一道高考试题的多视角解法探究
- 格式:docx
- 大小:36.54 KB
- 文档页数:2
的重要指导作用ꎬ进而促使他们对此项内容产生深入了解的兴趣.2.从教学内容中挖掘数学思想方法在人们传统的认知观念中数学教材当中的内容仅仅为学生们提供了在当前阶段应掌握的知识点ꎬ是教师开展基础教学活动的依据ꎬ但是很多人忽略了其中在知识的产生㊁发展以及应用过程中暗涵的思想方法ꎬ这就使得教师的实际授课过程缺乏了数学学科应有的 灵魂 ꎬ而且学生掌握的知识更多的是流于形式ꎬ对他们思维能力以及相关素养的提升并没有什么有效的帮助.针对此种情况ꎬ笔者建议教师在数学教学过程中可以从课程内容当中挖掘思想和方法ꎬ这样一来ꎬ不但能够有效增强学生对基础知识的理解能力ꎬ而且也开阔了他们的数学思维.3.引导学生进行思想方法的强化练习数学思想方法是从课程基础知识的学习或者练习题的解答过程中提炼出的ꎬ因此ꎬ教师在进行这部分内容的教学活动时会有非常多的局限性.比如ꎬ在多种因素的影响下ꎬ某种方法在讲解之后学生很少有机会进行使用ꎬ随着时间的推移他们便会忘记ꎻ而当再次遇到后ꎬ教师仍旧需要重新介绍ꎬ这就降低了课堂教学的效率.依据于知识点的思想方法教学过于零散ꎬ缺乏系统性ꎬ往往容易让学生在实际学生过程中造成混淆ꎬ从而对教学质量的提高起到相反的作用.综上所述ꎬ高中数学教师在日常教学过程中渗透相关的思想方法ꎬ不仅可以增强学生对基础知识的理解能力ꎬ使他们的数学思维方式得到有效锻炼ꎬ而且能够有效提高学生分析以及解决各类问题的能力ꎬ并为他们处理相关的难题提供思路和技巧.除此之外ꎬ教师能够通过思想方法的教学提升课堂的质量和水平ꎬ让知识以条理化和系统化的形式展现出来ꎬ从而让学生的学习活动变得更加高效.㊀㊀参考文献:[1]熊永欣.提高高中数学函数学习效率和把握数学思想的探索[J].中国高新区ꎬ2018(01):130.[2]陈瑞.高中数学函数教学中数学思想方法的应用[J].考试周刊ꎬ2018(01):76.[3]张益通.数学思想方法在高中数学中的应用研究[J].中华少年ꎬ2017(34):134-135.[责任编辑:杨惠民]由一道高考试题的一题多解浅谈微专题教学设计孙宝金㊀李翠玲(辽宁省朝阳市喀左蒙高中㊀122300)摘㊀要:高考复习常常需要在短时间内突破学生的疑难点和易错点.我们围绕复习的重点和关键点设计出 微专题 ꎬ利用具有紧密相关的知识方法形成专项研究.与大专题复习有机结合ꎬ使得专题复习活而不空ꎬ深而不偏ꎬ促进学生的深度学习.关键词:多种解法和变式教学ꎻ 微专题 复习ꎻ构建方式ꎻ深度学习中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2018)12-0018-02收稿日期:2018-01-20作者简介:孙宝金(1976.12-)ꎬ男ꎬ辽宁省朝阳市人ꎬ本科ꎬ高中教师ꎬ从事高考备考及竞赛等数学解题研究.李翠玲(1984.7-)ꎬ女ꎬ辽宁省朝阳市人ꎬ硕士ꎬ高中教师ꎬ从事高考备考及竞赛等数学解题研究.㊀㊀一㊁问题的提出题目㊀已知抛物线C:y2=2xꎬ过点2ꎬ0()的直线l交C于AꎬB两点ꎬ圆M是以线段AB为直径的圆(1)证明:坐标原点O在圆M上ꎻ(2)设圆M过点P-4ꎬ2()ꎬ求直线l与圆M的方程.这是2017年全国统一考试 丙卷(全国卷Ⅲ)理科数学第20题.本题直线与抛物线的位置关系㊁直线与方程㊁圆的方程ꎬ意在数形结合思想和化归与转化能力ꎬ难度适中ꎬ可以很好地考查学生的平面解析几何的基本素养.㊀㊀㊀二㊁问题的探究1.基本解法的探究笔者在审视这道高考试题时ꎬ发现可以从三个视角完美解决这道试题.81Copyright©博看网 . All Rights Reserved.视角一: 斜率乘积为-1设出l的方程ꎬ通过联立方程ꎬ证明直线OA与OB的斜率之积为-1.(1)设Ax1ꎬy1()ꎬBx2ꎬy2()ꎬl:x=my+2.由x=my+2ꎬy2=2xꎬ{得y2-2my-4=0ꎬ则y1y2=-4.