推荐-新人教版高中数学 1.2.1《任意角的三角函数》导学案必修四
- 格式:doc
- 大小:327.50 KB
- 文档页数:5
《任意角的三角函数》教案一、教学任务分析知识目标:位圆理解任意角的三角函数的定义;α终边上一点,会求角α的各三角函数值;3.从定义认识三角函数的定义域、函数值的符号,理解诱导公式(一)能力目标:1.理解并掌握任意角的三角函数的定义;2.树立映射观点,正确理解三角函数是以实数为自变量的函数;单问题。
情感目标:1.使学生认识到事物之间是有联系的,三角函数就是角度(实数)与三角函数值(实数)之间的一种对应;2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;二、教学重点、难点教学重点:任意角三角函数(正弦、余弦、正切)的定义教学难点:用单位圆上的点的坐标刻画三角函数。
理解三角函数就是实数与实数之间的一种对应三、教学情景设计问1 你能回忆一下锐角三角函数的定义吗?在AB Rt ∆中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b ===。
从学生原有的认知出发,来认识任意角三角函数的定义。
从角度到实数(三角函数值)之间的对应。
问2 如何用直角坐标系中角的终边上的点的坐标来表示锐角三角函数?引导学生用坐标法来研究锐角三角函数。
以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合。
问3 改变终边上的点的位置,这三个比值会改变?为什么?说明比值与终边上的点的位置无关,只与角α的终边有关。
引导学生利用相似三角形的性质证明。
问4 能否通过取适当的点使表达式简化呢?引出单位圆的定义,三角函数的定义。
体现简约思想,从特殊到一般的思想。
设α是一个任意角,它的终边与单位圆交于点),(y x P ,那么:(1)y 叫做α的正弦,记作αsin ,即y =αsin ;(2)x 叫做α的余弦,记作αcos ,即x =αcos ;(3)x y 叫做α的正切,记作αtan ,即)0(tan ≠=x xy α。
§ 1.2.1 任意角三角函数(1)..…学习目标1. 掌握任意角的正弦,余弦,正切的定义.2. 掌握正弦,余弦,正切函数的定义域和这三种函数的值在各象限的符号.学习过程一、课前准备(预习教材Pn~ P15,找出疑惑之处)在初中,我们利用直角三角形来定义锐角三角函数,你能说出锐角三角函数的定义吗?探探索新知问题1:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?问题2:改变终边上的点的位置这三个比值会改变吗?为什么?问题3:怎样将锐角三角函数推广到任意角?问题4:锐角三角函数的大小仅与角A的大小有关, 与直角三角形的大小无关,任意角的三角函数大小有无类似性质?问题5:随着角的确定,三个比值是否唯一确定?依据函数定义,可以构成一个函数吗?问题6:对于任意角的三角函数思考下列问题:①定义域;②函数值的符号规律③三个函数在坐标轴上的取值情况怎样?④终边相同的角相差2的整数倍,那么这些角的同一三角函数值有何关系?例1已知角的终边经过点P (2,-3), 求2sin cos tanA. (2k ,(2k 1) ) , k ZB. [2k -,(2k 1) ] , k Z2C [k 2,(k 1) ],k Z变式训练⑴:已知角的终边经过点P (2a, -3a ) (a 0),求2sin cos tan 的值.变式训练⑵:角的终边经过点P (-X , -6 )且cos5,求X的值.13例2:确定下列三角函数值的符号7(1) cos 12 (2)s in (-465 o) (3)tan11变式训练⑴:若cos >0且tan <0,试问角为第几象限角变式训练⑵:使sin cos<0成立的角的集合为( )A.k k,k Z12B2k2k,k Z12C.2k 32k 2 ,k Z 2D.2k2k Z122动手试试1、函数、• sin x cosx的定义域是(D. [2k ,(2k 1) ] , k Z2、若B 是第三象限角,且 COS —0,则一是() 2 2 A.第一象限角B.第二象限角C.第三象限角 D •第四象限角3、已知点P ( tan ,cos )在第三象限,则角在 () A 第一象限B •第二象限 C.第三象限D •第四象限三角函数的定义及性质, 特殊角的三角函数值, 三角函数的符号问题 符号规律可概括为:“一正二正弦,三切四余弦” .丄 学习评价探 当堂检测(时量:5分钟 满分:10分)计分:1、若角a 终边上有一点 P(a,|a|)(a R 且a 0),则Sin 的值为J2 &2 A 、二 B 、一二 22— C 土上2D 、以上都不对2 2、下列各式中不成立的一个是() A cos260 0 B 、tan( 1032 ) 06 17C sin 0D 、tan 1^ 0 5 3 3、已知a 终边经过 P( 5,12),则sin .4、若a 是第二象限角,则点 A(sin ,cos )是第 几 ____________ 象限的点4、已知 sin tan> 0,则的取值集合为 各象限的三角函数的5、已知角0的终边在直线y = x 上,3贝H sin 0 = _______ ; tan = ___________ .7、(1)已知角 的终边经过点P(4, — 3),求2sin +cos 的值; (2)已知角 的终边经过点 P(4a, — 3a)(a 丰0),求2sin +cos(3)已知角 终边上一点P 与x 轴的距离和与y 轴的距离之比为3 : 4 (且均不为零), 求2sin +cos 的值. 尹课后作业6、设角x 的终边不在坐标轴上,求函数 sin x cosx tanx |sinx| | cosx| |tanx| 的值域• 的值;。
1.2.1 任意角的三角函数(一)学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.知识点一 任意角的三角函数使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=yr ,cos α=x r ,tan α=y x.思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变?答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x. 梳理 (1)单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ;②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二正弦、余弦、正切函数的定义域思考对于任意角α,sin α,cos α,tan α都有意义吗?答案由三角函数的定义可知,对于任意角α,sin α,cos α都有意义,而当角α的终边在y轴上时,任取一点P,其横坐标x都为0,此时yx无意义,故tan α无意义.梳理三角函数的定义域知识点三正弦、余弦、正切函数值在各象限的符号思考根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=yx.当α为第一象限角时,y>0,x>0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点四诱导公式一思考当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案它们的终边重合.由三角函数的定义知,它们的三角函数值相等.梳理诱导公式一类型一 三角函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3. 当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3. 