上海市金山区2016届高三数学上学期期末调研考试试题
- 格式:doc
- 大小:349.50 KB
- 文档页数:7
高中数学学习材料唐玲出品上海市各区县2016届高三上学期期末考试数学理试题汇编函数一、填空题1、(宝山区2016届高三上学期期末)方程0624=--xx 的解集为 .2、(崇明县2016届高三上学期期末)已知 f (x )、g(x )分别是定义在R 上的偶函数和奇函数,且 f (x ) −g(x ) =2x+x ,则f (1) +g(1) =3、(奉贤区2016届高三上学期期末)方程9360x x+-=的实数解为_________ 4、(虹口区2016届高三上学期期末)函数1()2x f x +=的反函数1()_________.f x -=5、(黄浦区2016届高三上学期期末)若函数22()1f x x a x =-+-为偶函数且非奇函数,则实数a 的取值范围为 .6、(金山区2016届高三上学期期末)方程4x – 6⨯2x +8=0的解是7、(静安区2016届高三上学期期末)方程3(1)(1)l o g (98)l o g (1)3x x x x x +--+⋅+=的解为 .8、(闵行区2016届高三上学期期末)方程4260xx--=的解为 .9、(普陀区2016届高三上学期期末)若函数()1f x x =-,()1g x x x =-+,则()()f x g x +=________.10、(青浦区2016届高三上学期期末)函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .11、(松江区2016届高三上学期期末)若幂函数()x f 的图像过点22,2⎛⎫ ⎪ ⎪⎝⎭,则()12f -= ▲ . 12、(杨浦区2016届高三上学期期末)已知函数()34log 2f x x ⎛⎫=+ ⎪⎝⎭,则方程()14f x -=的解x = _____________.13、(闸北区2016届高三上学期期末)函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ;14、(长宁区2016届高三上学期期末)方程9x +3x -2 = 0的解是___________. 15、(闵行区2016届高三上学期期末)若函数()2x af x -=()a ∈R 满足(1)(1)f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 .16、(青浦区2016届高三上学期期末)函数()lg(23)xxf x =-的定义域为 . 17、(松江区2016届高三上学期期末)已知函数()f x ,对任意的[1,)x ∈+∞,恒有(2)2()f x f x =成立, 且当[1,2)x ∈时,()2f x x =-. 则方程1()3f x x =在区间[1,100]上所有根的和为 ▲ .18、(杨浦区2016届高三上学期期末)已知()f x 是定义在R 上的奇函数,当01x ≤≤时,()2f x x =,当0x >时,()()()11f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有11个不同的公共点,则实数k 的取值范围为____________.19、(长宁区2016届高三上学期期末)设函数 y =f (x )的反函数是 y =f -1(x ),且函数 y =f (x )过点P (2,-1),则 f -1(-1)=二、选择题1、(崇明县2016届高三上学期期末)汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( ) (A)消耗1 升汽油,乙车最多可行驶5千米(B)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 (C)甲车以80 千米/小时的速度行驶1 小时,消耗10 升汽油(D)某城市机动车最高限速80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油2、(虹口区2016届高三上学期期末)设函数22,0,(),0,x x f x log x x ⎧+≤⎪=⎨>⎪⎩若关于x 的方程()f x a =有四个不同的解1234,,,,x x x x且1234,x x x x <<<则3122341()x x x x x ++的取值范围是 ( ) (A )()3,-+∞ (B )(),3-∞ (C )[)3,3- (D )(]3,3-3、(金山区2016届高三上学期期末)如图,AB 为定圆O 的直径,点P 为半圆AB 上的动点.过点P作AB 的垂线,垂足为Q ,过Q 作OP 的垂线,垂足为M .记弧AP 的长为x ,线段QM 的长为y ,则函数y =f (x )的大致图像是( ).4、(静安区2016届高三上学期期末)函数213(10)x y x -=-≤<的反函数是 ( )A .311log ()3y x x =-+≥B .311log (1)3y x x =-+<≤C .311log (1)3y x x =+<≤ D .311log ()3y x x =+≥5、(闵行区2016届高三上学期期末)设2345()2510105f x x x x x x =+++++,则其反函数的解析式为( ).(A) 511y x =+- (B) 511y x =--(C) 511y x =-+- (D) 511y x =---6、(普陀区2016届高三上学期期末)若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程 ()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根.其中正确的个数是( ).A 1个 .B 2个 .C 3个 .D 4个7、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在()π,0 上递增的函数的个数是 ( )① x tan y = ② ()x cos y -= ③ ⎪⎭⎫ ⎝⎛π-=2x sin y ④2x cot y =A. 1个B. 2个C. 3个D. 4个8、(长宁区2016届高三上学期期末)关于函数,有下列四个命题:①的值域是; ②是奇函数;③在上单调递增;④方程总有四个不同的解.其中正确的是 ( )A . ①②B . ②③C . ②④D . ③④三、解答题1、(奉贤区2016届高三上学期期末)已知函数()x f y =是单调递增函数,其反函数是()1y f x -=.(1)、若⎪⎭⎫ ⎝⎛>-=2112x x y ,求()1y f x -=并写出定义域M ; (2)、对于(1)的()1y f x -=和M ,设任意2121,,x x M x M x ≠∈∈,求证:()()212111x x x f x f-<---;(3)、若()x f y =和()1y f x -=有交点,那么交点一定在x y =上.2、(虹口区2016届高三上学期期末) 对于函数1(),1f x x=-定义[]11()(),()()().n n f x f x f x f f x n N *+==∈已知偶函数()g x 的定义域为(,0)(0,),(1)0g -∞⋃+∞=; 20150,1()().x x g x f x >≠=当且时, (1)求234(),(),(),f x f x f x 并求出函数()y g x =的解析式;(2) 若存在实数,()a b a b <使得函数[](),g x a b 在上的值域为[],mb ma ,求实数m 的取值范围.3、(静安区2016届高三上学期期末)已知定义在实数集R 上的偶函数()x f 和奇函数()x g 满足()()12x f x g x ++=.(1)求()f x 与()g x 的解析式;(2)若定义在实数集R 上的以2为最小正周期的周期函数()x ϕ,当11x -≤≤时,()()x f x ϕ=,试求()x ϕ在闭区间[2015,2016]上的表达式,并证明()x ϕ在闭区间[2015,2016]上单调递减;(3)设22()21h x x mx m m =++-+(其中m 为常数),若2(())1h g x m m ≥--对于[1,2]x ∈恒成立,求m 的取值范围.4、(普陀区2016届高三上学期期末)已知集合M 是满足下列性质的函数()f x 的全体,存在实数()0a k k ≠、,对于定义域内的任意x 均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”(1)判断()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”; (3)若()()1,1,2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫= ⎪⎝⎭;当2x =时,()0f x =.求当20142016x ≤≤时,函数()y f x =的解析式和零点.5、(杨浦区2016届高三上学期期末)已知函数()D)(x x f ∈,若存在常数T (T>0),对任意D x ∈都有()() x f T T x f ⋅=+,则称函数() x f 为T 倍周期函数 (1)判断()x x h =是否是T 倍周期函数,并说明理由.(2)证明()x41 x g ⎪⎭⎫⎝⎛=是T 倍周期函数,且T 的值是唯一的.(3)若() )N (n n f *∈是2倍周期函数,()11f =,()42f -=,n S 表示()n f 的前n 项和,1n 2n2n S S C -=,若10)1a (log C a n ++<恒成立,求a 的取值范围.6、(长宁区2016届高三上学期期末)已知函数,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有成立,则称函数是D 上的m 级类增周期函数,周期为T .若恒有成立,则称函数是D 上的m级类周期函数,周期为T . (1)已知函数上的周期为 1 的 2 级类增周期函数,求实数a 的取值范围; (2)已知上的m 级类周期函数,且上的单调递增函数,当时,,求实数m 的取值范围.参考答案 一、填空题1、{}3log 22、-123、3log 24、2log 1(0)x x ->5、(1,)+∞6、x=1或x =27、3x =8、2log 3x =9、 10、(,1)-∞-11、1412、1 13、单调递增,奇函数 14、x =0 15、1 16、(,0)-∞ 17、1190218、(264-,436-) 19、2二、选择题1、D2、D3、A4、B5、C6、C7、A8、B三、解答题 1、解:(1)、(),11+=-x x f⎪⎭⎫⎝⎛+∞-=,43M 3+2=5分(2)、()()11112121212111+++-=+-+=---x x x x x x x f x f 7分1131,142x x >-∴+>,211,4322>+∴->x x 9分11121>+++∴x x ,1111021<+++<∴x x 10分 21212111x x x x x x -<+++-∴()()212111x x x f x f -<-∴-- 11分(3)、设()b a ,是()x f y =和()1y f x -=有交点(第21题解图)y1x1-1O 即()()⎩⎨⎧==-a f b a f b 1,()()a f b b f a ==∴, 12分 当b a =,显然在x y =上 13分 当b a >,函数()x f y =是单调递增函数,()a b b f a f >∴>∴,)(矛盾 15分 当b a <,函数()x f y =是单调递增函数,()a b b f a f <∴<∴,)(矛盾 16分因此,若()x f y =和()1y f x -=的交点一定在x y =上 16分 2、解:(1)因为()11()()1,1f x f x x x==≠-故 []()2111()()10,1,111f x ff x x x xx===-≠≠-- [][]32431()()(0,1),11(1)1()()(0,1),(3)1f x ff x x x x xf x f f x x x x===≠≠--==≠≠-分故对任意的3,()()(2,3,4),n i i n N f x f x i +∈==有于是20153671221()()()1(0,1);f x f x f x x x x ⨯+===-≠≠201510,1()()1.x x g x f x x>≠==-故当时, 1(1)0,0()1.g x g x x =>=-又故当时,由()g x 为偶函数,1100,()()11.x x g x g x x x<->=-=-=+-当时, 11,0,1()1110.x xg x xx x ⎧+<⎪⎪==-⎨⎪->⎪⎩,因此. ……(6分)(2) 由于()y g x =的定义域为(,0)(0,)-∞⋃+∞, 又,,a b mb ma a b <<可知与同号,0m <且;进而[](),g x a b 在递减,且0.a b << ……(8分)函数()y g x =的图像,如图所示. 