又x1=y212ꎬx2=y222ꎬ故x1x2=y1y2()24=4ꎬʑkOA kOB=y1x1 y2x2=-44=-1.所以OAʅOBꎬ故坐标原点O在圆M上.(2)略视角二:向量法:证明OAң OBң=0解法同上:y1+y2=2mꎬy1y2=-4ꎬx1x2=my1+2()my2+2()=m2y1y2+2my1+y2()+4=-4m2+4m2+4=4ꎬOAң OBң=x1x2+y1y2=4-4=0ꎬʑOAңʅOBң即OAʅOB.所以坐标原点O在圆M上.(2)略视角三:点与圆的位置关系由已知可求圆的方程ꎬ再把O0ꎬ0()代入满足圆的方程ꎬ即得证.解法同上:可设AB中点为Nx0ꎬy0()ꎬx0=x1+x22=m2+2ꎬy0=y1+y22=mꎬM2+m2ꎬm()ꎬ圆M的半径r=m2+2()2+m2ꎬ所以☉M方程x-m2-2()2+y-m()2=m2+2()2+m2.把点O0ꎬ0()代入检验满足☉M方程ꎬ所以坐标原点O在圆M上.(2)略2.为了进一步让学生理解ꎬ可以对此题进行一些变式ꎬ以便学生对此类方法的理解更加深刻变式一:已知AꎬBꎬC是椭圆W:x24+y2=1上的三个点ꎬO是坐标原点ꎬ当点B不是W的顶点时ꎬ判断四边形OABC是否可能为菱形?并说明理由.变式二:已知两点Ax1ꎬy1()ꎬBx2ꎬy2()(x1x2ʂ0)是抛物线y2=2pxp>0()上的两个动点ꎬO是坐标原点ꎬ向量OAңꎬOBң满足OAң+OBң=OAң-OBңꎬ设圆C的方程为x2+y2-x1+x2()x-(y1+y2)=0ꎬ证明:线段AB是圆C上的直径.变式三:(人教B版ꎬ选修2-1ꎬP71ꎬ习题2-5B第6题)已知椭圆的中心是坐标圆点Oꎬ它的短轴长为22ꎬ一个焦点F的坐标为cꎬ0()c>0()ꎬ一个定点A的坐标为10c-cꎬ0æèçöø÷ꎬ且0Fң=2FAңꎬ过点A的直线与椭圆相交于两点PꎬQꎬ如果OPʅOQꎬ求直线PQ的方程.这样的 微专题 教学ꎬ培养了学生思维的广阔性ꎬ提高了学生的应变能力.关于目标意识ꎬ解题时ꎬ一要通过审体明确题目要求我们做什么ꎬ二要根据题干及结论的特点ꎬ弄清楚我们已知了什么.这样ꎬ当学生用常规思路解决问题而思维受阻时ꎬ就会尝试从结论出发或通过不同渠道去解决.3.微专题设计及教学中教师角色微专题设计以学生为中心ꎬ针对学生的知识漏洞设计成专题ꎬ学生在学习过程中具有更多的主动权ꎬ但这并不意味着学生可以完全离开教师的指导进行探究.事实上ꎬ在整合的过程中ꎬ教师要扮演内容呈现者㊁学习帮助者和课程设计者等多重角色ꎬ教师要在对学生的学习控制和学生的自主活动之间达到一种平衡状态.不断引导学生的思维ꎬ帮助学生顺利穿越 最近发展区 ꎬ获得进一步的发展ꎬ使得学生根据实际的需要寻找或构建支架支持思维能力的提高.4.微专题具有很强的实用性㊁可操作性从学生实际出发ꎬ针对学生的疑难点及解题方法的归纳ꎬ切实帮助其解决实际问题.此时教者对学情及例题难度的把握尤为重要ꎬ过难过易对学生的发展都是无益的.教师可以利用变式训练和问题引申设计来编制微专题ꎬ教学中ꎬ通过设置 典型例题 一题多解 变式训练 来完成微专题ꎬ这样可以达到 由点到面的爆炸式复习 .另外ꎬ微专题教学可以使学生ꎬ从各个不同的方面联系所学知识ꎬ形成横向㊁纵向的知识网.经过这样 深加工 ꎬ学生在解决问题时才能举一反三ꎬ游刃有余.㊀㊀三㊁微专题实践反思教学中的 微专题 复习与大专题复习不是相互对立㊁互不兼容的两种复习方式ꎬ二者是相互渗透ꎬ互为补充的关系.一方面 微专题 积少成多ꎬ能对大专题的自然生成起到一定的补充和完善作用ꎻ另一方面ꎬ大专题的落实需要更多有效的 微专题 进行渗透㊁强化.所以充分发挥微专题的问题集中㊁操作灵活㊁指向性强以及更容易解决具体问题等优势ꎬ将使得大专题复习实而不空ꎬ深而不偏.总之 微专题 复习能有效地帮助学生解决现实问题ꎻ同时教师在研究实践中不断学习㊁思考㊁分析ꎬ寻找出路ꎬ并能有所启发和创新ꎬ这对于教师自身的成长是有益的.㊀㊀参考文献:[1]李宽珍.基于目标意识解题的微专题教学 由一道模拟题谈开去[J].数学通讯ꎬ2017(4):26-28.[2]邱慎海.对一道全国高中数学联合竞赛题的探究[J].数学通讯ꎬ2017(4):58-61.[责任编辑:杨惠民]91 Copyright©博看网 . All Rights Reserved.。