反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应地三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=yr,cos α=xr.当已知α的终边上一点求α的三角函数值时,用该方法更方便. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值. 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则x =k ,y =-3k ,r = k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r=-3k10k=-31010,1cos α=r x =10k k =10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10k k=-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b2,cos α=a a 2+b2,tan α=ba. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值. 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12,tan α=3aa= 3.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3.类型二 三角函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 D解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴点P 在第四象限,故选D. (2)确定下列各三角函数值的符号. ①sin 182°;②cos(-43°);③tan 7π4.解 ①∵182°是第三象限角, ∴sin 182°是负的,符号是“-”. ②∵-43°是第四象限角,∴cos(-43°)是正的,符号是“+”. ③∵7π4是第四象限角,∴tan 7π4是负的,符号是“-”.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 (1)已知点P (tan α,cos α)在第三象限,则α是第 象限角. 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. (2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4·tan 5. 解 ①∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. ②∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0. 类型三 诱导公式一的应用 例4 求下列各式的值.(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值. (1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+tan 765°-cos 360°. 解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C.-35D.-45答案 D解析 由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.故选D.2.cos(-11π6)等于( )A.12B.-12C.32D.-32答案 C解析 cos(-11π6)=cos(-2π+π6)=cos π6=32.3.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A.-34B.34C.43D.-43答案 D 解析 ∵cos α=332+y 2=35, ∴32+y 2=5,∴y 2=16, ∵y <0,∴y =-4,∴tan α=-43.4.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A.1B.0C.2D.-2答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.5.已知角α的终边上有一点P (24k ,7k ),k ≠0,求sin α,cos α,tan α的值. 解 当k >0时,令x =24k ,y =7k , 则有r =(24k )2+(7k )2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.当k <0时,令x =24k ,y =7k ,则有r =-25k ,∴sin α=y r =-725,cos α=x r =-2425,tan α=y x =724.1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.终边相同的三角函数值一定相等,但两个角的某一个函数值相等,不一定有角的终边相同,更不一定有两角相等.课时作业一、选择题1.sin(-1 380°)的值为( ) A.-12B.12C.-32D.32答案 D解析 sin(-1 380°)=sin(-360°×4+60°) =sin 60°=32. 2.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A. 3 B.± 3 C.- 2D.- 3答案 D解析 ∵cos α=x r=x x 2+5=24x , ∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 3.已知sin θ<0,且tan θ<0,则θ为( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角答案 D4.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.4π3D.11π6答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限, 且tan α=cos2π3sin2π3=-33,∴角α的最小正值为2π-π6=11π6. 5.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t 等于( )A.-916B.916C.34D.-34答案 A解析 sin(2k π+α)=sin α=-35<0,则α的终边在第三或第四象限.又点P 的横坐标为正数,所以α是第四象限角,所以t <0.又sin α=4t 9+16t2,则4t9+16t 2=-35,所以t =-916.6.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ) A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 由三角函数定义可得Q ⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3,cos 2π3=-12,sin 2π3=32.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角.8.若角α的终边在直线y =-2x 上,则sin α等于( ) A.±15B.±55C.±255D.±12答案 C 二、填空题9.tan 405°-sin 450°+cos 750°= . 