(完整版)圆周运动综合练习题(有答案)
- 格式:doc
- 大小:177.51 KB
- 文档页数:3
高中物理必修二第六章圆周运动考点精题训练单选题1、一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内作半径为R的圆周运动,如图所示,则()A.小球过最高点时,杆所受弹力一定不为零B.小球过最高点时的最小速度是√gRC.小球过最高点时,杆的弹力可以向上,此时杆对球的作用力一定不大于重力D.小球过最高点时,杆对球的作用力一定跟小球所受重力的方向相反答案:CA.小球过最高点时,若只靠小球重力提供向心力时,杆所受弹力为零,故A错误;B.由于小球连接的轻杆,所以小球过最高点时的最小速度可以为零,故B错误;C.当小球过最高点,杆的弹力可以向上时,杆对小球的作用力反向向下,此时重力和杆的弹力的合力提供向心力,即mg−F=m v2 RF=mg−m v2 R此时杆对球的作用力小于或者等于重力,故C正确;D.当小球过最高点时的速度v>√gR时,此时合外力提供向心力,即F 合=mv2R>mg此时杆对球的作用力与小球的重力方向相同,故D错误。
故选C。
2、如图所示,质量相同的质点A、B被用轻质细线悬挂在同一点O,在同一水平面内做匀速圆周运动,则()A.A的线速度一定比B的线速度大B.A的角速度一定比B的角速度大C.A的向心力一定比B的向心力小D.A所受细线的拉力一定比B所受细线的拉力小答案:AAB.设细线与竖直方向的夹角为θ,根据mgtanθ=mLsinθ⋅ω2=mv2 L sinθ得v=√gLsinθtanθω=√gL cosθA球细线与竖直方向的夹角较大,则线速度较大,两球L cosθ相等,则两球的角速度相等,故A正确,B错误;C.向心力F n=mgtanθA球细线与竖直方向的夹角较大,则向心力较大,故C错误;D.根据竖直方向上受力平衡有Fcosθ=mgA球与竖直方向的夹角较大,则A球所受细线的拉力较大,故D错误。
故选A。
3、如图所示为走时准确的时钟面板示意图,M、N为秒针上的两点。
以下判断正确的是()A.M点的周期比N点的周期大B.N点的周期比M点的周期大C.M点的角速度等于N点的角速度D.M点的角速度大于N点的角速度答案:C由于M、N为秒针上的两点,属于同轴转动的两点,可知M与N两点具有相同的角速度和周期。
1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。
高中物理生活中的圆周运动及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C点后经过98s 再次回到C 点。
1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
专题10:圆周运动中的两类临界问题及综合训练一、与摩擦力有关的临界极值问题1.质量m=2000kg的汽车在水平路面上以v=36km/h的速度转弯,路面能提供的最大静摩擦力为车重的0.5倍.为保证汽车不发生侧滑,转弯半径至少多大?(g取10m/s2)(答案:20m)2.(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴OO′的距离为2L,木块与圆盘间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg3.(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大二、与弹力有关的临界极值问题4.如图所示,在光滑的圆锥体顶用长为L的细线悬挂一质量为m的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,小球以速率v绕圆锥体轴线做水平圆周运动.(1)当v1=gL6时,求细线对小球的拉力大小;(2)当v2=3gL2时,求细线对小球的拉力大小.5.如图所示,转动轴垂直于光滑平面,交点O的上方h处固定细绳的一端,细绳的另一端拴接一质量为m的小球B,绳长AB=L>h,小球可随转动轴转动并在光滑水平面上做匀速圆周运动。
高中物理第六章圆周运动典型例题单选题1、如图将红、绿两种颜色石子放在水平圆盘上,围绕圆盘中心摆成半径不同的两个同心圆圈。