一道高考试题的多角度思考及教学启示2009年浙江省高考理科第9题:过双曲线)0,0(12222>>=-b a by ax 的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C.若BCAB 21=,则双曲线的离心率是( )A.2B.3C.5D.10本题较好地关注解析几何的本质,很好地体现了坐标法的思想,主要考查了双曲线的有关几何性质,即渐近线,离心率,顶点等,同时又考查了已知两直线求交点,以及向量的坐标表示等问题,考查解析几何的基本思想方法和运算求解的能力,体现了数学知识交汇处命题的特色,解题入口宽,方法多,是考查学生灵活运用数学知识分析问题和解决问题能力的一道好题,具有较高的研究价值。
本文就此题的多角度思考谈几点教学启示。
1 试题的多角度思考本题是选择题倒数第2题,属于中档题,学生失分的主要原因是:一是缺乏必要的运算能力,运算出错,半途而废;二是缺乏必要的合理转化能力,不知道如何将复杂问题转化为简单问题求解;三是缺乏对解析几何本质的理解。
其实从题中抓住核心的信息是①过A 的直线斜率为-1;②BCAB 21=.因此在解题时牢牢抓住这两个数量关系,目标是建立a ,b ,c 的数量关系,可以通过求B ,C 的坐标联系平面几何知识,或运用解三角形知识直接在三角形中建立数量关系,从而产生了不同的解题思路。
思路1 利用过A 斜率为-1的直线与两条渐近线相交,求出交点B ,C ,再利用向量的坐标运算,求出a 与b 的关系,从而求得离心率.因为直线AC 的方程为ax y+-=,渐近线OB ,OC 的方程为xab y =,x a by -=,联立方程组⎪⎩⎪⎨⎧=+-=x a by ax y 得),(2ba abb a aB ++,联立方程组⎪⎩⎪⎨⎧-=+-=xa by ax y 得))(,(2b a b a abb a aC ≠---,)0,(a A ,BCAB 21=,),(21),(222b a ab ba abb a ab a ab a ab a b a a+---+--=+-+∴,即)(21222ba ab a aa ba a+--=-+∴,a b 2=∴,aba c522=+=,故双曲线的离心率是5=e .思路2 由于解析几何的本质是利用代数的方法来研究平面几何问题,因此,解析几何的问题能否用平面几何的知识来解决呢?回答当然是肯定的,如本题辅之用平面几何的知识去解决,那就大大减少运算量,提高解题的速度。
多视角探究2022年全国高考甲卷理数第20题贺凤梅1㊀李昌成2(1.新疆伊犁巩留县高级中学ꎬ新疆伊犁835400ꎻ2.新疆乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)摘㊀要:蝴蝶定理是平面几何中的一个经典问题ꎬ其意境优美ꎬ结论简洁ꎬ蕴理深刻.在2003年高考北京卷㊁2008年高考江西卷㊁2010年江苏卷中均出现了以其为背景命制的高考题[1].2022年全国甲卷理科圆锥曲线压轴题是在抛物线中以蝴蝶定理为背景的试题.文章通过对其深入研究ꎬ弄清其问题本质.关键词:圆锥曲线ꎻ蝴蝶定理ꎻ研究中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0002-04收稿日期:2023-07-05作者简介:贺凤梅(1979-)ꎬ女ꎬ湖北省随州人ꎬ本科ꎬ中学一级教师ꎬ从事中学数学教学研究.㊀㊀题目㊀(2022年全国高考甲卷理科数学第20题)设抛物线C:y2=2px(p>0)的焦点为Fꎬ点D(pꎬ0)ꎬ过点F的直线交C于MꎬN两点ꎬ当直线MD垂直于x轴时ꎬMF=3.