答案32解析 tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 10.使得lg(cos αtan α)有意义的角α是第 象限角. 答案 一或二解析 要使原式有意义,需cos αtan α>0, 即需cos α,tan α同号,所以α是第一或第二象限角.11.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .答案 2解析 ∵y =3x 且sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∴|OP |=m 2+n 2=10|m | =-10m =10,∴m =-1,n =-3,∴m -n =2.12.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是 . 答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0,sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题13.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4; (2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°.解 (1)原式=sin 32π+cos π2+cos π+1 =-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan(3×360°+45°)=a 2+b 2+2ab tan 45°=a 2+b 2+2ab =(a +b )2.四、探究与拓展14.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ= .答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0),∴tan θ=-1x. 又tan θ=-x ,∴x 2=1,即x =±1.当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.15.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝ ⎛⎭⎪⎫35,m ,求m 的值及sin α的值. 解 (1)∵1|sin α|=-1sin α, ∴sin α<0.①∵lg(cos α)有意义,∴cos α>0.② 由①②得角α在第四象限.(2)∵点M (35,m )在单位圆上, ∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,∴m <0,∴m =-45. 由三角函数定义知,sin α=-45.。
1.2.1任意角的三角函数(二)[学习目标]1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.3.能利用三角函数线解决一些简单的三角函数问题.【温故知新】思考1:图1-2-1在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y)那么:(1)y叫做α的正弦,记作sin_α,即sin α=y;(2)x叫做α的余弦,记作cos_α,即cos α=x;(3)yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).【知识总结1】三角函数的定义域正弦函数y=sin x的定义域是R;余弦函数y=cos x的定义域是R;正切函数y=tanx的定义域是{x|x∈R且x≠kπ+π2,k∈Z}.思考2:在平面直角坐标系中,任意角α的终边与单位圆交于点P,过P作PM⊥x轴,过A(1,0)作AT⊥x轴,交终边或其反向延长线于点T,如图所示:结合三角函数的定义,你能得到sin α,cos α,tan α与MP,OM,AT的关系吗?【提示】可以,sin α=|MP|,cos α=|OM|,tan α=|AT|.【知识总结】1.有向线段:带有方向的线段.2.三角函数线:图1-2-3:3.三角函数的定义域正弦函数y=sin x的定义域是R;余弦函数y=cos x的定义域是R;正切函数y=tan x的定义域是{x|x∈R且x≠kπ+π2,k∈Z}.【例题详解】知识点一利用三角函数线比较大小【例1】分别作出2π3和4π5的正弦线、余弦线和正切线,并比较sin2π3和sin4π5,cos2π3和cos 4π5,tan2π3和tan4π5的大小.规律方法利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.【变式训练】1.比较sin 1 155°与sin(-1 654°)的大小.2.用三角函数线比较sin 1和cos 1的大小,结果是_______________.3.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin34π;(2)cos 23π________cos34π;(3)tan 23π________tan34π.答案(1)>(2)>(3)<知识点二利用三角函数线解不等式【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1)sin θ≥32;(2)-12≤cos θ<32.规律方法用单位圆中的三角函数线求解简单的三角不等式,应注意以下两点:(1)先找到“正值”区间,即0~2π间满足条件的角θ的范围,然后再加上周期;(2)注意区间是开区间还是闭区间.【变式训练】1.(·聊城高一检测)如果π4<α<π2,那么下列不等式成立的是()A.cos α<sin α<tan αB.tan α<sin α<cos αC.sin α<cos α<tan αD.cos α<tan α<sin α2.利用三角函数线比较下列各组数的大小:(1)sin 2π3与sin4π5;(2)tan2π3与tan4π5;(3)cos2π3与cos4π5.3.用三角函数线证明:|sin α|+|cos α|≥1【证明】当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,而余弦线(正弦线)的长等于r(r=1).所以|sin α|+|cos α|=1.当角α的终边落在四个象限时,如图,利用三角形两边之和大于第三边有|sin α|+|cos α|=|MP|+|OM|>1综上有|sin α|+|cos α|≥1.4已知点P(sin α-cos α,tan α)在第一象限,若α∈[0,2π),求α的取值范围.知识点三 利用三角函数线求定义域【例3】 求函数f (x )=1-2cos x +ln ⎝ ⎛⎭⎪⎫sin x -22的定义域.规律方法 求三角函数定义域时,一般应转化为求不等式(组)的解的问题.利用数轴或三角函数线是解三角不等式常用的方法.解多个三角不等式时,先在单位圆中作出使每个不等式成立的角的范围,再取公共部分. 【变式训练】1. 求函数f (x )=lg(3-4sin 2x )的定义域.2.求满足y =sin x ·tan x 的x 的取值范围.【防范措施】 熟练掌握三种三角函数的定义域如下表所示:三角函数 定义域 sin α {α|α∈R } cos α {α|α∈R }tan α⎩⎨⎧⎭⎬⎫α|α∈R ,α≠k π+π2,k ∈Z【课堂强化】 一、选择题1. 如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT2.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( ) A.π4 B.3π4 C.7π4 D.3π4或7π43.