圆盘在电机带动下由静止开始转动,角速度缓慢增加。
每个石子的质量都相同,(石子与圆盘间的动摩擦因数μ均相同。
则下列判断正确的是()A.红石子先被甩出B.红、绿两种石子同时被甩C.石子被甩出的轨迹一定是沿着切线的直线D.在没有石子被甩出前,红石子所受摩擦力小于绿石子的答案:DABD.由受力分析可知,由静摩擦力提供向心力,由牛顿第二定律可知f=mω2r知当角速度增大时,静摩擦力也增大,由于绿石子的半径大于红石子的半径,绿石子的的静摩擦力大于红石子的静摩擦力,且绿石子的静摩擦力先达到最大值,所以绿石子先被甩出,故AB错误,D正确;C.被甩出时做离心运动,轨迹为曲线,故C错误。
故选D。
2、杂技演员表演“水流星”,在长为0.8m的细绳的一端,系一个与水的总质量为m=0.5kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为4m/s,则下列说法正确的是(g=10m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5N答案:DABD.当水对桶底压力为零时有mg=m v2 r解得v=√gr=2√2m/s“水流星”通过最高点的速度为2√2m/s时,知水对桶底压力为零,不会从容器中流出;对水和桶分析,有T+mg=m v2 r解得T=5N知此时绳子的拉力不为零,AB错误,D正确;C.“水流星”通过最高点时,受重力和绳子的拉力,C错误。
故选D。
3、如图,在水平圆盘上沿半径放有质量均为m=3kg的两物块a和b(均可视为质点),两物块与圆盘间的动摩擦因数均为μ=0.9,物块a到圆心的距离为r a=0.5m,物块b到圆心的距离为r b=1m。
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
描述圆周运动的物理量知识梳理:一、描述圆周运动的物理量1、线速度和角速度:2、周期和频率(转速):3、相关模型:共轴传动: 皮带传动:齿轮传动:n 1、n 2分别表示齿轮的齿数v A =v B ,T A T B = r 1r 2 = n 1n 2,ωA ωB = r 2r 1 = n 2n 1. 基本概念( 圆周运动是 运动。
填匀速或变速 )1.下列四组物理量中,都是矢量的一组是( )A .线速度、转速B .角速度、角度C .时间、路程D .线速度、位移2.多选 当物体做匀速圆周运动时,下列说法中正确的是( )A .物体处于平衡状态B .物体由于做匀速圆周运动而没有惯性C .物体的速度由于发生变化而会有加速度D .物体由于速度发生变化而受合力作用3.多选 做匀速圆周运动的物体,下列各物理量中不变的是( )A .线速度B .角速度C .周期D .转速4.下列关于甲乙两个做匀速圆周运动的物体的有关说法中正确的是( )A .若甲乙两物体的线速度大小相等,则角速度一定相等B .若甲乙两物体的角速度大小相等,则线速度一定相等C .若甲乙两物体的周期相等,则角速度一定相等D .若甲乙两物体的周期相等,则线速度一定相等相关模型的应用1.如图所示,皮带转动装置转动时,皮带上A 、B 点及轮上C 点的运动情况是( )A .v A =vB ,v B >vC B .ωA =ωB ,v B >v C C .v B =v C ,ωA =ωBD .ωA >ωB , v B =v C2.如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 ,角速度之比是 ,周期之比是 .3.两个小球1、2固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,如图所示,当小球1的速度为υ1时,小球2的速度为υ2,则转轴O 到小球1的距离是( ).A .112l υυυ+B .212l υυυ+C .121()l υυυ+D .122()l υυυ+ 4.多选 如图所示,有一个环绕中心线OO' ,以角速度ω转动的球,则有关球面上的A ,B 两点的线速度和角速度的说法正确的是( )A .A ,B 两点的角速度相等 B .A ,B 两点的线速度相等C .若θ=30°,则v A :v B =:2D .以上答案都不对5.