由题意,有1()1,1()1,g a ma a g b mb b ⎧=+=⎪⎪⎨⎪=+=⎪⎩……(10分) 故,a b 是方程11m x x+=的两个不相等的负实数根,即方程210m x x --=在(),0-∞上有两个不相等的实根,于是140101010.4m a b m ab m m ⎧⎪∆=+>⎪⎪+=<⎨⎪⎪=->⎪⎩⇔-<< ……(12分) 综合上述,得:实数m 的取值范围为1,0.4⎛⎫-⎪⎝⎭……(14分) 注:若采用数形结合,得出直线y m x =与曲线11(0)y x x=+<有两个不同交点,并进行求解也可.3、解:(1)假设1()()2x f x g x ++=①,因为()x f 是偶函数, ()x g 是奇函数所以有1()()2x f x g x -+-+-=,即1()()2x f x g x -+-= ②∵()f x ,()g x 定义在实数集R 上, 由①和②解得,11221()222x x xx f x +-++==+,11221()222x x x x g x +-+-==-.(2) ()x ϕ是R 上以2为正周期的周期函数, 所以当[2015,20x ∈时,2016[1,0]x -∈-,201620161()(2016)(2016)22x x x x f x ϕϕ--=-=-=+,即()x ϕ在闭区间[2015,2016]上的表达式为201620161()22x x x ϕ--=+.下面证明()x ϕ在闭区间[2015,2016]上递减:201620161()222x x x ϕ--=+≥,当且仅当201621x -=,即2016x =时等号成立.对于任意1220152016x x ≤<≤,1212212120162016201612201620162016111()()22(21)(2)222x x x x x x x x f x f x --------=+--=--,因为1220152016x x ≤<≤,所以121221,210x x x x --<-<,220160221x -≤=,120160221x -<=,12016112x ->,2120162016220x x ---<, 从而12()()0x x ϕϕ->,所以当1220152016x x ≤<≤时, ()x ϕ递减.(证明1()22xx f x =+在[1,0]-上递减,再根据周期性或者复合函数单调性得到也可)(3)∵()t g x =在[1,2]x ∈单调递增,∴31524t ≤≤.∴222()211h t t mt m m m m =++-+≥--对于315,24t ⎡⎤∈⎢⎥⎣⎦恒成立,∴222tmt+≥-对于315,24t⎡⎤∈⎢⎥⎣⎦恒成立,令22()2tk tt+=-,则221222t tt t+=+≥,当且仅当2t=时,等号成立,且322<所以在区间315,24t⎡⎤∈⎢⎥⎣⎦上22()2tk tt+=-单调递减,∴max317()()212k t k==-,∴1712m≥-为m的取值范围.4、5、(1) 设:()() x h T T x h ⋅=+则 x T T x ⋅=+ 对任意x 恒成立 (2分)T 无解∴ ()x x h = 不是T 倍周期函数 (2分)(2) 设:()() x g T T x g ⋅=+则 xT x 41T 41⎪⎭⎫⎝⎛⋅=⎪⎭⎫⎝⎛+ 对任意x 恒成立 (2分)T 41T=⎪⎭⎫⎝⎛21T = (2分)下证唯一性: 若 21T >, 214141T 21T =⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛= 矛盾 若 21T <, 214141T 21T =⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛= 矛盾∴ 21T = 是唯一的 (2分)(3)()()()2 12f 21f 3f ==+=()()()22 32f 23f 5f ==+=()()()32 52f 25f 7f ==+=()()()1-n 2 3-2n 2f 23-2n f 1n 2f ==+=-()()()()1222211-2n f 5f 3f 1f n 1n 2-=++++=++++- (2分)同理: ()()()()()()124222142n f 6f 4f 2f n 1n 2--=++++-=++++- ∴ ()()()()123n 2f 2f 1f S n n 2--=+++=同理:()()()321n 2f 2f 1f S n 1n 2+-=-+++=- ()32123S S C n n 1n 2n 2n --==- (2分) 3C 1-= 9C 2=显然:2n ≥ 0C n > 且 ()()()()()()32522327223212332123C C n 2n n 2n n n 1n 1n n1n +⋅-+⋅-=----=+++ ()()<+⋅-32722n 2n()()32522n 2n +⋅- ∴ 1C C n1n <+ 即单调递减 ∴ ()9C C 2m a x n == (2分) 10)1a (log C a n ++<恒成立,∴ >++10)1a (log a ()9C max n =∴ 1)1a (log a ->+① 1a > 时 a11a >+ 解得 :1a > ② 1a 0<< 时 a 11a <+ 解得 :251a 0+-<< ∴ 251a 0+-<< 或 1a > (2分) 6、1)由题意可知:f (x+1)>2f (x ),即-(x+1)2+a (x+1)>2(-x 2+ax )对一切[3,+∞)恒成立,整理得:(x-1)a <x 2-2x-1,∵x≥3,令x-1=t,则t∈[2,+∞),g(t)=t-2 t在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x-1)=m•2x-1,…当x∈[n,n+1)时,f(x)=mf(x-1)=m2f(x-2)=…=m n f(x-n)=m n•2x-n,即x∈[n,n+1)时,f(x)=m n•2x-n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n-n≥m n-1•2n-(n-1),即m≥2.。
金山区2015学年第一学期期末考试高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.3213lim +-∞→n n n = .2.已知全集U =R ,集合M ={x | x 2–4x –5〈0},N ={x | x ≥1},则M ∩(U N ) = .3.若复数z 满足i21i 43-+=z (i 为虚数单位),则z = .4.若直线l 1:6x +my –1=0与直线l 2:2x -y +1=0平行,则m = . 5. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛212332c c ,解为⎩⎨⎧==12y x ,则c 1–c 2= .6.方程4x – 62x +8=0的解是 .7.函数y =sec x sin x 的最小正周期T = . 8.二项式62)1(x x -展开式中3x 系数的值是 .9.以椭圆1162522=+y x 的中心为顶点,且以该椭圆的右焦点为焦点的抛物线方程是 。
10.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为 .(结果用数值表示)11.方程cos2x +sin x =1在(0,)上的解集是 .12.行列式dc ba(a 、b 、c 、d{–1,1,2})所有可能的值中,最小值为 .13.已知点P 、Q 分别为函数1)(2+=xx f (x ≥0)和1)(-=x x g 图像上的点,则点P 和Q 两点距离的最小值为 .14.某种游戏中,用黑、黄两个点表示黑、黄两个“电子狗”,它们从棱长为1的正方体ABCD –A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗"爬行的路线是AA 1→A 1D 1→…,黄“电子狗"爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(其中i 是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
高中数学上海市重点高中辅导讲义汇编学科:数学专题:矩阵行列式版本:学生用书姓名:年级:高二上海市各区县2016届高三上学期期末考试数学理试题汇编矩阵与行列式1、(宝山区2016届高三上学期期末)已知矩阵A =⎪⎪⎭⎫ ⎝⎛421y ,B =⎪⎪⎭⎫ ⎝⎛876x ,AB =⎪⎪⎭⎫⎝⎛50432219, 则x+y = .2、(崇明县2016届高三上学期期末)函数sin 2()1x f x =- cosx 的最小正周期是 .3、(宝山区2016届高三上学期期末)已知,0,>t ω函数xx x f ωωcos 1sin 3)(=的最小正周期为π2,将)(x f 的图像向左平移t 个单位,所得图像对应的函数为偶函数,则t 的最小值为 .4、(虹口区2016届高三上学期期末)行列式12cos()tan 25cos cot()x x x x ππ+-的最大值为______.5、(黄浦区2016届高三上学期期末)直线321x y=的一个方向向量可以是 .6、(嘉定区2016届高三上学期期末)已知31cos 75sin sin 75cos =︒-︒αα,则=+︒)230cos(α_______.7、(金山区2016届高三上学期期末)若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛212332c c ,解为⎩⎨⎧==12y x , 则c 1–c 2= .8、(金山区2016届高三上学期期末)行列式dc b a (a 、b 、c 、d ∈{–1,1,2})所有可能的值中,最小值为 .9、(闵行区2016届高三上学期期末)函数()cos()sin sin()cos x xf x x xπ-=π+的最小正周期T = .10、(浦东新区2016届高三上学期期末)若复数z 满足1012ii z=-(i 为虚数单位),则z = . 11、(青浦区2016届高三上学期期末)方程组35604370x y x y ++=⎧⎨--=⎩的增广矩阵是____________.12、(松江区2016届高三上学期期末)行列式cos 20sin 20︒︒ sin 40cos 40︒︒的值是 .13、(徐汇区2016届高三上学期期末)若三条直线03=++y ax ,02=++y x 和012=+-y x 相交于一点,则行列式11221131-a的值为__________.14、(杨浦区2016届高三上学期期末)已知矩阵1012A ⎛⎫= ⎪-⎝⎭,2413B ⎛⎫= ⎪-⎝⎭,则=+B A _____________.15、(长宁区2016届高三上学期期末)关于x 的不等式的解集为.(1)求实数a ,b 的值; (2)若为纯虚数,求tan α的值.【例题解析】1. 【上海市十三校2013年高三调研考数学试卷(文科)】已知二元一次方程组的增广矩阵是421m m mm +⎛⎫⎪⎝⎭,若该方程组无解,则实数m 的值为___________.2. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(文科)】计算:122423432⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭= .3. 【黄浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】三阶行列式45sin 2cos 610sin ---x x x ()R x ∈中元素4的代数余子式的值记为()x f ,则函数()x f 的最小值为4. 【黄浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】各项都为正数的无穷等比数列{}na ,满足,,42t a m a ==且⎩⎨⎧==ty m x 是增广矩阵⎪⎪⎭⎫⎝⎛-2221103的线性方程组⎩⎨⎧=+=+2222111211c y a x a c y a x a 的解,则无穷等比数列{}na 各项和的数值是 _________.5. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】若行列式124012x -=,则x = .2014年高三二模汇编——矩阵、行列式1、(2014宝山四区文理1). 