若α是第一象限角,则sin α+cos α的值与1的大小关系是( ) A .sin α+cos α>1 B .sin α+cos α=1 C .sin α+cos α<1 D .不能确定4.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.55.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝ ⎛⎭⎪⎫-π3,π3 B.⎝ ⎛⎭⎪⎫0,π3 C.⎝ ⎛⎭⎪⎫5π3,2π D.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π 6.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<sin α<tan α B .tan α<sin α<cos α C .sin α<cos α<tan α D .cos α<tan α<sin α二、填空题7.在[0,2π]上满足sin x ≥12的x 的取值范围为________.8.集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =________________. 9.不等式tan α+33>0的解集是______________. 10.求函数f (x )=lg(3-4sin 2x )的定义域为________.三、解答题11.在单位圆中画出适合下列条件的角α终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12.12.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.能力提升13.求函数f (x )=1-2cos x +ln ⎝ ⎛⎭⎪⎫sin x -22的定义域.14.如何利用三角函数线证明下面的不等式? 当α∈⎝ ⎛⎭⎪⎫0,π2时,求证:sin α<α<tan α.【课堂强化】 1.C2.D [角α终边落在第二、四象限角平分线上.] 3.A [设α终边与单位圆交于点P , sin α=MP ,cos α=OM ,则|OM |+|MP |>|OP |=1,即sin α+cos α>1.]4.C [∵1,1.2,1.5均在⎝ ⎛⎭⎪⎫0,π2内,正弦线在⎝ ⎛⎭⎪⎫0,π2内随α的增大而逐渐增大,∴sin 1.5>sin 1.2>sin 1.]5.D [在同一单位圆中,利用三角函数线可得D 正确.] 6.A [如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM <MP <AT ,即cos α<sin α<tan α.] 7.⎣⎢⎡⎦⎥⎤π6,5π6 8.⎣⎢⎡⎭⎪⎫0,π4∪⎝ ⎛⎦⎥⎤54π,2π 9.⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z 解析 不等式的解集如图所示(阴影部分),∴⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z . 10.⎝ ⎛⎭⎪⎫k π-π3,k π+π3,k ∈Z 解析 如图所示.∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.∴x ∈⎝ ⎛⎭⎪⎫2k π-π3,2k π+π3∪⎝ ⎛⎭⎪⎫2k π+2π3,2k π+4π3 (k ∈Z ).即x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3 (k ∈Z ).11.解 (1)图1作直线y =32交单位圆于A 、B ,连结OA 、OB ,则OA 与OB 围成的区域(图1阴影部分),即为角α的终边的范围. 故满足条件的角α的集合为 {α|2k π+π3≤α≤2k π+2π3,k ∈Z }. (2)图2作直线x =-12交单位圆于C 、D ,连结OC 、OD ,则OC 与OD 围成的区域(图2阴影部分),即为角α的终边的范围.故满足条件的角α的集合为 {α|2k π+2π3≤α≤2k π+4π3,k ∈Z }.12.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π (k ∈Z ),故k π+π4<θ2<k π+π2 (k ∈Z ).作出θ2所在范围如图所示. 当2k π+π4<θ2<2k π+π2 (k ∈Z )时,cos θ2<sin θ2<tan θ2.当2k π+5π4<θ2<2k π+32π (k ∈Z )时,sin θ2<cos θ2<tan θ2.13.解 由题意,自变量x 应满足不等式组⎩⎨⎧ 1-2cos x ≥0,sin x -22>0. 即⎩⎪⎨⎪⎧ sin x >22,cos x ≤12.则不等式组的解的集合如图(阴影部分)所示,∴⎩⎨⎧⎭⎬⎫x |2k π+π3≤x <2k π+34π,k ∈Z . 14.证明如图所示,在直角坐标系中作出单位圆,α的终边与单位圆交于P ,α的正弦线、正切线为有向线段MP ,AT ,则MP =sin α,AT =tan α.因为S △AOP =12OA ·MP =12sin α,S 扇形AOP =12αOA 2=12α,S △AOT =12OA ·AT =12tan α,又S △AOP <S 扇形AOP <S △AOT ,所以12sin α<12α<12tan α,即sin α<α<tan α.【课后练习】1.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相等;③π4和5π4的余弦线长度相等.其中正确说法的个数为( )A .1B .2C .3D .0答案 C2.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.5答案 C3.函数y =tan ⎝ ⎛⎭⎪⎫x -π3的定义域为( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π3,x ∈R B.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6,k ∈Z C.⎩⎨⎧⎭⎬⎫x |x ≠k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x ≠k π-5π6,k ∈Z 答案 C4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b答案 C5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( )A.⎝ ⎛⎭⎪⎫-π3,π3B.⎝ ⎛⎭⎪⎫0,π3 C.⎝ ⎛⎭⎪⎫5π3,2π D.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π 答案 D6.集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =______________.答案 ⎣⎢⎡⎭⎪⎫0,π4∪⎝ ⎛⎦⎥⎤54π,2π 7.利用三角函数线,写出满足下列条件的角x 的集合:(1)sin x >-12且cos x >12;(2)tan x ≥-1.二、能力提升8.如果π4<α<π2,那么下列不等式成立的是( )A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α答案 A9.不等式tan α+33>0的解集是______________.答案⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z10.求函数f (x )=cos 2x -sin 2x 的定义域为________.答案 ⎣⎢⎡⎦⎥⎤k π-π4,k π+π4,k ∈Z11.求函数y =log sin x (2cos x +1)的定义域.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π<x <2k π+π2,或2k π+π2<x <2k π+23π,k ∈Z . 12.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥22;(2)cos α≤12.三、探究与创新13.当α∈⎝ ⎛⎭⎪⎫0,π2时,求证:sin α<α<tan α.。