如图所示,一个环绕中心线AB 以一定的角速度转动,P 、Q 为环上两点,位置如图,下列说法正确的是( )A .P 、Q 两点的角速度相同B .P 、Q 两点的线速度相同C .P 、Q 两点的角速度之比为3:1D .P 、Q 两点的线速度之比为3:16.多选 如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点的 ( )A .角速度之比ωA ∶ωB =1∶B .角速度之比ωA ∶ωB =1∶1C .线速度之比v A ∶v B =1∶D .线速度之比v A ∶v B =∶17.如图所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .a 、b 和c 三点的角速度相等B .a 、b 和c 三点的线速度大小相等A B C8.如图所示,A 、B 是两只相同的齿轮,A 被固定不能转动。
(物理)物理生活中的圆周运动练习题及答案一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m(2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+5.如图1所示是某游乐场的过山车,现将其简化为如图2所示的模型:倾角θ=37°、L =60cm 的直轨道AB 与半径R =10cm 的光滑圆弧轨道BCDEF 在B 处平滑连接,C 、F 为圆轨道最低点,D 点与圆心等高,E 为圆轨道最高点;圆轨道在F 点与水平轨道FG 平滑连接,整条轨道宽度不计,其正视图如图3所示.现将一质量m =50g 的滑块(可视为质点)从A 端由静止释放.已知滑块与AB 段的动摩擦因数μ1=0.25,与FG 段的动摩擦因数μ2=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2.(1) 求滑块到达E 点时对轨道的压力大小F N ;(2)若要滑块能在水平轨道FG 上停下,求FG 长度的最小值x ;(3)若改变释放滑块的位置,使滑块第一次运动到D 点时速度刚好为零,求滑块从释放到它第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程s . 【答案】(1)F N =0.1N (2)x =0.52m (3)93m 160s = 【解析】 【详解】(1)滑块从A 到E ,由动能定理得:()]211sin 1cos 2cos 2E mg L R R mgL mv θθμθ⎡+---=⎣代入数据得:m/s 5E v =滑块到达E 点:2N Ev mg F m R+= 代入已知得:F N =0.1N(2)滑块从A 下滑到停在水平轨道FG 上,有()12sin 1cos cos 0mg L R mgL mgx θθμθμ⎡⎤+---=⎣⎦代入已知得:x =0.52m(3)若从距B 点L 0处释放,则从释放到刚好运动到D 点过程有:010sin +(1cos )]cos 0mg L R R mgL θθμθ---=[代入数据解得:L 0=0.2m从释放到第一次返回最高点过程,若在轨道AB 上上滑距离为L 1,则:()()01101sin cos 0mg L L mg L L θμθ--+=解得:11001sin cos 1sin cos 2L L L θμθθμθ-==+同理,第二次返回最高点过程,若在斜轨上上滑距离为L 2,有:2121101sin cos 11sin cos 22L L L L θμθθμθ-⎛⎫=== ⎪+⎝⎭故第5次返回最高点过程,若在斜轨上上滑距离为L 5,有: 55012L L ⎛⎫= ⎪⎝⎭所以第5次返回轨道AB 上离B 点最远时,它在AB 轨道上运动的总路程012345932222m 160L L L L L L s =+++++=6.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv - 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s 22x H +解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m7.