(1)求C的方程ꎻ(2)设直线MDꎬND与C的另一个交点分别为AꎬBꎬ记直线MNꎬAB的倾斜角分别为αꎬβꎬ当α-β取得最大值时ꎬ求直线AB的方程.1总体分析本题是2022年全国甲卷理科数学第20题ꎬ是本卷压轴题之一ꎬ第(2)问是蝴蝶定理背景下的直线与抛物线的综合题.试题命题立意新颖ꎬ低起点㊁入口宽ꎬ适合多视角探究解答.试题能充分考查学生的运算能力㊁转化与化归的能力ꎬ属于难题.笔者针对此题ꎬ拟从不同的角度进行分析解答ꎬ不断优化解题思路ꎬ揭示问题的本质ꎬ先分享于此ꎬ以飨读者.2试题解答2.1第(1)问解析解析㊀C:y2=2px(p>0)ꎬ则F(p2ꎬ0)ꎬMDʅx轴时ꎬxM=pꎬ由抛物线的定义ꎬ得MF=xM+p2=32p=3ꎬ解得p=2ꎬ所以C:y2=4x.当直线MNʅx轴时ꎬ由对称性知ABʅx轴ꎬ此时α=β=π2ꎬ所以α-β=0.2.2第(2)问解析解法1㊀(线参法)由题设ꎬ直线MN斜率存在ꎬ且不为0ꎬ设直线MN:x=my+1(mʂ0)ꎬM(x1ꎬy1)ꎬN(x2ꎬy2)ꎬ联立x=my+1ꎬy2=4xꎬ{整理ꎬ得y2-4my-4=0.由根与系数的关系ꎬ得y1+y2=4mꎬy1y2=-4.①设MD:x=ny+2ꎬA(x3ꎬy3)ꎬB(x4ꎬy4)ꎬ联立x=ny+2ꎬy2=4xꎬ{整理ꎬ得y2-4ny-8=0.由根与系数的关系ꎬ得y1+y3=4nꎬy1y3=-8.所以y3=-8y1.同理可得y4=-8y2.由斜率公式kAB=y4-y3x4-x3ꎬ而y23=4x3ꎬy24=4x4ꎬ代入整理得kAB=y4-y3y24/4-y23/4=4y3+y4=4(-8/y1)+(-8/y2)=4y1y2-8(y1+y2)=2y1+y2=12m.所以kMN=1m=tanαꎬkAB=12m=tanβ.所以tan(α-β)=tanα-tanβ1+tanαtanβ=1/m-1/2m1+(1/m) (1/2m)=12m+1/m.当m>0时ꎬ2m+1mȡ22m 1m=22ꎬ此时0<tan(α-β)ɤ122=24ꎬ当且仅当2m=1mꎬ即m=22时取等号ꎻ而当m<0时ꎬα-β无法取得最大值.从而m=22时满足题意ꎬ此时kAB=12m=22.所以直线AB方程为y=4y3+y4(x-y234)+y3=4y3+y4x+y3y4y3+y4=12mx-2m=22x-22.即x-2y-4=0.评注㊀此问的显著特点是有很多的点和线ꎬ但仔细观察发现这些点和线相互关联ꎬ只需定好其中一个点ꎬ就可以很好地联系其他的点和线ꎬ容易寻求相同的结构ꎬ利用同一法求解ꎬ简化运算ꎬ解法1很好地诠释了这一思路和解答过程.解法2㊀(点参法)设M(y214ꎬy1)ꎬQ(y224ꎬy2)ꎬA(y234ꎬy3)ꎬB(y244ꎬy4)ꎬMꎬDꎬA三点共线ꎬ则kMD=kADꎬ且D(2ꎬ0).所以y1y21/4-2=y2y22/4-2.整理ꎬ得y1y23-8y1=y21y3-8y3.即(y1-y3)(y1y3+8)=0.显然y1ʂy3.所以y1y3=-8ꎬ即y3=-8y1.因为NꎬDꎬB三点共线ꎬ则kND=kBD.同理可求得y2y4=-8ꎬ即y4=-8y2.设直线MN的方程为x=my+1(mʂ0)ꎬ则tanα=1m=y1-y2y21/4-y22/4=4y1+y2ꎬkAB=y4-y3y24/4-y23/4=4y3+y4=4(-8/y1)+(-8/y2)=4y1y2-8(y1+y2)=-y1y22(y1+y2).由解法1中①式可知y1+y2=4mꎬy1y2=-4.所以kMN=1m=tanαꎬkAB=12m=tanβꎬtan(α-β)=tanα-tanβ1+tanαtanβ=1/m-1/2m1/m 1/2m=12m+1/m.由解法1可知ꎬ当m=22时ꎬ满足条件ꎬ此时kAB=22.将m=22代入y2-4my-4=0ꎬ得y2-22y-4=0.由题设解得y1=6+2ꎬy2=-6+2.所以y3=-8y1=-86+2=2(2-6).