨论交流的方式进行学习。
同时,我会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个简单的实际问题,引导学生思考如何用数学知识来解决问题。
2.新课讲解:通过PPT展示教材中的实例,引导学生了解一次函数在实际生活中的应用。
3.小组讨论:让学生分组讨论,如何将实际问题转化为一次函数问题,并找出合适的解题方法。
4.总结讲解:对学生的讨论结果进行点评,讲解一次函数在实际问题中的应用方法和技巧。
5.练习巩固:布置一些相关的练习题,让学生巩固所学知识。
6.课堂小结:让学生总结本节课所学的内容,加深对一次函数应用的理解。