二阶行列式ii i ++-1101的值是 . (其中i 为虚数单位)2、(2014长宁二模文理7)对于任意),1()1,0(∞+∈ a ,函数)1(log 111)(--=x x f a 的反函数)(1x f -的图像经过的定点的坐标是______________.3、(2014奉贤二模理10)、已知函数cos ()sin x f x x=, 则方程()021cos =+⋅x x f 的解是________.4、(2014奉贤二模文10)、将函数cos ()sin x f x x=的图像向左平移m 个单位(0)m >,若所得图像对应的函数为偶函数, 则m 的最小值是________.5、(2014虹口二模5文6)、复数z 满足11z ii i=+,则复数z 的模等于_______________.7、(2014浦东二模文理3). 函数()31cos 4sin xx x f =的最大值为 .8、(2014松江三区二模文理7).函数()()sin cos cos 2sin cos sin x x x f x xx xπ+-=-的最小正周期T =____________.【课堂练习】1. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】三阶行列式45sin 2cos 61sin ---xx x ()R x ∈中元素4的代数余子式的值记为()x f ,则函数()x f 的最小值为2. 【上海市十三校2013年高三调研考数学试卷(理科)】已知二元一次方程组的增广矩阵是421m m m m +⎛⎫⎪⎝⎭,若该方程组无解,则实数m 的值为___________.3. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】计算:122423432⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭= .4. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】若行列式124012x -=,则x = .5. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】各项都为正数的无穷等比数列{}na ,满足,,42t a m a ==且⎩⎨⎧==ty mx 是增广矩阵⎪⎪⎭⎫⎝⎛-2221103的线性方程组⎩⎨⎧=+=+2222111211c y a x a c y a x a 的解,则无穷等比数列{}na 各项和的数值是 _________.上海市各区县2015届高三上学期期末考试数学理试题分类汇编矩阵与行列式一、填空题1、(宝山区20152、(宝山区2015届高三上期末)设矩阵241A x ⎛⎫= ⎪⎝⎭,2211B -⎛⎫= ⎪-⎝⎭,若BA =2412⎛⎫⎪--⎝⎭, 则x =3、(崇明县2015届高三上期末)已知线性方程组的增广矩阵为103210⎛⎫⎪⎝⎭,则其对应的方程组解为4、(奉贤区2015届高三上期末)已知⎪⎪⎭⎫⎝⎛-βαcos 200sin 为单位矩阵,且,2παβπ⎡⎤∈⎢⎥⎣⎦、,则tan()αβ+= 5、(虹口区2015届高三上期末)行列式()3sin tan 4cos tan()2x x x x ππ-+的最小值为6、(嘉定区2015届高三上期末)将函数xx x f 2sin 12cos 3)(=的图像向左平移m (0>m )个单位,所得图像对应的函数为偶函数,则m 的最小值为____________7、(金山区2015届高三上期末)当a >0,b >0且a+b =2时,行列式ba 11的值的最大值是8、(浦东区2015届高三上期末)已知一个关于y x ,的二元线性方程组的增广矩阵是⎪⎪⎭⎫ ⎝⎛-210211,则y x +=9、(松江区2015届高三上期末)若复数z 满足014=-zz ,则z 的值为10、(徐汇区2015届高三上期末)若全集U R =,不等式11111x x+≥-的解集为A ,则U A C =11、(杨浦区2015届高三上期末)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若30a b c a ba b c ++=+-,则角C =_______12、(黄浦区2015届高三上期末)若三阶行列式1302124121n m mn -+---中第1行第2列的元素3的代数余子式的值是15-,则|i |n m +(其中i 是虚数单位,R m n ∈、)的值是二、选择题 1、(浦东区2015届高三上期末)已知数列{}n a 的通项公式2,n a n n N *=∈,则5231234201220134345620142015a a a a a a a a a a a a a a a a ++++= ( )()A 16096-()B 16104- ()C 16112-()D 16120-。
金山中学2016学年度上学期期未考试高三年级数学试题考试时间 120分钟 试题分数 150分I 卷(选择题共60分)一、选择题(共12个小题,每小题5分,共60分。
在每小题给出的四个选项中只有一个是符合题目要求的)1.已知集合2{0,},{|250,}P m Q x x x x Z ==-<∈,若P Q ≠∅ ,则m 等于 ( ) A .2B .1C .1或2D .1或252.已知函数x y sin 2=的定义域为],[b a ,值域为[-2,1],则a b -的值不可能是 ( ) A.65π B.πC.67πD.π2 3.已知“命题2:()3()p x m x m ->-”是“命题2:340q x x +-<”成立的必要不充分条件,则实数m 的取值范围为( )A .17m m ><-或B .17m m ≥≤-或C .71m -<<D .71m -≤≤4.在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m=( ) (A )9 (B )10 (C )11 (D )125. ()5a x x R x ⎛⎫+∈ ⎪⎝⎭展开式中3x 的系数为10,则实数a 等于( )A. -1B.12C.1D.2 6.设f(x)为定义在R 上的奇函数,当x≥0时,f(x)=2x+2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-37.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、 节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排 方案共有(A )36种 (B )42种(C)48种(D )54种8.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于 A .1-或25-64 B .1-或214 C .74-或25-64D .74-或79.设函数2()2()g x x x R =-∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是(A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦(B )[0,)+∞(C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦10.如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列命题①过M 点有且只有一条直线与直线AB 、11B C 都相交; ②过M 点有且只有一条直线与直线AB 、11B C 都垂直; ③过M 点有且只有一个平面与直线AB 、11B C 都相交; ④过M 点有且只有一个平面与直线AB 、11B C 都平行. 其中真命题是:A .②③④B .①③④C .①②④D .①②③11.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP的最大值为A .2B .3C .6D .812.如图,四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数sin 2y x =, sin()6y x π=+,sin()3y x π=-的图像如下。
金山区2016学年第一学期期末质量调研高三语文试卷(时间150分钟,分值150分)2016年12月第一部分积累应用(10分)一、填空(5分)1.(1)多情自古伤离别,。
(柳永《》)(2) ,官盛则近谀。
(韩愈《师说》)2.杜甫的《月夜》诗中与“遥知兄弟登高处,遍插茱萸少一人”这种从对面入笔,曲折地表达情感的手法相似的一句是,。
二、选择(5分)3.在网购中,“草”字通常可以理解为长势很凶猛的购买欲。
而网络语言“拔草”意指把心痒痒的购买欲给“拔”除了。
很多吟咏小草的古诗可以形成有趣类比,如:“,”,表达出购物欲也是随季节变迁,每到换季时节总会悄然萌生;“,”,流露出在满眼广告的世界里,到处都有你心仪的东西,随时激发你的购物欲;“,”,则是真切地呈现了购物欲总是挥之不去,不管别人劝阻还是自我放弃,隔几天又会浮上心头的情形。
将以下诗句依次填入上文空白处,正确的一项是( )A.离离原上草,一岁一枯荣/ 天涯何处无芳草,墙里秋千墙外道/ 野火烧不尽,春风吹又生B.离离原上草,一岁一枯荣/ 野火烧不尽,春风吹又生/ 天涯何处无芳草,墙里秋千墙外道C.野火烧不尽,春风吹又生/天涯何处无芳草,墙里秋千墙外道/ 离离原上草,一岁一枯荣D.天涯何处无芳草,墙里秋千墙外道/ 离离原上草,一岁一枯荣/ 野火烧不尽,春风吹又生4.在下面的情景中,最合乎情理的表述是( )小红利用暑假到一家公司打工,她拿着人生第一笔工作获得的酬劳,回家激动又兴奋,自豪地说:A.爸爸,周末我跟你去看电影。
B.我带你去看电影,就这个周末,爸爸。
C.爸爸,周末我带你去看电影。
D.我们一起去看电影,就这个周末,爸爸。
第二部分阅读(70分)一、阅读下文,完成5-9题。
(16分)中国画的生命“线”①世界上任何门类的艺术,都有其特定的表现方法。
从原始的洞窟壁画到后期成熟的绘画,线条渐渐成为造型艺术的重要词汇,被世界各国的艺术家们广泛采用。
以线条为主要表现手段的笔墨法造型,是中国画的突出特点。
金山区2016学年第一学期期末测试一、填空题1.若集合,{}2|x 20Mx x =-<,{}|1N x x =>,则MN = _________2.若复数z 满足232z z i -+=-,其中为i 虚数单位,则z =_________3.若5sin 13α=-,且α为第四象限角,则tan α的值是_________4、函数xx x x x f cos sin sin cos )(=的最小正周期是__________5、函数m x f x +=2)(的反函数为)(1x f y -=,且)(1x f y -=的图像过点)2,5(Q ,那么_______=m 6、点)0,1(到双曲线1422=-y x 到渐近线的距离是___________ 7、若实数,x y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是__________;8、从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有__________种不同的选法(结果用数值表示)。
9、方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是__________(结果化为普通方程)。
10.若n a 是()()2,2,nx n N n x R *+∈≥∈展开式中2x项的二项式系数,则23111lim n n a a a →+∞⎛⎫++⋅⋅⋅⋅⋅⋅= ⎪⎝⎭11.设数列{}n a 是集合{}|33,,,stx x s t s N t N =+<∈∈中所有的数从小到大排列成的数列,即14a =,210a =,312a =,428a =,530a =,636a =,……,将数列{}n a 中各项按照上小下大,左小右大的原则排成如右图等腰直角三角形数表41012283036…,则15a 的值为 。
12.曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数()20kk >的点轨迹。