高中数学必修四1.2.1任意角的三角函数(第二课时)导学案1.2.1任意角的三角函数(第二课时)【学习目标】1.进一步理解任意角的正弦、余弦、正切的定义;2.了解角的正弦线、余弦线、正切线,认识三角函数的定义域;3.掌握并能初步运用定义、公式一分析和解决与三角函数值有关的一些问题.【新知自学】知识回顾:1.三角函数定义在直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)____叫做的正弦,记作____,即____;(2)___叫做的余弦,记作____,即____;(3)___叫做的正切,记作___,即_____.2.三角函数的符号正弦值对于第一、二象限为____(y>0,r>0),对于第三、四象限为____(y0) 余弦值对于第一、四象限为_____(x>0,r>0),对于第二、三象限为___(x0) 正切值对于第一、三象限为____(x,y同号),对于第二、四象限为____(x,y异号).新知梳理:1.诱导公式终边相同的角的_________________相等.公式一:_______=sin,____________=cos,_________=tan.(其中,)2.正弦线、余弦线、正切线:如上图,分别称有向线段为正弦线、余弦线、正切线.对点练习:1、比较sin1155°与sin(-1654°)的大小.2.用三角函数线比较sin1和cos1的大小,结果是_______________.3.利用三角函数线比较下列各组数的大小(用“>”或“(1)sin23π________sin34π;(2)cos23π________cos34π;(3)tan23π________tan34π.【合作探究】典例精析:题型一:诱导公式的应用例1.求下列三角函数值:(1);(2);(3)变式练习(1)sin(-13950)cos11100+cos(-10200)sin7500; 变式练习(2)sin(.题型二:三角函数线的应用例2.在单位圆中,画出满足的角的终边.变式练习(3)已知,确定的大小关系.变式练习(4):如果π4<α<π2,那么下列不等式成立的是() A.cosα<sinα<tanαB.tanα<sinα<cosαC.sinα<cosα<tanαD.cosα<tanα<sinα【课堂小结】【当堂达标】1.=()A.B.C.D.2.若,则的大小关系是3.求值:.4、利用三角函数线比较下列各组数的大小:(1)sin2π3与sin4π5;(2)tan2π3与tan4π5;(3)cos2π3与cos4π5.【课时作业】1.若,则角一定是()A.第三象限角B.第四象限角C.第三象限角或第四象限角D.不确定2.的值为()A.2B.2或0C.2或0或D.不确定3.求下列各式的值:(1)(2).*4.用三角函数线,比较sin1与cos1的大小.*5.在单位圆中,用阴影部分表示出满足的角的集合,并写出该集合. 6.用三角函数线证明:|sinα|+|cosα|≥1【延伸探究】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1)sinθ≥32;(2)-12≤cosθ规律提示:用单位圆中的三角函数线求解简单的三角不等式,应注意以下两点:(1)先找到“正值”区间,即0~2π间满足条件的角θ的范围,然后再加上周期;(2)注意区间是开区间还是闭区间.。
2020-2021学年高中数学第一章三角函数1.2.1 任意角的三角函数学案新人教A版必修4年级:姓名:1.2 任意角的三角函数1.2.1 任意角的三角函数(一)内容标准学科素养1.理解任意角的三角函数的定义并利用定义求值.2.结合单位圆定义三角函数,判断三角函数在各个象限的符号.3.掌握三角函数诱导公式一.提升数学运算运用直观想象授课提示:对应学生用书第7页[基础认识]知识点一任意角的三角函数阅读教材P11~12,思考并完成以下问题(1)使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.那么sin α、cos α、tan α如何用x,y或r表示?提示:sin α=|PM||OP|=yr,cos α=|OM||OP|=xr,tan α=|PM||OM|=yx.(2)对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?为什么?提示:不变.三角形相似,对应边成比例.(3)当取|OP|=1时,sin α,cos α,tan α的值怎样表示?提示:sin α=y,cos α=x,tan α=yx.(4)如果α的终边OP在第二象限且|OP|=1,P(x,y),sin α,cos α,tan α的表示变化吗?提示:不变.仍是sin α=y,cos α=x,tan α=yx.前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y余弦 x 叫做α的余弦,记作cos α,即cos α=x 正切 y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0) 三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数.三角函数 定义域 sin α R cos α Rtan α α≠k π+π2,k ∈Z知识点二 阅读教材P 13,思考并完成以下问题根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? (1)当α的终边在第一象限时,P (x ,y ). 提示:sin α=y >0,cos α=x >0,tan α=y x >0 (2)当α的终边在第二象限时,P (x ,y ). 提示:sin α=y >0,cos α=x <0,tan α=y x<0. (3)当α的终边在第三象限时,P (x ,y ).提示:sin α=y <0,cos α=x <0,tan α=yx>0.(4)当α的终边在第四象限时,P (x ,y ).提示:sin α=y <0,cos α=x >0,tan α=yx<0.知识梳理 口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三 诱导公式一阅读教材P 14,思考并完成以下问题当角α分别为30°,390°,-330°时,它们的终边有什么特点? 提示:sin 390°=sin(360°+30°), sin(-330°)=sin(-360°+30°), 故30°、390°、-330°终边相同. 知识梳理 诱导公式一sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α, tan(α+k ·2π)=tan α, 其中k ∈Z .(1)当α的终边在y 轴正半轴时,P (0,1),则α=π2+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫π2+2k π=sin π2=1.cos α=cos ⎝ ⎛⎭⎪⎫π2+2k π=cos π2=0.(2)当α的终边在y 轴负半轴时,P (0,-1),则α=32π+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫32π+2k π=sin 32π=-1.cos α=cos ⎝ ⎛⎭⎪⎫32π+2k π=cos 32π=0.