如图甲所示,陀螺可在圆轨道外侧旋转而不脱落,好像轨道对它施加了魔法一样,被称为 “魔力陀螺”.它可等效为一质点在圆轨道外侧运动模型,如图乙所示.在竖直平面内固定的强磁性圆轨道半径为R ,A 、B 两点分别为轨道的最高点与最低点.质点沿轨道外侧做完整的圆周运动,受圆轨道的强磁性引力始终指向圆心O 且大小恒为F ,当质点以速率v gR =通过A 点时,对轨道的压力为其重力的7倍,不计摩擦和空气阻力,重力加速度为g .(1)求质点的质量;(2)质点能做完整的圆周运动过程中,若磁性引力大小恒定,试证明质点对A 、B 两点的压力差为定值;(3)若磁性引力大小恒为2F ,为确保质点做完整的圆周运动,求质点通过B 点最大速率. 【答案】(1)7F m g= (2)''6A B N N mg -= (3)13Bm v gR 【解析】【试题分析】对陀螺受力分析,分析最高点的向心力来源,根据向心力公式即可求解;在最高点和最低点速度最大的临界条件是支持力为0,根据向心力公式分别求出最高点和最低点的最大速度.(1)在A 点: 2A mv F mg F R+-= ①根据牛顿第三定律: '7A A F F mg == ②由①②式联立得: 7Fm g=③ (2)质点能完成圆周运动,在A 点:根据牛顿第二定律:2'AA mv F mg N R +-= ④根据牛顿第三定律: 'A A N N = ⑤在B 点,根据牛顿第二定律:2'BB mv F mg N R --= ⑥ 根据牛顿第三定律: 'B B N N = ⑦从A 点到B 点过程,根据机械能守恒定律:2211222B A mg R mv mv =- ⑧ 由④⑤⑥⑦⑧联立得:''6A B N N mg -= 为定值,得到证明.(3)在B 点,根据牛顿第二定律:22BB mv F mg F R--=当F B =0,质点速度最大,B Bm v v =22Bmmv F mg R-= ⑨ 由③⑨⑩联立得:13Bm v gR =【点睛】本题考查竖直平面内的圆周运动的情况,在解答的过程中正确分析得出小球经过最高点和最低点的条件是解答的关键,正确写出向心力的表达式是解答的基础.8.如图,半径R =0.4m 的部分光滑圆轨道与水平面相切于B 点,且固定于竖直平面内.在水平面上距B 点s =5m 处的A 点放一质量m =3kg 的小物块,小物块与水平面间动摩擦因数为1=3μ.小物块在与水平面夹角θ=37o 斜向上的拉力F 的作用下由静止向B 点运动,运动到B 点撤去F ,小物块沿圆轨道上滑,且能到圆轨道最高点C .(g 取10m/s 2,sin37o =0.6,cos37o =0.8)求:(1)小物块在B 点的最小速度v B 大小;(2)在(1)情况下小物块在水平面上运动的加速度大小;(3)为使小物块能沿水平面运动并通过圆轨道C 点,则拉力F 的大小范围. 【答案】(1)25/B v m s = (2)22/a m s = (3)1650N F N ≤≤(或1650N F N ≤<) 【解析】 【详解】(1) 小物块恰能到圆环最高点时,物块与轨道间无弹力.设最高点物块速度为v C ,则2Cv mg m R=解得:2C v gR =物块从B 到C 运动,只有重力做功,所以其机械能守恒:()2211222B C mv mv mg R =+ 解得:525m/s B v gR ==(2) 根据运动学规律22B v as =,解得222m/s 2B v a s==(3)小物块能沿水平面运动并通过圆轨道C 点,有两种临界情况:①在F 的作用下,小物块刚好过C 点:物块在水平面上做匀加速运动,对物块在水平面上受力分析如图:则Fcos N ma θμ-=Fsin N mg θ+=联立解得:16N mg maF cos sin μθμθ+==+②在F 的作用下,小物块受水平地面的支持力恰好为零 Fsin mg θ=,解得:50N =F综上可知,拉力F 的范围为:16N 50N F ≤≤(或16N 50N F ≤<)9.如图所示,一段粗糙的倾斜轨道,在B 点与半径R =0.5m 的光滑圆弧轨道BCD 相切并平滑连接.CD 是圆轨道的竖直直径,OB 与OC 夹角θ=53°.将质量为m =1kg 的小滑块从倾斜轨道上的A 点由静止释放,AB =S ,小滑块与倾斜轨道间的动摩擦因数μ=0.5.sin53°=0.8,cos53°=0.6,g =10m/s 2.