2014-2015金山区高三数学上学期期末试卷(附答案)2014-2015金山区高三数学上学期期末试卷(附答案)(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合M={,xR},N={,x≥–2},则M∩N=▲.2.计算:=▲.3.不等式:的解是▲.4.如果复数z=(bR)的实部与虚部相等,则z 的共轭复数=▲.5.方程:sinx+cosx=1在[0,π]上的解是▲.6.等差数列中,a2=8,S10=185,则数列的通项公式an=▲(nN*).7.当a0,b0且a+b=2时,行列式的值的最大值是▲.8.若的二项展开式中的常数项为m,则m=▲.9.从一堆苹果中任取5只,称得它们的质量分别是:(单位:克)125,124,121,123,127,则该样本的标准差是▲克.10.三棱锥O–ABC中,OA=OB=OC=2,且∠BOC=45,则三棱锥O–ABC体积的最大值是▲.11.从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k{5,6,7,8,9})的概率是,则k=▲.12.已知点A(–3,–2)和圆C:(x–4)2+(y–8)2=9,一束光线从点A发出,射到直线l:y=x–1后反射(入射点为B),反射光线经过圆周C上一点P,则折线ABP的最短长度是▲.13.如图所示,在长方体ABCD–EFGH中,AD=2,AB=AE=1,M为矩形AEHD内的一点,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值为,那么点M到平面EFGH 的距离是▲.14.已知点P(x0,y0)在椭圆C:(ab0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:.根据以上性质,解决以下问题:已知椭圆L:,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是▲.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.复数z1=a+bi(a、bR,i为虚数单位),z2=–b+i,且|z1||z2|,则a的取值范围是(▲).(A)a>1(B)a>0(C)–l<a<1(D)a<–1或a>116.用1,2,3,4,5组成没有重复数字的五位数,其中偶数有(▲).(A)60个(B)48个(C)36个(D)24个17.设k1,f(x)=k(x–1)(xR),在平面直角坐标系xOy中,函数y=f(x)的图像与x轴交于A点,它的反函数y=f–1(x)的图像与y轴交于B点,并且这两个函数的图像相交于P点.已知四边形OAPB的面积是3,则实数k等于(▲).(A)3(B)(C)(D)18.若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是(▲).(A)8(B)9(C)26(D)27三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)a、b、c分别是锐角△ABC的内角A、B、C的对边,向量=(2–2sinA,cosA+sinA),=(sinA–cosA,1+sinA),且∥.已知a=,△ABC面积为,求b、c的大小.20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,在四棱锥P–ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=2,AD=3,∠ADC=45.已知PA⊥平面ABCD,PA=1.求:(1)异面直线PD与AC所成角的大小(结果用反三角函数值表示);(2)三棱锥C–APD的体积.21.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知a0且a1,数列是首项与公比均为a的等比数列,数列满足bn=anlgan(nN*).(1)若a=3,求数列的前n项和Sn;(2)若对于nN*,总有bnbn+1,求a的取值范围.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.动点与点的距离和它到直线的距离相等,记点的轨迹为曲线.(1)求曲线的方程;(2)设点2,动点在曲线上运动时,的最短距离为,求的值以及取到最小值时点的坐标;(3)设为曲线的任意两点,满足(为原点),试问直线是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设函数f(x)=2kax+(k–3)a–x(a0且a1)是定义域为R的奇函数.(1)求k值;(2)若f(2)0,试判断函数f(x)的单调性,并求使不等式f(x2–x)+f(tx+4)0恒成立的t的取值范围;(3)若f(2)=3,且g(x)=2x+2–x–2mf(x)在2,+∞上的最小值为–2,求m的值.上海市金山区2014—2015学年第一学期期末考试评分标准一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.[0,5];2.;3.0x1;4.1–i;5.或0;6.3n+2;7.08.7920;9.2;10.;11.7;12.10;13.;14.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.C;16.B;17.B;18.D三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)解:,,又‖(2–2sinA)(1+sinA)–(cosA+sinA)(sinA–cosA)=0,即:又为锐角,则,所以∠A=60 (6)分因为△ABC面积为,所以bcsinA=,即bc=6,又a=,所以7=b2+c2–2bccosA,b2+c2=13,解之得:或………………………………………………………………12分20.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.解:(1)过点C作CF∥AB交AD于点F,延长BC至E,使得CE=AD,连接DE,则AC∥DE,所以∠PDE就是异面直线PD与AC所成的角或其补角,………………2分因为∠ADC=45,所以FD=2,从而BC=AF=1,且DE=AC=,AE=,PE=,PD=,在△中,,所以,异面直线与所成角的大小为………………………………………………………………8分(2)因为VC–APD=VP–ACD,S△ACD=CFAD=3PA⊥底面ABCD,三棱锥P–ACD的高为PA=1,VP–ACD=S△ACDPA=1,所以,三棱锥C–APD的体积为1.………………………………………………………14分21.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.(1)由已知有,,,所以,.………………………………………………………7分(2)即.由且,得,所以或即或对任意nN*成立,且,所以或……………………………………………14分22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)根据抛物线的定义可知,动点的轨迹是抛物线所以曲线C的方程为x2=4y;……………………………………………………………4分(2)设点T(x0,y0),x02=4y0(y0≥0),|AT|==,a–20,则当y0=a–2时,|AT|取得最小值为2,2=a–1,a2–6a+5=0,a=5或a=1(舍去),所以y0=a–2=3,x0=2,所以T坐标为(2,3);……………………………10分(3)显然直线OP1、OP2的斜率都必须存在,记为k,,,解之得P1(,),同理P2(–4k,4k2),直线P1P2的斜率为,直线P1P2方程为:整理得:k(y–4)+(k2–1)x=0,所以直线P1P2恒过点(0,4)………………………………16分23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解(1)因为f(x)是定义域为R的奇函数,所以f(0)=0,所以2k+(k–3)=0,即k=1,检验知,符合条件………………………………………4分(2)f(x)=2(ax–a–x)(a0且a1)因为f(2)0,0,又a0且a1,所以0a1因为y=ax单调递减,y=a–x单调递增,故f(x)在R上单调递减。
高中数学学习材料金戈铁骑整理制作上海市各区县2016届高三上学期期末考试数学理试题汇编函数一、填空题1、(宝山区2016届高三上学期期末)方程0624=--x x 的解集为 .2、(崇明县2016届高三上学期期末)已知 f (x )、g(x )分别是定义在R 上的偶函数和奇函数,且 f (x ) −g(x ) =2x +x ,则f (1) +g(1) =3、(奉贤区2016届高三上学期期末)方程9360x x +-=的实数解为_________4、(虹口区2016届高三上学期期末)函数1()2x f x +=的反函数1()_________.f x -=5、(黄浦区2016届高三上学期期末)若函数22()1f x x a x =-+-为偶函数且非奇函数,则实数a 的取值范围为 .6、(金山区2016届高三上学期期末)方程4x – 6⨯2x +8=0的解是7、(静安区2016届高三上学期期末)方程3(1)(1)l o g (98)l o g (1)3x x xx x +--+⋅+=的解为 .8、(闵行区2016届高三上学期期末)方程4260x x --=的解为 . 9、(普陀区2016届高三上学期期末)若函数()1f x x =-,()1g x x x =-+,则()()f x g x +=________.10、(青浦区2016届高三上学期期末)函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .11、(松江区2016届高三上学期期末)若幂函数()x f 的图像过点22,2⎛⎫ ⎪ ⎪⎝⎭,则()12f -= ▲ . 12、(杨浦区2016届高三上学期期末)已知函数()34log 2f x x ⎛⎫=+⎪⎝⎭,则方程()14f x -=的解x = _____________. 13、(闸北区2016届高三上学期期末)函数ln(1),0()1ln ,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ;14、(长宁区2016届高三上学期期末)方程9x +3x -2 = 0的解是___________.15、(闵行区2016届高三上学期期末)若函数()2x a f x -=()a ∈R 满足(1)(1)f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 .16、(青浦区2016届高三上学期期末)函数()lg(23)x x f x =-的定义域为 .17、(松江区2016届高三上学期期末)已知函数()f x ,对任意的[1,)x ∈+∞,恒有(2)2()f x f x =成立, 且当[1,2)x ∈时,()2f x x =-. 则方程1()3f x x =在区间[1,100]上所有根的和为 ▲ .18、(杨浦区2016届高三上学期期末)已知()f x 是定义在R 上的奇函数,当01x ≤≤时,()2f x x =,当0x >时,()()()11f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有11个不同的公共点,则实数k 的取值范围为____________.19、(长宁区2016届高三上学期期末)设函数 y =f (x )的反函数是 y =f -1(x ),且函数 y =f (x )过点P (2,-1),则f -1(-1)=二、选择题1、(崇明县2016届高三上学期期末)汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )(A)消耗1 升汽油,乙车最多可行驶5千米(B)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(C)甲车以80 千米/小时的速度行驶1 小时,消耗10 升汽油(D)某城市机动车最高限速80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油2、(虹口区2016届高三上学期期末)设函数22,0,(),0,x x f x log x x ⎧+≤⎪=⎨>⎪⎩ 若关于x 的方程()f x a =有四个不同的解1234,,,,x x x x且1234,x x x x <<<则3122341()x x x x x ++的取值范围是 ( ) (A )()3,-+∞ (B )(),3-∞ (C )[)3,3- (D )(]3,3-3、(金山区2016届高三上学期期末)如图,AB 为定圆O 的直径,点P 为半圆AB 上的动点.过点P作AB 的垂线,垂足为Q ,过Q 作OP 的垂线,垂足为M .