(3)当α的终边在x 轴正半轴时,P (1,0), 则α=2k π,k ∈Z .sin α=sin(2k π+0)=sin 0=0. cos α=cos(2k π+0)=cos 0=1. tan α=tan(2k π+0)=tan 0=0.(4)当α的终边在x 轴负半轴时,P (-1,0), 则α=2k π+π,k ∈Z .sin α=sin(2k π+π)=sin π=0. cos α=cos(2k π+π)=cos π=-1. tan α=tan(2k π+π)=tan π=0.[自我检测]1.若α是第二象限角,则点P (sin α,cos α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D2.α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则sin α=______,cos α =________.答案:35 -45授课提示:对应学生用书第8页探究一 任意角的三角函数的定义及应用[教材P 12例1、例2]方法步骤:(1)确定终边上点的坐标.(2)应用定义求值. 角度1 已知角α终边上一点的坐标求三角函数值[例1] (1)已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.[解析] 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010, tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3(-1)2+32=31010, tan θ=3-1=-3.(2)已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值.[解析] r =(-3a )2+(4a )2=5|a |, ①若a >0,则r =5a ,角α在第二象限.sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限,sin α=4a -5a =-45,cos α=-3a -5a =35.所以2sin α+cos α=-85+35=-1.角度2 已知角α终边所在直线求三角函数值[例2] 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.[解析] 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0), 则x =k ,y =-3k ,r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k =-31010,1cos α=r x =10k k=10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,。
1.2.1任意角的三角函数(2)教学内容解析三角函数是描述客观世界中周期性变化规律的重要数学模型,是对函数模型的丰富,是对函数概念,性质,图像变换及函数应用的进一步深化,是函数概念的下位知识。
三角函数在物理学、天文学、地理学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学及其他学科的基础,因此,通过本章的学习可以培养学生的数学应用能力。
本节之前学生学习了函数的概念,指数函数、对数函数、幂函数和任意角弧度制,本节之后还要接着研究三角函数的图像和性质,并应用性质解决一些简单的具有周期现象的实际问题。
而本节内容是研究三角函数图像和性质的基础。
因此本节内容具有承上启下的作用。
任意角三角函数概念的重点是借助单位圆上点的圆周运动理解任意角的正弦、余弦的定义,它们是本节,乃至本章的基本概念,解决这一重点的关键是在直角坐标系中,借助单位圆、象限角等知识,抽象概括出三角函数,在这一过程中,学生可以感受到数形结合、运动变化、对应等数学思想方法.学生学情分析初中学习了函数的初步概念,研究了一次函数、二次函数、反比例函数的图像和性质,进入高中后从集合与对应的观点重新刻画了函数的概念,研究了指数函数、对数函数和幂函数的定义、图像和性质。
学生已具备了学习和研究一个新函数的知识基础和初步能力。
本节课之前的任意角和弧度制,学生已经知道了角的弧度数与实数一一对应,这为学生学习任意角的三角函数奠定了基础。
三角函数是 “从角的集合到坐标分量的集合”的对应关系,所以学生对任意角三角函数对应关系的理解要比从前学过的特殊函数困难些,这是教学的一个难点,所以需要借助单位圆上的圆周运动以直观的几何方式给出定义,通过合理的设计问题串突破该难点。
教学的另一个难点是,任意角三角函数的定义域是角的集合(或它的子集),需要 “把角的集合转化为实数集”.回顾前一节的弧度制学生可以自行解决该难点,并也体现了引入弧度制的必要性。
一、教学目标知识点:有向线段,正弦线、余弦线、正切线的概念,作三角函数线.能力点:逐步发现三角函数值与单位圆中的“有向线段”的对应,分类讨论及数形结合的数学思想的运用.教育点:让学生通过经历由不确定的对应建立确定的对应的过程,体会发现的艰辛,享受发现的乐趣.自主探究点:角的终边在坐标轴上时三角函数线的情况.考试点:利用三角函数线判断三角函数值或角的范围.易错易混点:三角函数线作为有向线段与一般线段的联系与区别.拓展点:利用三角函数线证明有关不等式.重点: 三角函数线的概念及应用.难点:理解三角函数线作为有向线段其方向规定的合理性,三角函数线的应用.二 教学过程引入新课前面我们学习了角的弧度制,角α弧度数的绝对值rl =α,其中l 是以角α作为圆心角时所对弧的长,r 是圆的半径.特别地, 当1=r时,l =α,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.【探究新知】探究1:有向线段的概念问题1:如果角α是第一象限角,它的三个三角函数值用定义如何来求?问题2:在求解中,αsin ,αcos 的值都是正数,你能分别用一条线段表示正、余弦值吗?问题3:如果角α的终边在其他象限内,αsin ,αcos 的值也与这两条线段的长度相等吗?若不相等,有什么关系?自己画出第四象限角并研究结论:1.规定了始点和终点,带有方向的线段叫做有向线段.2.规定:在直角坐标系内,线段从始点到终点与坐标轴同向时为正方向,反向时为负方向. 探究2:正弦线、余弦线问题4:探究1中,哪条有向线段可以表示正弦值和余弦值?问题5:若角α的终边在坐标轴上时,角α的正弦线和余弦线的含义如何?探究3:正切线问题6:如果角α是第一象限角,其终边与单位圆的交点为),y x P (,则x y =αtan ,能否比照正弦线、余弦线的得到,怎样用一个实数表示正切值? 提示:利用已知,探究未知,加深学生对正切线的理解. 令xy =αtan 中的1=x .那么1y tan '==x y α中的'y 的值怎么用图象表示?在角α的终边上的点),1'y P (怎么找到?问题7:如果角α为第二、三象限角时,其终边与直线1=x 没有交点,若记终边的反向延长线与直线1=x 的交点为T ,)01(,A ,那么AT =αtan 还成立吗?问题8:若角α的终边在坐标轴上时,角α的正切线的含义如何?探究4:从三角函数线得出的结论(由学生自由发挥)教师给出几何画板的动态图四、【运用新知】例1.作出下列各角的正弦线、余弦线、正切线(1)65π ; (2)π45 ; (3)3π-. 例2. 利用三角函数线,求角α的取值集合 (1)1sin 2α=(2)1cos 2α= (3)tan 1α=- 【设计意图】利用三角函数线的逆向应用,让学生在理解的基础上灵活应用三角函数线.变式练习:求适合下列条件的角的集合(1)1sin2α≥(2)tan1α<-五回顾总结:如何画一个角的三角函数线?【设计意图】总结知识点,加深对三角函数线的理解,突破重难点.第一步:作出角α的终边,与单位圆交于点P;第二步:过点P作x轴的垂线,设垂足为M,得正弦线MP、余弦线OM;第三步:过点)01(,A作单位圆的切线,它与角α的终边或其反向延长线的交点设为T,得角α的正切线AT.要注意:三角函数线是有向线段,在用字母表示这些线段时,要注意它们的方向,分清起点和终点,书写顺序不能颠倒.余弦线以原点为起点,正弦线和正切线以此线段与坐标轴的公共点为起点,其中点A为定点)01(,.教学反思本节课通过研究三角函数线的变化过程,让学生充分理解了三角函数的变化规律,为以后三角函数的性质学习打下了基础。