求: (1)若S =2m ,小物块第一次经过C 点时的速度大小; (2)若S =2m ,小物块第一次经过C 点时对轨道的压力大小; (3)若物块能沿轨道到达D 点,求AB 的最小值S ’.【答案】(1)26m/s (2)58N (3)S=2.1m【解析】【分析】【详解】(1)对小滑块从A 到C 的过程应用动能定理2c 1sin (1cos )cos 02mgS mgR mgS mv θθμθ+--=- 代入数据得c 26m/s v =(2)C 点时对滑块应用向心力公式2C N v F mg m R-= 代入数据得58N N F =根据牛顿第三定律得58N N F F ==压(3)小滑块恰能通过最高点D 时,只有重力提供向心力2D v mg m R= 代入数据得5m/s D v =对小滑块从静止释放到D 点全过程应用动能定理''2D 1sin (1cos )cos 02mgS mgR mgS mv θθμθ-+-=- 代入数据得 2.1m S '=【点睛】本题分析清楚物体运动过程是解题的前提与关键,应用动能定理与牛顿第二定律可以解题,解题时注意物体做圆周运动临界条件的应用.10.如图所示,水平传送带以5m/s 恒定速率顺时针转动,一质量m =0.5kg 的小物块轻轻放在传送带上的A 点,随传送带运动到B 点,小物块从C 点沿圆弧切线进入竖直光滑的半圆轨道(已知B 、C 在同一竖直线上),之后沿CD 轨道作圆周运动,离开D 点后水平抛出,已知圆弧半径R =0.9m ,轨道最低点为D ,D 点距水平面的高度h =0.8m ,(210m/s g =,忽略空气阻力),试求:(1)小物块刚进入圆轨道时速度的最小值;(2)若要让小物块从D 点水平抛出后能垂直碰击倾斜挡板底端E 点,挡板固定放在水平面上,已知挡板倾角θ=60°,传送带长度AB =1.5m ,求物块与传送带间的动摩擦因数μ。
高中物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ; (3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】 【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。
圆周运动综合练习题
1.汽车在半径为r 的水平弯道上转弯,如果汽车与地面的滑动摩擦因数为μ,那么使汽车发生侧滑的最小速率为 :( B )
A .rg ;
B .gr μ;
C .g μ;
D .mg μ。
2.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法中正确的是:( C ) ①小球线速度大小一定时线越长越容易断; ②小球线速度大小一定时,线越短越容易断; ③小球角速度一定时,线越长越容易断; ④小球角速度一定时,线越短越容易断。
A .①③;
B .①④;
C .②③;
D .②④。
3.轻杆一端固定在光滑水平轴上,另一端固定一质量为m 的小球,如图所示,给小球一
初速度,使其在竖直平面内运动,且刚好能通过最高点,下列说法正确的是:( BD )
A .小球在最高点时对杆的作用为零;
B .小球在最高点时对杆的作用力大小为mg ;
C .若增大小球的初速度,则在最高点时球对杆的力一定增大;
D .若增大小球的初速度,则在最高点时球对杆的力可能增大。
4.当汽车通过拱桥顶点的速度为5m/s 时,车对桥顶的压力为车重的8/9,如果要使汽车在粗糙的桥面行使至桥顶时,不受摩擦力作用,则汽车通过桥顶的速度应为:( C )
A .5m/s ;
B .10m/s ;
C .15m/s ;
D .20m/s 。
5.长为L 的细线,一端系一个质量为m 的小球,另一端固定于O 点。
当线拉着球在竖直平面内绕O 点作圆周运动时刚好过最高点,则下列说法正确的是:( BC )
A .小球过最高点时速率为零;
B .小球过最低点时速率为gL 5;
C .小球过最高点时线的拉力为零;
D .小球过最低点时线的拉力为5mg 。
6.关于匀速圆周运动,下列说法正确的是:( C )
A .匀速圆周运动就是匀速运动;
B .匀速圆周运动是匀加速运动;
C .匀速圆周运动是一种变加速运动;