记弧AP 的长为x ,线段QM 的长为y ,则函数y =f (x )的大致图像是( ).4、(静安区2016届高三上学期期末)函数213(10)x y x -=-≤<的反函数是 ( ) A .311log ()3y x x =-+≥ B .311log (1)3y x x =-+<≤C .311log (1)3y x x =+<≤D .311log ()3y x x =+≥ 5、(闵行区2016届高三上学期期末)设2345()2510105f x x x x x x =+++++,则其反函数的解析式为( ).(A) 511y x =+- (B) 511y x =--(C) 511y x =-+- (D) 511y x =---6、(普陀区2016届高三上学期期末)若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程 ()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根.其中正确的个数是( ).A 1个 .B 2个 .C 3个 .D 4个7、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在()π,0 上递增的函数的个数是 ( )① x tan y = ② ()x cos y -= ③ ⎪⎭⎫ ⎝⎛π-=2x sin y ④2x cot y = A. 1个 B. 2个 C. 3个 D. 4个8、(长宁区2016届高三上学期期末)关于函数,有下列四个命题:①的值域是; ②是奇函数;③在上单调递增;④方程总有四个不同的解.其中正确的是 ( )A . ①②B . ②③C . ②④D . ③④三、解答题1、(奉贤区2016届高三上学期期末)已知函数()x f y =是单调递增函数,其反函数是()1y f x -=.(1)、若⎪⎭⎫ ⎝⎛>-=2112x x y ,求()1y f x -=并写出定义域M ; (2)、对于(1)的()1y f x -=和M ,设任意2121,,x x M x M x ≠∈∈, 求证:()()212111x x x f x f-<---; (3)、若()x f y =和()1y f x -=有交点,那么交点一定在x y =上.2、(虹口区2016届高三上学期期末) 对于函数1(),1f x x=-定义[]11()(),()()().n n f x f x f x f f x n N *+==∈已知偶函数()g x 的定义域为(,0)(0,),(1)0g -∞⋃+∞=; 20150,1()().x x g x f x >≠=当且时,(1)求234(),(),(),f x f x f x 并求出函数()y g x =的解析式;(2) 若存在实数,()a b a b <使得函数[](),g x a b 在上的值域为[],mb ma ,求实数m 的取值范围.3、(静安区2016届高三上学期期末)已知定义在实数集R 上的偶函数()x f 和奇函数()x g 满足()()12x f x g x ++=.(1)求()f x 与()g x 的解析式;(2)若定义在实数集R 上的以2为最小正周期的周期函数()x ϕ,当11x -≤≤时,()()x f x ϕ=,试求()x ϕ在闭区间[2015,2016]上的表达式,并证明()x ϕ在闭区间[2015,2016]上单调递减;(3)设22()21h x x mx m m =++-+(其中m 为常数),若2(())1h g x m m ≥--对于[1,2]x ∈恒成立,求m 的取值范围.4、(普陀区2016届高三上学期期末)已知集合M 是满足下列性质的函数()f x 的全体,存在实数()0a k k ≠、,对于定义域内的任意x 均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”(1)判断()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”;(3)若()()1,1,2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫= ⎪⎝⎭; 当2x =时,()0f x =.求当20142016x ≤≤时,函数()y f x =的解析式和零点.5、(杨浦区2016届高三上学期期末)已知函数()D)(x x f ∈,若存在常数T (T>0),对任意D x ∈都有()() x f T T x f ⋅=+,则称函数() x f 为T 倍周期函数(1)判断()x x h =是否是T 倍周期函数,并说明理由.(2)证明()x41 x g ⎪⎭⎫ ⎝⎛=是T 倍周期函数,且T 的值是唯一的. (3)若() )N (n n f *∈是2倍周期函数,()11f =,()42f -=,n S 表示()n f 的前n 项和,1n 2n 2n S S C -=,若10)1a (log C a n ++<恒成立,求a 的取值范围. 6、(长宁区2016届高三上学期期末)已知函数,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有成立,则称函数是D 上的m 级类增周期函数,周期为T .若恒有成立,则称函数 是D 上的m 级类周期函数,周期为T .(1)已知函数上的周期为 1 的 2 级类增周期函数,求实数a 的取值范围;(2)已知上的m 级类周期函数,且上的单调递增函数,当时,,求实数m 的取值范围.参考答案一、填空题1、{}3log 22、-123、3log 24、2log 1(0)x x ->5、(1,)+∞6、x=1或x =27、3x =8、2log 3x =9、10、(,1)-∞- 11、1412、1 13、单调递增,奇函数 14、x =0 15、1 16、(,0)-∞ 17、1190218、(264-,436-) 19、2二、选择题1、D2、D3、A4、B5、C6、C7、A8、B三、解答题1、解:(1)、(),11+=-x x f ⎪⎭⎫ ⎝⎛+∞-=,43M 3+2=5分 (2)、()()11112121212111+++-=+-+=---x x x x x x x f x f 7分 1131,142x x >-∴+>,211,4322>+∴->x x 9分 11121>+++∴x x ,1111021<+++<∴x x 10分 21212111x x x x x x -<+++-∴()()212111x x x f x f -<-∴-- 11分(3)、设()b a ,是()x f y =和()1y f x -=有交点(第21题解图)y 1x1-1O 即()()⎩⎨⎧==-a f b a f b 1,()()a f b b f a ==∴, 12分 当b a =,显然在x y =上 13分 当b a >,函数()x f y =是单调递增函数,()a b b f a f >∴>∴,)(矛盾 15分 当b a <,函数()x f y =是单调递增函数,()a b b f a f <∴<∴,)(矛盾 16分 因此,若()x f y =和()1y f x -=的交点一定在x y =上 16分2、解:(1)因为()11()()1,1f x f x x x ==≠-故 []()2111()()10,1,111f x f f x x x x x ===-≠≠-- [][]32431()()(0,1),11(1)1()()(0,1),(3)1f x f f x x x x xf x f f x x x x ===≠≠--==≠≠-分 故对任意的3,()()(2,3,4),n i i n N f x f x i +∈==有 于是20153671221()()()1(0,1);f x f x f x x x x ⨯+===-≠≠201510,1()()1.x x g x f x x>≠==-故当时, 1(1)0,0()1.g x g x x =>=-又故当时,由()g x 为偶函数,1100,()()11.x x g x g x x x <->=-=-=+-当时, 11,0,1()1110.x x g x xx x ⎧+<⎪⎪==-⎨⎪->⎪⎩,因此. ……(6分) (2) 由于()y g x =的定义域为(,0)(0,)-∞⋃+∞,又,,a b mb ma a b <<可知与同号,0m <且;进而[](),g x a b 在递减,且0.a b << ……(8分)函数()y g x =的图像,如图所示. 由题意,有 1()1,1()1,g a ma a g b mb b ⎧=+=⎪⎪⎨⎪=+=⎪⎩……(10分) 故,a b 是方程11m x x+=的两个不相等的负实数根,即方程210m x x --=在(),0-∞上有 两个不相等的实根,于是140101010.4m a b m ab m m ⎧⎪∆=+>⎪⎪+=<⎨⎪⎪=->⎪⎩⇔-<< ……(12分)综合上述,得:实数m 的取值范围为1,0.4⎛⎫- ⎪⎝⎭……(14分) 注:若采用数形结合,得出直线y m x =与曲线11(0)y x x=+<有两个不同交点,并进行求解也可. 3、解:(1)假设1()()2x f x g x ++=①,因为()x f 是偶函数, ()x g 是奇函数所以有1()()2x f x g x -+-+-=,即1()()2x f x g x -+-= ②∵()f x ,()g x 定义在实数集R 上,由①和②解得,11221()222x x x x f x +-++==+,11221()222x x x x g x +-+-==-. (2) ()x ϕ是R 上以2为正周期的周期函数, 所以当[2015,20x ∈时, 2016[1,0]x -∈-,201620161()(2016)(2016)22x x x x f x ϕϕ--=-=-=+,即()x ϕ在闭区间[2015,2016]上的表达式为201620161()22x x x ϕ--=+. 下面证明()x ϕ在闭区间[2015,2016]上递减:201620161()222x x x ϕ--=+≥,当且仅当201621x -=,即2016x =时等号成立.对于任意1220152016x x ≤<≤,1212212120162016201612201620162016111()()22(21)(2)222x x x x x x x x f x f x --------=+--=--, 因为1220152016x x ≤<≤,所以121221,210x x x x --<-<,220160221x -≤=,120160221x -<=,12016112x ->,2120162016220x x ---<, 从而12()()0x x ϕϕ->,所以当1220152016x x ≤<≤时, ()x ϕ递减.(证明1()22x x f x =+在[1,0]-上递减,再根据周期性或者复合函数单调性得到也可) (3)∵()t g x =在[1,2]x ∈单调递增,∴31524t ≤≤. ∴222()211h t t mt m m m m =++-+≥--对于315,24t ⎡⎤∈⎢⎥⎣⎦恒成立,∴222tmt+≥-对于315,24t⎡⎤∈⎢⎥⎣⎦恒成立,令22()2tk tt+=-,则221222t tt t+=+≥,当且仅当2t=时,等号成立,且322<所以在区间315,24t⎡⎤∈⎢⎥⎣⎦上22()2tk tt+=-单调递减,∴max317()()212k t k==-,∴1712m≥-为m的取值范围.4、5、(1) 设:()() x h T T x h ⋅=+则 x T T x ⋅=+ 对任意x 恒成立 (2分)T 无解∴ ()x x h = 不是T 倍周期函数 (2分)(2) 设:()() x g T T x g ⋅=+则 xT x 41T 41⎪⎭⎫⎝⎛⋅=⎪⎭⎫ ⎝⎛+ 对任意x 恒成立 (2分)T 41T=⎪⎭⎫⎝⎛21T = (2分)下证唯一性: 若 21T >, 214141T 21T =⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛= 矛盾 若 21T <, 214141T 21T =⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛= 矛盾∴ 21T = 是唯一的 (2分)(3)()()()2 12f 21f 3f ==+=()()()22 32f 23f 5f ==+=()()()32 52f 25f 7f ==+=()()()1-n 2 3-2n 2f 23-2n f 1n 2f ==+=-()()()()1222211-2n f 5f 3f 1f n 1n 2-=++++=++++- (2分)同理: ()()()()()()124222142n f 6f 4f 2f n 1n 2--=++++-=++++- ∴ ()()()()123n 2f 2f 1f S n n 2--=+++=同理:()()()321n 2f 2f 1f S n 1n 2+-=-+++=- ()32123S S C n n 1n 2n 2n --==- (2分) 3C 1-= 9C 2=显然:2n ≥ 0C n > 且 ()()()()()()32522327223212332123C C n 2n n 2n n n 1n 1n n1n +⋅-+⋅-=----=+++ ()()<+⋅-32722n 2n()()32522n 2n +⋅- ∴ 1C C n1n <+ 即单调递减 ∴ ()9C C 2m a x n == (2分) 10)1a (log C a n ++<恒成立,∴ >++10)1a (log a ()9C max n =∴ 1)1a (log a ->+① 1a > 时 a11a >+ 解得 :1a > ② 1a 0<< 时 a 11a <+ 解得 :251a 0+-<< ∴ 251a 0+-<< 或 1a > (2分) 6、1)由题意可知:f (x+1)>2f (x ),即-(x+1)2+a (x+1)>2(-x 2+ax )对一切[3,+∞)恒成立,整理得:(x-1)a <x 2-2x-1,∵x≥3,令x-1=t,则t∈[2,+∞),g(t)=t-2 t在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x-1)=m•2x-1,…当x∈[n,n+1)时,f(x)=mf(x-1)=m2f(x-2)=…=m n f(x-n)=m n•2x-n,即x∈[n,n+1)时,f(x)=m n•2x-n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n-n≥m n-1•2n-(n-1),即m≥2.。