1.2.1《任意角的三角函数》导学案(2)【学习目标】1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围. 【导入新课】 复习:(提问)1.三角函数的定义及定义域、值域:练习1:已知角α的终边上一点(3,)P m -,且2sin 4mα=,求cos ,sin αα的值. 解:由题设知3x =y m =,所以2222||(3)r OP m ==+,得23r m +从而2sin 4m α=23m r m ==+,解得0m =或216625m m =+⇒= 当0m =时,3,3r x == cos 1,tan 0x yr xαα==-==; 当5m =22,3r x ==615cos tan x y r x αα====; 当5m =2,3r x ==-615cos tan x y r x αα==== 2.三角函数的符号:练习2:已知sin 0α<且tan 0α>, (1)求角α的集合;(2)求角2α终边所在的象限;(3)试判断tan ,sin cos 222ααα的符号. 3.诱导公式:练习3:求下列三角函数的值: (1)9cos4π,(2)11tan()6π-,(3)9sin 2π.(二)问题:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢? 新授课阶段[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,则请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==.随着α在第一象限内转动,MP 、OM 是否也跟着变化? 思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?(2)你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗? 我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==.同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==.像MP OM 、这种被看作带有方向的线段,叫做有向线段(direct line segment ). 如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan yAT xα==. 我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.Oxya 角的终P TM A6.探究:(1)当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?(2)当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .ox y MTPAxyoMTPA(Ⅰ)(Ⅱ)x yoMT PAox yM TP A(Ⅳ)(Ⅲ)由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y r α====MP ,cos 1x xx OM r α====OM ,tan y MP ATx OM OAα====AT .我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线.我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.例1 已知42ππα<<,试比较,tan ,sin ,cos αααα的大小.例2 利用三角函数线比较下列各组数的大小:1︒ 32sin π与54sin π;2︒ tan 32π与tan 54π. 解: 课堂小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 作业1. 比较下列各三角函数值的大小(不能使用计算器): (1)sin15︒、tan15︒;(2)'cos15018︒、cos121︒;(3)5π、tan 5π.2.练习三角函数线的作图. 3.见 同步练习 部分 拓展提升1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( ) A .① B .② C .③ D .④3.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A.43- B.34- C.43 D.344.若α是第四象限的角,则πα-是( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角5.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 6.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________.7.若角α与角β的终边关于y 轴对称,则α与β的关系是___________. 8.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 . 9.与02002-终边相同的最小正角是_______________.参考答案例1.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 例2解: 如图可知:32sin π>54sin πtan32π< tan 54π 拓展提升 1.C 22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而coscoscos0222ααα=-⇒≤,2α∴在第三象限;2.C 0sin(1000)sin 800-=>;0cos(2200)cos(40)cos 400-=-=>tan(10)tan(310)0π-=-<;77sincos sin 7171010,sin 0,tan 01717109tan tan 99πππππππ-=>< 3.A 43sin 4sin ,cos ,tan 55cos 3ααααα==-==-4.C πααπ-=-+,若α是第四象限的角,则α-是第一象限的角,再逆时针旋转0180 5.四、三、二 当θ是第二象限角时,sin 0,cos 0θθ><;当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>;6.② 1717sin0,cos 01818MP OM ππ=>=< 7.2k αβππ+=+ α与βπ+关于x 轴对称A BoT 2T 1 S 2 S 1 P 2 P 18.2 21(82)4,440,2,4,22lS r r r r r l rα=-=-+===== 9.0158 020022160158,(21603606)-=-+=⨯。
§1.2.1 任意角三角函数(2)1.利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来,并能作出三角函数线。