从而x3=y234=4(2-6)24=8-43.所以点A(8-43ꎬ2(2-6)).故直线AB方程为y=22[x-(8-43)]+2(2-6).即x-2y-4=0.评注㊀此解法的特点在于根据三点共线ꎬ斜率存在时ꎬ利用斜率相等找到点的纵坐标之间的内在联系ꎬ进而找到两直线MN与AB斜率之间的关系ꎬ借助于基本不等式ꎬ求出当α-β最大时kAB的值ꎬ利用取等条件得出m的值.进而求出y1ꎬ导出y3ꎬ再求出x3ꎬ即得点A的坐标ꎬ最后求出直线AB的方程.只要理清解题思路ꎬ加上适当的计算能力及技巧ꎬ解题可以顺利进行.解法3㊀(向量法)由前面的求解可知F(1ꎬ0)ꎬD(2ꎬ0)ꎬM(y214ꎬy1)ꎬN(y224ꎬy2)ꎬA(y234ꎬy3)ꎬB(y244ꎬy4).所以FMң=(y214-1ꎬy1)ꎬFNң=(y224-1ꎬy2).因为FMңʊFNңꎬ所以(y214-1)y2-(y224-1)y1=0.化简整理ꎬ得(y1-y2)(y1y2+4)=0ꎬ且y1ʂy2.所以y1y2=-4.②由DMңʊDAң易得(y214-2)y3-(y234-1)y1=0.即(y1-y3)(y1y3+8)=0.因为y1ʂy3ꎬ故y1y3=-8.③同理y2y4=-8.④由②③ꎬ得y3=2y2ꎬ由②④ꎬ得y4=2y1ꎬ所以kMN=y1-y2y21/4-y22/4=4y1+y2ꎬkAB=y3-y4y23/4-y24/4=4y3+y4=42y2+2y1=2y1+y2.所以kMN=2kABꎬtanα=2tanβ.要使α-β最大ꎬ必有α>βꎬ且αꎬβ均为锐角ꎬ所以tan(α-β)=tanα-tanβ1+tanαtanβ=tanβ1+2tan2β=12tanβ+1/tanβɤ122.当2tanβ=1tanβ(tanβ>0)ꎬ即tanβ=22时等号成立ꎬ此时tan(α-β)取最大值ꎬ相应α-β最大ꎬ故kAB=22.设直线AB:x=2y+nꎬ由x=2y+nꎬy2=4xꎬ{整理ꎬ得y2-42y-4n=0.所以y3y4=-4n.而y3y4=4y1y2=4ˑ(-4)=-16ꎬ所以n=4.故直线AB方程为x-2y-4=0.评注㊀此解法亮点有三处:一是利用向量共线寻找坐标关系ꎬ可有效避免讨论相关直线斜率不存在的情形ꎬ使问题的处理简单易行ꎬ学生也容易理解和接受ꎻ二是三组向量共线ꎬ实际上具有相同的结构ꎬ因此详解第一组向量共线后得出坐标关系后ꎬ第二组可以对照简化运算ꎬ而第三组同理可得就变得顺其自然了ꎬ这也是当下应用比较普遍的同一法ꎻ三是根据条件求出满足条件的kAB=22ꎬ设直线AB方程的横截式ꎬ与抛物线方程联立后ꎬ利用韦达定理得出y3y4=-4nꎬ结合前面所求y3y4=4y1y2与y1y2=-4ꎬ很容易求出n的值ꎬ进而求出直线AB的方程ꎬ大大简化了运算.解法4㊀(参数法)设抛物线参数方程为x=t2y=2t{(t为参数)ꎬ不妨设M(m2ꎬ2m)ꎬN(n2ꎬ2n)ꎬA(a2ꎬ2a)ꎬB(b2ꎬ2b)ꎬ且m>0ꎬb>0ꎬn<0ꎬa<0ꎬFMң=(m2-1ꎬ2m)ꎬFNң=(n2-1ꎬ2n).因为FMңʊFNңꎬ所以2n (m2-1)-2m (n2-1)=0.化简整理ꎬ得(m-n)(mn+1)=0ꎬ且mʂn.所以mn=-1.同理由DꎬMꎬA和DꎬNꎬB三点分别共线求得am=-2ꎬbn=-2.从而a=-2mꎬb=-2n=2m.所以kMN=2m-2nm2-n2=2m+n=2m-1/m=2mm2-1=tanαꎬkAB=2a-2ba2-b2=2a+b=2-2/m+2m=mm2-1=tanβ.所以kMN=2kABꎬtanα=2tanβ.下同解法3ꎬ求得kAB=22.此时mm2-1=22.由题设m>0ꎬ解得m=2+62.所以a=-2m=2-6ꎬa2=8-43.所以A(8-43ꎬ2(2-6)).故直线AB方程为x-2y-4=0.