上海市金山区2018届高三数学上学期期末质量监控试题(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分) 考生应在答题纸相应编号的空格内直接填写结果.1.若全集U =R ,集合A ={x |x ≤0或x ≥2},则U A = .2.不等式01<-xx 的解为 . 3.方程组⎩⎨⎧=+=-532123y x y x 的增广矩阵是 . 4.若复数z =2–i (i 为虚数单位),则z z z +⋅= .5.已知F 1、F 2是椭圆192522=+y x 的两个焦点,P 是椭圆上的一个动点,则|PF 1|PF 2|的最大值是_______. 6.已知x ,y 满足⎪⎩⎪⎨⎧≤≥-+≥+-20301x y x y x ,则目标函数k =2x +y 的最大值为 .7.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ∪B )= (结果用最简分数表示).8.已知点A (2,3)、点B (–2,3),直线l 过点P (–1,0),若直线l 与线段AB 相交,则直线l 的倾斜角的取值范围是 .9. 数列{a n }的通项公式是a n =2n –1(n N *),数列{b n }的通项公式是b n =3n (n N *),令集合A ={a 1,a 2,…,a n ,…},B ={b 1,b 2,…,b n ,…},n N *.将集合A ∪B 中的所有元素按从小到大的顺序排列,构成的数列记为{c n }.则数列{c n }的前28项的和S 28= .10.向量i 、j 是平面直角坐标系x 轴、y 轴的基本单位向量,且|–i |+|–2j |=5,则|2|i a +的取值范围为 .11.某地区原有森林木材存有量为a ,且每年增长率为25%,因生产建设的需要,每年年末要砍伐的木材量为101a ,设a n 为第n 年末后该地区森林木材存量,则a n = .12.关于函数()1xf x x =-,给出以下四个命题:(1)当x >0时,y=f (x )单调递减且没有最值;(2)方程f (x )=kx+b (k ≠0)一定有实数解;(3)如果方程f (x )=m (m 为常数)有解,则解的个数一定是偶数;(4) y=f (x )是偶函数且有最小值.其中假命题的序号是 .二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.若非空集合A 、B 、C 满足A ∪B =C ,且B 不是A 的子集,则( ).(A) “xC ”是“x A ”的充分条件但不是必要条件 (B) “xC ”是“x A ”的必要条件但不是充分条件 (C) “xC ”是“x A ”的充要条件 (D) “x C ”既不是“x A ”的充分条件也不是“x A ”的必要条件14.将如图所示的一个Rt △ABC (∠C =90°)绕斜边AB 旋转一周,所得到的几何体的主视图是下面四个图形中的( ).15.二项式(3i –x )10(i 为虚数单位)的展开式中第8项是( ).(A) –135x 7 (B)135x 7 (C)3603i x 7 (D)–3603i x 716.给出下列四个命题:(1)函数y =arccos x (–1≤x ≤1)的反函数为y =cos x (x R);(2)函数12-+=m m x y (m N)为奇函数;(3)参数方程⎪⎪⎩⎪⎪⎨⎧+=+-=2221211t ty t t x (t R)所表示的曲线是圆;(4)函数f (x )=sin 2x –21)32(+x ,当x >2017时,f (x )>21恒成立.其中真命题的个数为( ). (A) 4个 (B) 3个 (C) 2个 (D) 1个第14题图(A) (B) (C)(D) C B A三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1、CD 的中点.(1) 求三棱锥F –AA 1E 的体积;(2) 求异面直线EF 与AB 所成角的大小(结果用反三角函数值表示).18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数f (x )=3sin2x+cos2x –1 (x .(1) 写出函数f (x )的最小正周期以及单调递增区间;(2) 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若f (B )=0,23=⋅BC BA ,且a+c =4,求b 的值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)设P (x , y )为函数f (x )=a x x -2(x D ,D 为定义域)图像上的一个动点,O 为坐标原点,|OP |为点O 与点P 两点间的距离.(1) 若a =3,D =[3,4],求|OP |的最大值与最小值;(2) 若D =[1,2],是否存在实数a ,使得|OP |的最小值不小于2?若存在,请求出a 的取值范围;若不存在,则说明理由.20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)给出定理:在圆锥曲线中, AB 是抛物线:y 2=2px (p >0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,若A 、B 两点纵坐标之差的绝对值||B A y y -=a (a >0),则△ADB 的面积 S △ADB =pa 163.试运用上述定理求解以下各题: (1) 若p =2,AB 所在直线的方程为y =2x –4,C 是AB 的中点,过C 且平行于x 轴的直线与抛物线的交点为D ,求S △ADB ;(2) 已知AB 是抛物线:y 2=2px (p >0)的一条弦,C 是AB 的中点,过点C 且平行于x 轴的直线与抛物线的交点为D ,E 、F 分别为AD 和BD 的中点,过E 、F 且平行于x 轴的直线与抛物线:y 2=2px (p >0)分别交于点M 、N ,若A 、B 两点纵坐标之差的绝对值||B A y y -=a (a >0),求S △AMD 和S △BND ;(3) 请你在上述问题的启发下,设计一种方法求抛物线:y 2=2px (p >0)与弦AB 围成的“弓形”的面积,并求出相应面积.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)若数列{a n }中存在三项,按一定次序排列构成等比数列,则称{a n }为“等比源数列”.(1) 已知数列{a n }中,a 1=2,a n +1=2a n –1.求数列{a n }的通项公式;(2) 在(1)的结论下,试判断数列{a n }是否为“等比源数列”,并证明你的结论;(3) 已知数列{a n }为等差数列,且a 1≠0,a n n *),求证:{a n }为“等比源数列”.参考答案(满分:150分,完卷时间:120分钟)一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分)1.A ={x |0<x<2};2.0<x <1;3. ⎪⎪⎭⎫ ⎝⎛-513223;4.7–i ;5.25;6.7;7.726; 8 [4π,32π].;9.820;10.⎤⎥⎦;11. a a a n n 52)45(53+=;12.(1)、(3) 二、选择题(本大题共4小题,满分20分,每小题5分)13.B ; 14.B ; 15.C ; 16.D三、解答题(本大题共有5题,满分76分)17. 解:(1)因为△AA 1E 的面积为S =2,……………………………………………2分点F 到平面ABB 1A 1的距离即h=2,……………………………………………………4分 所以E AA F V 1-=h S ⋅31=34;………………………………………………………………7分 (2)连结EC ,可知∠EFC 为异面直线EF 与AB 所成角,…………………………10分 在Rt △EFC 中,EC =5,FC =1,所以tan ∠EFC =5,…………………………13分即∠EFC =arctan 5,故异面直线EF 与AB 所成角的大小为arctan 5.…………14分18.解:(1)f (x )=2sin(2x+6π)–1,………………………………………………………2分 所以,f (x )的最小正周期T = ,………………………………………………………4分f (x )的单调递增区间是[k –3π,k +6π],k ;………………………………………6分 (2) f (B )=2sin(2B +6π)–1=0,故sin(2B +6π)=21,………………………………………8分 所以,2B +6π=2k +6π或2B +6π=2k +65π,k Z , 因为B 是三角形内角,所以B =3π;…………………………………………………10分 而⋅=ac cos B =23,所以,ac =3,又a+c =4,所以a 2+c 2=10,………………12分 所以,b 2=a 2+c 2–2ac cos B =7,所以b=7.…………………………………………14分 19.解:(1) 当a =3,D =[3,4],|OP |=]4,3[,3)1(363)3(2222∈--=-=-+x x x x x x x ,……………………4分 3||min =OP ,62||max =OP ; ………………………………………………………6分 (2) ]2,1[,2||2∈-+=x a x x x OP ,因为|OP |的最小值不小于2,即x 2+2x |x –a |≥4对于x [1,2]恒成立,……………………………………………………………………8分当a ≥2时,a ≥)4(21x x +对于x [1,2]恒成立,所以a ≥25,………………………10分 当1≤a <2时,取x=a 即可知,显然不成立,………………………………………11分当a <1时,a ≤)43(21x x -对于x [1,2]恒成立,所以a ≤21-,……………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分 (2)或解:]2,1[,2||2∈-+=x a x x x OP ,…………………………………………7分 当a ≥2时, 222)(2||a a x ax x OP +--=+-=在[1,2]为增函数,12||min -=a OP ≥2,所以a ≥25,…………………………………………………9分 当1≤a <2时,取x=a ,|OP |=a 不可能大于或等于2,………………………………11分 当a <1时,22231)3(323||a ax ax x OP --=-=在[1,2]为增函数, a OP 23||min -=≥2 ,a ≤21-……………………………………………………13分 综上知,a ≤21-或a ≥25………………………………………………………………14分 20.解:(1) 联立直线与抛物线方程⎩⎨⎧=-=xy x y 4422,解得|y A –y B |=6,………………2分S △ADB =827;……………………………………………………………………………4分 (2)设点D 、M 、N 的纵坐标分别为y D 、y M 、y N ,易知AD 为抛物线:y 2=2px (p >0)的一条弦,M是AD 的中点,且A 、D 两点纵坐标之差为定值,|y A –y D |=2a (a >0),……6分 由已知的结论,得S △AMD =pa p a 168116)2(33⋅=,…………………………………………8分 同理可得S △BND =pa p a 168116)2(33⋅=;……………………………………………………9分 (3) 将(2)的结果看作是一次操作,操作继续下去,取每段新弦的中点作平行于x 轴的直线与抛物线得到交点,并与弦端点连接,计算得到新三角形面积。