D .匀速圆周运动的物体处于平衡状态。
7.在匀速圆周运动中,下列关于向心加速度的说法中,正确的是:( A )
A .向心加速度的方向始终与速度的方向垂直;
B .向心加速度的方向保持不变;
C .在匀速圆周运动中,向心加速度是恒定的;
D .向心加速度的大小不断变化。
8.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须:( D )
A .减为原来的1/2倍;
B .减为原来的1/4倍;
C .增为原来的2倍;
D .增为原来的4倍。
9.质量为m 的飞机,以速率V 在水平面上作半径为R 的匀速圆周运动,空气对飞机的作用力大小等于:( D )
A .mg ;
B .R
V m 2
; C .222g )R /v (m -; D .222g )R /v (m +。
10.当圆锥摆的摆长L 一定时,则圆锥摆运动的周期T 与摆线和竖直线之间夹角θ的关系是:( A )
A 、角θ越小,周期T 越长;
B 、角θ越小,周期T 越短;
C 、周期T 的长短与角θ的大小无关;
D 、条件不足,无法确定。
11.如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一
水平面内作匀速圆周运动,则它们的:( AC )
A. 运动周期相同;
B. 运动线速度一样;
C. 运动角速度相同;
D. 向心加速度相同。
12.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算该女运动员:( BC )
A .受到的拉力为3G ;
B .受到的拉力为2G ;
C .向心加速度为3g ;
D .向心加速度为2g 。
13.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面内做匀速圆周运动,以下说法正确的是:( D )
A.V A >V B ;
B.ωA >ωB ;
C.a A >a B ;
D.压力N A >N B 。
14.长度为0.5m 的轻质细杆OA ,A 端有一质量为 3kg 的木球,以O 点为圆心,在竖直面内作圆周运动,如图所示,小球通过最高点的速度为 2m/s ,取g = 10 m/s 2,则此时球对轻杆的力大小是 6 ,方向向 上 。
15.如图所示,内壁光滑的半球形容器半径为R ,一个小球(视为质点)在容器内沿水平面做匀速圆周运动,小球与容器球心连线与竖直方向成θ角,则小球做匀速圆周运动的角速度为
cos R g 。
16.如右图所示,压路机后轮半径是前轮半径的 2倍,A 、B 分别为前轮和后轮
边缘上的一点,则A 、B 两点的角速度之比为ωA :ωB = 2:1 ,线速度之比为
V A :V B = 1:1 ,向心加速度之比a A :a B = 2:1
17.用长为L 的细线拴一个小球使其绕细线的加一端在竖直平面内做圆周运动,
当球通过圆周的最高点时,细线受到的拉力等于球重的2倍,已知重力加速度为
g ,则球此时的速度大小为
gL 3。
B A
18.汽车沿半径为R 的圆形跑道匀速率行驶,设跑道的路面是水平的,使汽车做匀速圆周运动的向心力是路面对汽车的 静摩擦 力提供的,若此力的最大值是车重的0.1倍,跑道半径R=100 m ,g=10 m /s 2,则汽车速率的最大值不能超过 36 km /h .
19.汽车通过拱桥顶点的速度为10m/s 时,车对桥的压力为车重的3/4,如果使汽车行驶至桥顶时桥恰无压力,则汽车速度大小为 20 m/s 。
20.质量为m 的小球,沿着在竖直平面的圆形轨道的内侧运动,它经过最高点而不脱离轨道的最小速度是V ,当小球以2V 的速度经过最高点时,这对轨道的压力是 3mg 。
21.铁路转弯处圆弧半径为R,内外侧高度差为H,两轨间距L >H,列车转弯的最佳速率是
22h L Rh -
22. 如图,已知绳长a =10
2m ,水平杆长b =0.1m ,小球质量m =0.3kg ,整个装置可绕竖直轴转动。
取2s /m 10g =
(1)要使绳子与竖直方向成450角,试求该装置必须以多大的角速度旋转?
(2)此时绳子对小球的拉力为多大? 解: (1). s /rad 25=ω;(2). 绳中拉力N 2
23F =。