评注㊀此解法用到了抛物线的参数方程ꎬ求解更简洁ꎬ教材对于抛物线的参数方程仅在课本选修4-4中简单提及ꎬ学生不一定熟练掌握ꎬ需要老师们留心.3总结升华抛物线中的蝴蝶模型㊀已知抛物线y2=2px(p>0)ꎬ过点M(mꎬ0)作直线交抛物线于A(x1ꎬy1)ꎬB(x2ꎬy2)两点.已知点N(nꎬ0)ꎬ连接ANꎬBN交抛物线于C(x3ꎬy3)ꎬD(x4ꎬy4)两点ꎬ则kABkCD为定值.评析㊀此模型即为2022年高考真题中寻找两直线斜率关系的部分ꎬ大家利用以上任意一种方法进行运算求解ꎬ均可得到kABkCD=nm.所以此真题能得出的关系就是kABkMN=12ꎬ如果大家熟知此结论ꎬ或能按部就班推出此结论ꎬ这次的压轴题也就迎刃而解了.通过研究高考真题ꎬ发现在复习备考的征途中ꎬ特别是对于一些有文化背景的题ꎬ教师要有足够的耐心ꎬ深度解析各种方法ꎬ让学生在比较中开拓思路.因此ꎬ我们要充分利用好高考经典试题ꎬ从不同视角㊁不同解法深度解读ꎬ长此以往ꎬ一定能提升复习备考的效果[2].参考文献:[1]成开平.探析以圆锥曲线蝴蝶定理为背景的高考题[J].中学数学研究ꎬ2015(06):28-29.[2]罗增儒.怎样解答高考数学题[J].中学数学教学参考ꎬ2018(16):53-56.[责任编辑:李㊀璟]。
说题:多维视角下解析一道高考试题傅婷【期刊名称】《中学数学教学》【年(卷),期】2018(000)003【总页数】4页(P37-40)【作者】傅婷【作者单位】浙江省宁波中学 638400【正文语种】中文笔者有幸参加宁波教研室组织的高中数学说题比赛.在参加比赛之前,笔者的学生问了这样一个问题:已知一个抛物线型的酒杯,杯口宽4cm,杯深4cm,若将一个玻璃球放进酒杯中,当玻璃球的半径在什么范围内,玻璃球一定会触及酒杯底部?笔者在给学生解答的过程中,发现这个酒杯中的数学与2016年浙江高考理科数学试卷第19题其实是同一类型的问题.遂选择了这个题目进行说题,题目如下:如图,设椭圆(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.1 解法分析考点弦长公式;圆与椭圆的位置关系;椭圆的离心率几何条件含参圆与椭圆至多有三个交点;离心率范围目标动态圆锥曲线交点问题的转化第(I)题:考查直线与椭圆相交的位置关系,涉及到线段长,可以考虑用弦长公式,解法如下:由题意可得:解得:x1=0,.直线y=kx+b被椭圆截得的线段长为:·第(II)题:考查的是双二次曲线的交点问题,本题中有动态和恒成立两个难点,故问题的解决关键在于交点问题的转化.视角一代数视角由于圆锥曲线的交点个数可以转化为方程有解问题,便有解法1.解法1 方程在区间上根的分布问题由得(a2-1)y2+2y+r2-1-a2=0(*)先考虑有四个交点情况,则需要方程(*)在(-1,1)上有两不同根,由得当时,存在这样的r, 使得方程(*)在(-1,1)上有两解,圆与椭圆有4个交点.故圆与椭圆至多有3个公共点时,1<a≤,椭圆的离心率范围是0<e≤.知识圆与椭圆的对称性、根的分布问题策略正难则反思想方程思想方程的有解问题可以转化为函数的交点问题,故有解法2.解法2 函数在区间上的交点个数(1-a2)y2-2y+1+a2=r2.令f(y)=(1-a2)y2-2y+1+a2(-1≤y≤1) ,得而1-a2<0,假设存在r,使函数t=f(y)与t=r2在(-1,1)上有两个不同的交点,则需求函数f(y) 在 (-1,1)不是单调函数,只需,即a2>2.当a2>2时,圆与椭圆有4个不同的公共点.所以当1<a≤时符合题意,椭圆的离心率范围是0<e≤.思想函数与方程思想、数形结合思想视角二几何视角椭圆具有对称性,要保证圆与椭圆至多有3个公共点,则圆与椭圆y轴单侧不可能有2个公共点,即弦长在y轴单侧处处不相等.将两条动态曲线的交点问题转化为弦长问题,再代数解决.解法1 弦长相等(浙江省考试院提供的参考答案)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P、Q,满足AP=AQ,记直线AP、AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知·,·,故··,所以.