上海市各区县2016届高三上学期期末考试数学理试题汇编三角函数一、填空题1、(奉贤区2016届高三上学期期末)函数3cos sin y x x =+,,3x ππ⎡⎤∈-⎢⎥⎣⎦的值域是__________. 2、(崇明县2016届高三上学期期末)已知cos 14α=,且3(,2)2παπ∈,则cos( 2πα+)= . 3、(奉贤区2016届高三上学期期末)函数()sin 4f x x πω⎛⎫=+⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则正实数ω的取值范围是_________.4、(黄浦区2016届高三上学期期末)函数22cos sin y x x =-的最小正周期是 .5、(黄浦区2016届高三上学期期末)在△ABC 中,若cos(2)sin()2A C B B C A +-++-=,且2AB =,则BC = .6、(金山区2016届高三上学期期末)函数y =sec x ⋅ sin x 的最小正周期T = .7、(金山区2016届高三上学期期末)方程cos2x +sin x =1在(0,π)上的解集是 . 8、(静安区2016届高三上学期期末)设cos x α=,且3[,]44ππα∈-,则arcsin x 的取值范围是 .9、(静安区2016届高三上学期期末)在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,若△ABC 的面积2222S a b c bc =--+,则sin A = . (用数值作答)10、(浦东新区2016届高三上学期期末)已知3cos(),,252ππααπ⎛⎫-=∈ ⎪⎝⎭,则sin 3πα⎛⎫+= ⎪⎝⎭ 11、(普陀区2016届高三上学期期末)在44x ππ-≤≤,则函数tan y x =的值域为__________.12、(青浦区2016届高三上学期期末)已知函数()sin(2)f x x ϕ=+,0ϕπ<≤图像的一条对称轴是直线8x π=,则ϕ= .13、(松江区2016届高三上学期期末)将函数)32sin(π+=x y 图像上的所有点向右平移6π个单位,再将图像上所有点的横坐标缩短到原来的21倍(纵坐标不变),则所得图像的函数解析式为 ▲ . 14、(徐汇区2016届高三上学期期末)函数2cos 3sin cos y x x x =+的最小值为________________.15、(松江区2016届高三上学期期末)在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c . 已知14b c a -=,2sin 3sin B C =,则cos A = ▲ .16、(闸北区2016届高三上学期期末)如图,靠山有一个水库,某人先从水坝的底部A 测得水坝对面的山顶P 的仰角为40︒,再沿坝面向上走80米到水坝的顶部B 测得56ABP ︒∠=,若坝面与水平面所成的锐角为30︒,则山高为 米;(结果四舍五入取整)17、(长宁区2016届高三上学期期末)若的值是___________填空题参考答案:1、3,2⎡⎤-⎣⎦2、154 3、15,24⎡⎤⎢⎥⎣⎦4、π5、226、π7、⎭⎬⎫⎩⎨⎧65,6ππ 8、[,]42ππ- 9、817 10、34310-11、[-1,1] 12、4π 13、sin 4x 14、12- 15、14- 16、176 17、-2425 二、选择题1、(崇明县2016届高三上学期期末)要得到函数的图象,只需将函数 y =sin 2x的图象( ) (A)向左平移3π个单位 (B)向左平移6π个单位 (C)向右平移3π个单位 (D)向右平移6π个单位 2、(虹口区2016届高三上学期期末)已知直线544x x ππ==和是函数()sin()(0,0)f x x ωϕωϕπ=+><<图像的两条相邻的对称轴,则ϕ的值为( )(A )4π (B )3π (C )2π (D )34π3、(闵行区2016届高三上学期期末)ABC △的内角,,A B C 的对边分别为c b a ,,,满足a b c cb a b c-+≤+-,则角A 的范围是( B ).(A)0,π⎛⎤⎥6⎝⎦ (B) 0,π⎛⎤ ⎥3⎝⎦ (C) ,π⎡⎫π⎪⎢6⎣⎭ (D) ,π⎡⎫π⎪⎢3⎣⎭4、(浦东新区2016届高三上学期期末)设函数()()f x x R ∈满足()()sin f x f x x π+=+,当0x π≤<时,()0f x =,则23()6f π=……………………………………………( A ) ()A 12 ()B 32 ()C 0 ()D 12-15、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在()π,0 上递增的函数的个数是 ( )① x tan y = ② ()x cos y -= ③ ⎪⎭⎫ ⎝⎛π-=2x sin y ④2x cot y =A. 1个B. 2个C. 3个D. 4个16、(闸北区2016届高三上学期期末) 17、(长宁区2016届高三上学期期末)选择题参考答案:1、B2、A3、B4、A5、A三、解答题1、(崇明县2016届高三上学期期末)如图,旅客从某旅游区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟,在甲出发2 分钟后,乙从A 乘缆车到B ,在B 处停留1 分钟后,再从B 匀速步行到C . 假设缆车 匀速直线运动的速度为130 米/分钟,山路AC 长1260 米 ,经测量,(1)求索道AB 的长;(2)问乙出发后多少分钟后,乙在缆车上与甲的距离最短?2、(奉贤区2016届高三上学期期末)设ABC ∆的内角A 、B 、C 所对的边分别为,,a b c ,且满足25cos25A =,3=⋅AC AB (1)、求ABC ∆的面积;(2)、求a 的最小值.3、(黄浦区2016届高三上学期期末)如图,已知点A 是单位圆上一点,且位于第一象限,以x 轴的正半轴为始边、OA 为终边的角设为α,将OA 绕坐标原点逆时针旋转2π至OB . (1)用α表示A 、B 两点的坐标;(2)M 为x 轴上异于O 的点,若MA MB ⊥,求点M 横坐标的取值范围.4、(金山区2016届高三上学期期末)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知a =3,cos A =36,B=A +2π. 试求b 的大小及△ABC 的面积S .5、(闵行区2016届高三上学期期末)如图,点A 、B 分别是角α、β的终边与单位圆的交点,02βαπ<<<<π. (1)若3=4απ,()2cos 3αβ-=,求sin 2β的值;(2)证明:cos()cos cos sin sin αβαβαβ-=+.6、(浦东新区2016届高三上学期期末)已知函数()2sin f x x =,将函数()y f x =的图像向右平移6π个单位,再把横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图像,求函数()y g x =的解析式,并写出它的单调递增区间.7、(普陀区2016届高三上学期期末)已知函数()22sin sin 21f x x x =+-.Axy OB1OxyAB(1)求函数()f x 的单调递增区间;(2)设20cos cos sin 266x f ππααα⎛⎫⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中00x π<<,求0tan x 的值.8、(青浦区2016届高三上学期期末)已知函数)(),(x g x f 满足关系)()()(α+⋅=x f x f x g ,其中α是常数.(1)设x x x f sin cos )(+=,2πα=,求)(x g 的解析式;(2)设计一个函数)(x f 及一个α的值,使得()2cos (cos 3sin )g x x x x =+; (3)当()sin cos f x x x =+,2πα=时,存在12,x x R ∈,对任意x R ∈,12()()()g x g x g x ≤≤恒成立,求12x x -的最小值.9、(松江区2016届高三上学期期末)已知函数2()2sin cos 23cos 3f x x x x =-+.(1)当[0,]2x π∈时,求函数 f (x )的值域;(2)求函数 y = f (x )的图像与直线 y =1相邻两个交点间的最短距离.10、(闸北区2016届高三上学期期末)如图,在平面直角坐标系xOy 中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且[,)42ππα∈,将角α的终边绕原点逆时针方向旋转3π,交单位圆 于点B ,过B 作BC y ⊥轴于点C ;(1)若点A 的纵坐标为32,求点B 的横坐标; (2)求△AOC 的面积S 的最大值;解答题参考答案1、2、解:(1)因为25cos25A=,所以23cos2cos125AA=-=,2分4sin5A=3分又因为3AB AC⋅=u u u r u u u r,得cos3bc A=4分cos35bc A bc=⇒=5分1sin22ABCS bc A∆⇒==7分(2)2222235,2cos255bc a b c bc A b c=∴=+-=+-⨯⨯Q10分2226a b c∴=+-11分222222min662102a b c b c a bca∴=+-⇒+=+≥=∴=12分当且仅当b c=5=时a最小值是2 14分3、[解](1)由题设,A 点坐标为(cos ,sin )αα,(2分)其中222k k αππ<<π+(k ∈Z ).(3分) 因为2AOB π∠=,所以B 点坐标为cos ,sin 22αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即(sin ,cos )αα-.(5分)(2)设(,0)M m (0m ≠),于是(cos ,sin )MA m αα=-u u u r ,(sin ,cos )MB m αα=--u u u r,因为MA MB ⊥,所以0MA MB ⋅=u u u r u u u r,即(cos )(sin )sin cos 0m m αααα---+=,(8分)整理得2(cos sin )0m m αα--=,由0m ≠,得cos sin 2cos 4m αααπ⎛⎫=-=+ ⎪⎝⎭,(10分)此时222k k αππ<<π+,且24k απ≠π+,于是22444k k αππ3ππ+<+<π+,且242k αππ+≠π+(k ∈Z )得22cos 242απ⎛⎫-<+< ⎪⎝⎭,且cos 04απ⎛⎫+≠ ⎪⎝⎭. 因此,点M 横坐标的取值范围为(1,0)(0,1)-U .(12分)4、解:因为cos A =36,所以sin A =33,………………………………………………1分又B=A +2π,所以sin B =sin(A +2π)=cos A =36,……………………………………………2分又因为B bA a sin sin =,………………………………………………………………………4分 所以b =ABa sin sin ⋅=23,……………………………………………………………………6分cos B =cos(A +2π)= –sin A = –33………………………………………………………………8分sin C =sin(A+B )=sin A cos B +cos A sin B =31,…………………………………………………10分 所以△ABC 的面积S =C ab sin 21=223. ……………………………………………12分或解:因为a 2=b 2+c 2–2bc cos A (2分)即:c 2–43c +9=0,解之得:c =33(舍去),c =3,(2分) △ABC 的面积S =A bc sin 21=223.(2分)5、[解](1)方法一:Θ()2cos 3αβ-=, 1)(cos 2)22cos(2--=-∴βαβα=91- …3分Θ3=4απ,即91)223cos(-=-βπ, ………………………………6分912sin =∴β. ………………………………8分方法二:Θ()2cos 3αβ-=,3=4απ,即32sin 22cos 22=+-ββ, …………3分 322cos sin =-∴ββ,两边平方得,982sin 1=-β ……………………………6分 912sin =∴β. …………………………………8分 (2)[证明]由题意得,)sin ,(cos αα=OA ,)sin ,(cos ββ=OB OB OA ⋅∴=βαβαsin sin cos cos + ………………10分又因为OA 与OB 夹角为βα-,1==OB OAOB OA ⋅∴=)cos()cos(βαβα-=-⋅OB OA ………………………12分 综上cos()cos cos sin sin αβαβαβ-=+成立. ……………………………14分6、解:由()y f x =,将函数()y f x =的图像向右平移6π个单位,得2sin()6y x π=-……2分再把横坐标缩短到原的12(纵坐标不变),得到()2sin(2)6g x x π=-。