2.培养分析、探究问题的能力。
促进对数形结合思想的理解和感悟。
一、课前准备(预习教材P15~ P17,找出疑惑之处)我们已学过任意角的三角函数,给出了任意角的正弦,余弦,正切的定义。
想一想能不能用几何元素表示三角函数值?(例如,能不能用线段表示三角函数值?)二、新课导学※探索新知问题1:在初中,我们知道锐角三角函数可以看成线段的比,那么,任意角的三角函数是否也可以看成是线段的比呢?问题2:在三角函数定义中,是否可以在角 的终边上取一个特殊点使得三角函数值的表达式更为简单?问题3.有向线段,有向线段的数量,有向线段长度的概念如何。
问题4.如何作正弦线、余弦线、正切线。
※典型例题例1:作出下列各角的三角函数线(1)611π (2)32π-例2:比较下列各组数的大小(1)sin1和sin 3π (2)cos 74π和cos 75π (3)tan89π和tan 79π (4)sin 5π和tan 5π变式训练①:若α是锐角(单位为弧度),试利用单位圆及三角函数线,比较αααtan ,sin ,之间的大小关系。
变式训练②:根据单位圆中的正弦线,你能发现正弦函数值有怎样的变化规律。
例3:利用单位圆分别写出符合下列条件的角α的集合(1)21sin -=α, (2)21sin ->α ,(3) 3tan ≤α 。
变式训练①:已知角α的正弦线和余弦线分别是方向一正一反,长度相等的有向线段,则α的终边在 ( )A 第一象限角平分线上B 第二象限角平分线上C 第三象限角平分线上D 第四象限角平分线上变式训练②:当角α,β满足什么条件时有βαsin sin =.变式训练③:sin α>cos α,则α的取值范围是_________。
变式训练④:已知集合E={θ|cos θ<sin θ,0πθ2≤≤},F={θtan θ<sin θ}。
1.2.1任意角的三角函数(A层学案)学习目标:1.能借助单位圆记住任意角的正弦、余弦、正切函数的定义;2.记住诱导公式一并会应用。
学习重点:任意角三角函数的定义及诱导公式一的应用。
学习难点:任意角的三角函数的定义。
一、课前预习案1.任意角三角函数(1)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:①y叫做α的________,记作______,即sinα=y;②x叫做α的________,记作______,即cosα=x;③yx叫做α的________,记作______,即tanα=yx(x≠0).(2)在平面直角坐标系中,设α是一个任意角,它的终边上任意一点P(x,y),它到原点的距离r(r>0),r= ,那么任意角α的三角函数的定义为:sinα=cosα=tanα=2.正弦、余弦、正切函数值在各象限的符号记忆口诀:。
3.诱导公式一终边相同的角的同一三角函数的值________,即:sin(α+k·2π)=________,cos(α+k·2π)=________,tan(α+k·2π)=________,其中k∈Z.二、课内探究案知识点一利用定义求角的三角函数值例1:已知角α的终边经过点P(-4,3),求sin α、cos α、tan α的值.变式训练1:(1)已知角α的终边过点0(3,4)P--,求角α的正弦、余弦和正切值.(2)已知角α的终边经过点P(-4a,3a)(a≠0),求sinα、cosα、tanα的值.知识点二:三角函数值的符号问题例2.(1)α是第四象限角,则下列数值中一定是正值的是( )αααα或tan α(2)若sin θ·tan θ>0,cos θ·tan θ<0,则sin θ·cos θ______0 (填“>”“<”或“=”).(3)函数的值域是_______.变式训练2:判断下列各式的符号.(1)sin 370°+cos 370°.知识点三诱导公式一的应用例3求下列各式的值. (1) cos ⎝ ⎛⎭⎪⎫-15π4 ; (2) sin 420° (3)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;变式训练3:(1)cos ⎝ ⎛⎭⎪⎫-23π3+tan 17π4; (2)sin 630°+tan 1 125°+tan 765°+cos 540°课堂小结:当堂检测 1. α是第二象限角,P (x ,5)为其终边上一点,且x 42cos =α,则αsin 的值为( )A.410 B. 46 C. 42 D. 410-2. α是第二象限角,且2cos2cosαα-=,则2α是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角 3. 已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则a 的取值范围是 。
1.21《任意角的三角函数》导学案
【学习目标】
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);
(2)理解任意角的三角函数不同的定义方法;
(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;
(4)掌握并能初步运用公式一;
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
【重点难点】
重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
【学法指导】
1.了解三角函数的两种定义方法;
2.知道三角函数线的基本做法.
【知识链接】:
根据课本本节内容,完成预习目标,完成以下各个概念的填空.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
【学习过程】
(一)复习:
1、初中锐角的三角函数______________________________________________________
2、在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为
_______________________________________________
(二)新课:
1.三角函数定义
x y,它与原在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)
r r=>,那么
点的距离为(0)
(1)比值_______叫做α的正弦,记作_______,即________
(2)比值_______叫做α的余弦,记作_______,即_________
(3)比值_______叫做α的正切,记作_______,即_________;
2.三角函数的定义域、值域
3.三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ①正弦值
y r
对于第一、二象限为_____(0,0y r >>),对于第三、四象限为____(0,0y r <>); ②余弦值x r
对于第一、四象限为_____(0,0x r >>),对于第二、三象限为____(0,0x r <>); ③正切值y x 对于第一、三象限为_______(,x y 同号),对于第二、四象限为______(,x y 异号). 4.诱导公式
由三角函数的定义,就可知道:__________________________
即有:_________________________
_________________________
_________________________
5.当角的终边上一点(,)P x y 的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .
由四个图看出:
(Ⅳ) (Ⅱ) (Ⅲ)。