由于k1,k2>0,k1≠k2,得:.①因为①式关于k1,k2的方程有解的充要条件是:1+a2(a2-2)>1,所以.因此,以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a2≤2.离心率,因此椭圆的离心率范围是0<e≤.知识圆与椭圆的对称性、弦长公式思想函数与方程思想在解法1的基础上,若AP=AQ,则三角形APQ为等腰三角形,连接PQ,取其中点M,连接AM,如图所示,则AM垂直PQ.涉及中点、垂直的位置关系,可以考虑用点差法,将弦长相等的数量关系转化为几何的位置关系.解法2 点差法假设圆与椭圆的公共点有4个,由对称性可设轴左侧的椭圆上有两个不同的点P、Q,满足AP=AQ.设P(x1,y1),Q(x2,y2),PQ的中点为M(x0,y0).则两式相减得:. 即(x1-x2)(x1+x2)+a2(y1-y2)(y1+y2)=0,得x0+a2y0·.②由AP=AQ,得AM⊥PQ,即kAM··.所以,代入②式得:x0+a2y0·,由得:a2>2.因此,以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤.离心率,因此椭圆的离心率范围是0<e≤.知识圆与椭圆的对称性、点差法思想设而不求思想、函数思想视角三函数视角圆与椭圆至多有3个公共点,即当点P从上定点逆时针旋转到下定点时,PA处处不相等,即弦长在y轴左侧单调.可以考虑构造函数,将交点问题转化为函数的单调性.解法1 弦长在y轴单侧单调递增由(1)知,设k2=t,则在区间(0,+∞)内单调递增.只需t2+t≤,即t≤恒成立,得≥1,即a2≤2.离心率,因此椭圆的离心率范围是0<e≤.知识弦长公式、单调性思想函数思想在解法1的基础上,弦长单调递增,即意味着弦长是具有最大值的.反思解法1,利用弦长公式构造出的函数,较为复杂,不便于研究.点P为椭圆上的任意动点,可以利用椭圆的方程进行三角换元来设点P的坐标,则PA为P、A两点间的距离公式.解法2 弦长的最大值圆与椭圆至多有3个公共点,即当点P从上顶点逆时针旋转半圈到下顶点时,PA 单调递增,即当且仅当点P(acosθ,sinθ)为下顶点B(0,-1)时,PAmax=2.PA2=a2cos2θ+(sinθ-1)2=(1-a2)sin2θ-2sinθ+1+a2,(-1≤sinθ≤1)因为PA的最大值当且仅当sinθ=-1时取到,且1-a2<0,所以对称轴≤-1,又a>1,得1<a≤.离心率,因此椭圆离心率的取值范围为知识距离公式、二次函数最值思想函数思想、数形结合思想对于一个复杂的动态圆锥曲线的交点问题,若直接处理起来比较困难,有时候可以考虑特殊位置.视角四特殊视角若需满足题目条件,只需当临界情况,即半径r=2时,椭圆完整在圆内,否则只需半径再大一点就会有4个交点.取相同y时,,即(1-y2)a2<4-(y-1)2,所以,当-1<y<1时,a2≤2.离心率∈(0,.策略考虑临界位置思想函数思想、数形结合思想解法小结对于本题,解法众多,但笔者认为最理想的解法是转化为距离(弦长)的最值.2 背景分析2.1 本质研究本题所涉及的动态圆与椭圆的交点问题,其本质是y轴上的定点A到圆锥曲线椭圆上动点P的距离PA的最值问题.解决步骤如下:(1)两点坐标;(2)距离公式;(3)构造函数;(4)函数最值.深入研究本问题,还是得到一些其他的结论:在y轴单侧,PA单调递增时,圆与椭圆的交点个数为2或1或0个;在y轴单侧,PA不单调时,圆与椭圆的交点个数为4或3个.2.2 问题链接以下两个问题也是定点到圆锥曲线(椭圆、抛物线)上动点的距离的最值问题. (1990年全国卷)已知椭圆的中心为坐标原点,长轴在x轴上,已知点P(0,到椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.