金山区2015学年第一学期期末考试高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.3213lim+-∞→n n n = .2.已知全集U =R ,集合M ={x | x 2–4x –5<0},N ={x | x ≥1},则M ∩(U N ) = . 3.若复数z 满足i21i43-+=z (i 为虚数单位),则z = . 4.若直线l 1:6x +my –1=0与直线l 2:2x -y +1=0平行,则m = .5. 若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛212332c c ,解为⎩⎨⎧==12y x ,则c 1–c 2= . 6.方程4x– 6⨯2x+8=0的解是 . 7.函数y =sec x ⋅ sin x 的最小正周期T = . 8.二项式62)1(xx -展开式中3x 系数的值是 . 9.以椭圆1162522=+y x 的中心为顶点,且以该椭圆的右焦点为焦点的抛物线方程是 . 10.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为 .(结果用数值表示)11.方程cos2x +sin x =1在(0,π)上的解集是 . 12.行列式dc b a (a 、b 、c 、d ∈{–1,1,2})所有可能的值中,最小值为 .13.已知点P 、Q 分别为函数1)(2+=x x f (x ≥0)和1)(-=x x g 图像上的点,则点P 和Q 两点距离的最小值为 .14.某种游戏中,用黑、黄两个点表示黑、黄两个“电子狗”,它们从棱长为1的正方体ABCD –A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗”爬行的路线是AA 1→A 1D 1→…,黄“电子狗”爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(其中i 是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 .APM xy B二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.“直线l 1、l 2互相垂直”是“直线l 1、l 2的斜率之积等于–1”的( ).(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既非充分也非必要条件 16.若m 、n 是任意实数,且m >n ,则( ).(A) m 2>n 2(B)1<mn(C) lg(m –n )>0 (D) nm )21()21(<17.已知,是单位向量,0=⋅,且向量满足||--=1,则||的取值范围是( ).(A) ]12,12[+- (B) ]2,12[-(C) ]12,2[+(D) ]22,22[+- 18.如图,AB 为定圆O 的直径,点P 为半圆AB 上的动点.过点P作AB 的垂线,垂足为Q ,过Q 作OP 的垂线,垂足为M .记弧AP 的长为x ,线段QM 的长为y ,则函数y =f (x )的大致图像是( ).三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知a =3,cos A =36,B=A +2π.试求b 的大小及△ABC 的面积S .(A))(B)(C)(D)20.(本题满分14分,第(1)小题6分,第(2)小题8分)在直三棱柱111C B A ABC -中,1==AC AB ,90=∠BAC ,且异面直线B A 1与11C B 所成的角等于60,设a AA =1.(1) 求a 的值;(2) 求三棱锥BC A B 11-的体积.21.(本题满分14分) 本题共有2个小题,第1小题满分7分,第2小题满分7分.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数()()01||≠-+=x xmx x f . (1) 当m =2时,证明f (x )在(–∞,0)上是单调递减函数; (2) 若对任意x ∈R ,不等式f (2x) > 0恒成立,求m 的取值范围; (3) 讨论函数y =f (x )的零点个数.23.(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知各项均为正数的数列{a n }的前n 项和S n 满足S 1>1,且2362++=n n n a a S (n ∈N *).(1) 求{a n }的通项公式; (2) 设数列{}n b 满足⎩⎨⎧=为奇数为偶数n n a b na n n ,2,,T n 为数列{b n }的前n 项和,求T n ; (3) 设为正整数)n b b C nn n (,1+=,问是否存在正整数N ,使得当任意正整数n > N 时恒有C n >2015成立?若存在,请求出正整数N 的取值范围;若不存在,请说明理由.金山区2015学年第一学期期末考试高三数学试卷评分参考意见一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.23; 2.{x | –1< x <1}; 3. 5; 4.–3; 5. –1; 6. x=1或x =2; 7.π; 8.–6; 9.y 2=12x ; 10.55 11.⎭⎬⎫⎩⎨⎧65,6ππ; 12. –6; 13.423; 14.3. 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.B ; 16.D ; 17.A ; 18.A三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.解:因为cos A =36,所以sin A =33,………………………………………………1分 又B=A +2π,所以sin B =sin(A +2π)=cos A =36,……………………………………………2分 又因为BbA a sin sin =,………………………………………………………………………4分所以b =ABa sin sin ⋅=23,……………………………………………………………………6分cos B =cos(A +2π)= –sin A = –33………………………………………………………………8分 sin C =sin(A+B )=sin A cos B +cos A sin B =31,…………………………………………………10分 所以△ABC 的面积S =C ab sin 21=223. ……………………………………………12分 或解:因为a 2=b 2+c 2–2bc cos A (2分)即:c 2–43c +9=0,解之得:c =33(舍去),c =3,(2分)△ABC 的面积S =A bc sin 21=223.(2分) 20.解(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60︒,…………………………………………………………………………2分 又AA 1⊥平面ABC ,AB=AC ,则A 1B =A 1C ,∴△A 1BC 为等边三角形,…………4分由1==AC AB ,90=∠BAC 2=⇒BC ,∴121221=⇒=+⇒=a a B A ;……………………………………………6分(2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,即:B B A C BC A B V V 1111--=,………………………………………………………………9分 △B B A 11的面积21=S ,……………………………………………………………11分 又⊥∴⊥⊥CA AB CA A A CA ,,1平面B B A 11, 所以611213111=⨯⨯=-B B A C V ,所以6111=-BC A B V .………………………………14分 21.解:(1)由题意得:圆R 的半径为22,因为直线OQ OP ,互相垂直,且与圆R 相切,所以四边形OPRQ 为正方形,故42==r OR ,即162020=+y x ① ………………3分22.解:(1) 当m =2,且x <0时,1)(-+-=xx x f ,………………………………1分 证明:设x 1<x 2<0,则)12(12)()(221121-+---+-=-x x x x x f x f )22()(2112x x x x -+-=)21)((2112x x x x +-= 又x 1<x 2<0,所以x 2–x 1>0,x 2x 1>0,,所以0)21)((2112>+-x x x x 所以f (x 1)–f (x 2)>0,即f (x 1) >f (x 2),故当m =2时,12)(-+-=x x x f 在(–∞,0)上单调递减的. …………………………4分 (2)由f (2x)>0得012|2|>-+x x m ,变形为02)2(2>+-m xx ,即41)212(2)2(22+--=+->x x x m ,当212=x 即x =–1时, 41]2)2([max 2=+-xx ,所以41>m .…………………………10分(3)由f (x )=0,可得x |x |–x +m =0 (x ≠0),变为m =–x |x |+x (x ≠0),令,⎪⎩⎪⎨⎧<+>+-=-=0,0,||)(22x x x x x x x x x x g , 作y=g (x )的图像及直线y=m ,由图像可得:当41>m 或41-<m 时,y=f (x )有1个零点. 当41=m 或m =0或41-=m 时,y=f (x )有2个零点;当410<<m 或041<<-m 时,y=f (x )有3个零点.………………………………16分23.解:(1)1=n 时,2361211++=a a a ,且11>a ,解得21=a2≥n 时,,2362++=n n n a a S 2361211++=---n n n a a S ,两式相减得:1212336---+-=n n n n n a a a a a 即0)3)((11=--+--n n n n a a a a ,01>+-n n a a , 31=-∴-n n a a ,{}n a ∴为等差数列,13-=n a n . ……………………………4分(2)⎩⎨⎧-=-为奇数为偶数n n n b n n ,2,1313,n n b b b T +++= 21. 当n 为偶数时,T n =(b 1+b 3+…+b n –1)+(b 2+b 4+…+b n )4)43()18(6342)135(2641)81(4++-=-++--=n n n nn n, 当n 为奇数时,T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n –1).4)13)(1()18(6342)435(21641)81(411+-+-=-+-+--=++n n n n n n ⎪⎩⎪⎨⎧+-+-++-=∴+为奇数,为偶数n n n n n n T n nn 4)13)(1()18(634,4)43()18(6341………………………………10分 (3)⎪⎪⎩⎪⎪⎨⎧+=-==-+++为奇数为偶数n n a n n a C n a n n n a n n n ,2232,1322131231, 当n 为奇数时,0)]23(6483[212232835313532<+-+=+-+=-+-++n n n n C C n n n n n ,∴C n +2<C n ,故{C n }递减, 2015451<=≤C C n , 因此不存在满足条件的正整数N .……………………………………………………18分。