有一种酒杯的轴截面近似一条抛物线,杯口宽4米,深8米,称之为抛物线酒杯,当玻璃球的半径为多大时,玻璃球一定会触及到酒杯底部.3 拓展变式对于2016年浙江高考理科数学试卷第19题,定点A在y轴上的位置比较特殊,恰为椭圆的上顶点,故对这个问题还可以进行拓展.变式1 点A在y轴上,椭圆外设椭圆,若任意以点A(0,tb)(t>1)为圆心的圆与椭圆至多有3 个公共点,求离心率e的取值范围.变式2 点A在在y轴上,椭圆内设椭圆,若任意以点A(0,tb)(0<t<1)为圆心的圆与椭圆至多有3个公共点,求离心率e的取值范围.变式3 点A在y轴正方向上运动设椭圆,若任意以点A(0,tb)(t>0)为圆心的圆与椭圆至多有3个公共点,求e,t满足的条件.解设椭圆上动点为P(acosθ,bsinθ),则PA2=a2cos2θ+(bsinθ-tb)2=(b2-a2)sin2θ-2b2tsinθ+t2b2+a2,(-1≤sinθ≤1),由≤-1得0<e≤.一般结论点A在y轴上时,当0<e≤(t≠0)时,至多有3个交点;点A在y轴上时,当(t≠0)时,有4个交点;变式5 点A在x轴正方向上运动设椭圆,若任意以点A(ta,0)(t>0)为圆心的圆与椭圆至多有3个公共点,求e、t所满足的条件.解设椭圆上动点为P(acosθ,bsinθ),则PA2=(acosθ-t)2+b2sin2θ=(a2-b2)·cos2θ-2atcosθ+t2+b2(-1≤cosθ≤1),由≥1得0<e≤.一般结论:点A在x轴,当0<e≤(t≠0),至多有3个交点;点A在x轴,当(t≠0),有4个交点;变式6 圆与抛物线的交点问题设抛物线方程为x2=2py(p>0),若任意以点A(0,t)(t>0)为圆心的圆与抛物线至多有3个公共点,求t、p需满足的条件.解设抛物线上点为p(x0,y0),则,当≤0时,t≤p.变式7 点A为平面上任意一点设椭圆,若任意以点A(m,n)为圆心的圆与椭圆至多有3个公共点,求离心率e的取值范围.4 教学启示通过对这道高考试题的研究,笔者得到了一些启发.任何一个复杂解析几何问题的解决,都需要用到基本知识,因此在教学的过程中应该注重学生基础知识、基本技能的夯实;引导学生从不同视角下进行研究,挖掘问题的本质;关注解析几何问题(比如交点问题)转化中的通性通法,方程与函数、数形结合等思想的应用.通过对问题的变换、推广和转化,可以有效培养学生思维的广阔性.。
一道高考试题的多视角解法探究
高考试题:有一个容量为V的筒,里面装满了相同体积的小球,如果把小球一个一个取出来,那么最后一个小球取出来时,筒里空出来的空间到底有多大?
从数学角度来看,这个问题可以用几何学的概念来解释。
V有一个体积,当小球一个一个取出来时,里空出来的空间就比原来少了小球的体积,因此最后一个小球取出来时,筒里空出来的空间就是V减去小球的体积。
由于小球都是相同体积的,因此最后空出来的空间也是完全相同的,即V-V/n,其中n是小球的数量。
从物理学角度来看,这个问题可以用力学的概念来解释。
当把小球一个一个取出来时,里的空气会出现变化,空气密度会发生变化,从而影响里空出来的空间。
由于小球都是相同体积的,因此它们在被取出时会比较均匀,而且它们的取出会使里的空气密度发生变化,从而影响最终空出来的空间大小。
从化学角度来看,这个问题可以用化学的概念来解释。
小球可以看作是一种物质,当它们一个一个取出来时,里的空气会发生变化,从而影响最终空出来的空间大小。
由于小球都是相同体积的,因此它们在取出时会比较均匀,而且它们的取出会使里的空气发生变化,从而影响最终空出来的空间大小。
总的来说,这道高考题的答案是V-V/n,其中n是小球的数量。
从数学、物理和化学的角度来看,这道题可以用不同的概念来解释,但最后的结果是一样的。
它们都强调了小球一个一个取出来时,里空出来的空间是它们体积的总和。