高中物理学史资料的总结
- 格式:pdf
- 大小:30.14 KB
- 文档页数:3
高中物理学史归纳整理版2023以下是高中物理学史的归纳整理版2023:一、古代物理学的产生古希腊哲学家亚里士多德(Aristotle)提出了许多关于自然界的理论,如物体运动的原因和自然界的秩序。
中国古代的墨子记载了光的直线传播和影子的形成。
二、近代物理学的开端文艺复兴时期,达芬奇(Leonardo da Vinci)对光、水和空气的运动进行了研究。
伽利略(Galileo Galilei)通过实验观测和数学推理,提出了自由落体定律和惯性原理。
三、经典物理学的建立牛顿(Isaac Newton)提出了三大运动定律和万有引力定律,建立了经典力学的基础。
麦克斯韦(James Clerk Maxwell)总结了电磁场的理论,预言了电磁波的存在。
四、相对论的提出爱因斯坦(Albert Einstein)提出了相对论,解释了时间和空间的关系,以及质量和能量的关系。
五、量子力学的诞生普朗克(Max Planck)提出了量子化的概念,解释了黑体辐射的规律。
爱因斯坦解释了光电效应,进一步推动了量子力学的发展。
波尔(Niels Bohr)提出了原子模型,解释了原子结构和光谱的规律。
六、现代物理学的发展德布罗意(Louis de Broglie)提出了物质波的概念,开启了波粒二象性的研究。
海森堡(Werner Heisenberg)、薛定谔(Erwin Schrödinger)等人发展了量子力学的理论体系。
狄拉克(Paul Dirac)预言了正电子的存在,与泡利(Wolfgang Pauli)一起提出了不相容原理。
奥本海默(J. Robert Oppenheimer)领导的研究团队实现了人类第一次核反应堆的成功运行。
贝尔实验室的巴丁(John Bardeen)、布拉顿(William Shockley)和肖克利(Walter Brattain)发明了晶体管。
霍金(Stephen Hawking)研究了黑洞辐射和宇宙起源的问题,提出了黑洞辐射理论。
物理学史高中学考总结pdf
一、古代物理学
1.中国:早在战国时期,我国就对力学和光学有了深入的研究。
例如,《墨经》中详细描
述了光沿直线传播的原理。
2.古希腊:亚里士多德是古代最伟大的物理学家之一,他对运动、力学和物质都有独到的
见解。
二、近代物理学
1.17世纪:伽利略通过实验验证了自由落体定律,推翻了传统的“重物先落地”的观点。
2.18世纪:牛顿的《自然哲学的数学原理》为经典力学奠定了基础,其中包含了三大运
动定律和万有引力定律。
三、现代物理学
1.19世纪末:麦克斯韦总结了电磁学的基本规律,预言了电磁波的存在,为现代无线通
信奠定了基础。
2.20世纪初:爱因斯坦提出了相对论,改变了人们对时间和空间的认识。
同时,量子力
学的出现对微观世界的描述进行了革命性的变革。
四、重要物理学家及其贡献
1.牛顿:经典力学奠基人,三大运动定律、万有引力定律。
2.伽利略:通过实验验证自由落体定律,推翻传统观念。
3.麦克斯韦:总结电磁学规律,预言电磁波存在。
4.爱因斯坦:相对论提出者,重新定义时间和空间。
5.波尔:量子力学的重要贡献者,提出波尔模型。
五、重要物理实验和发现
1.托马斯·杨的双缝实验:证明了光的波动性。
2.迈克尔逊-莫雷实验:探索地球相对于以太的运动速度,为相对论的提出提供了背景。
3.康普顿散射实验:证实了光子具有动量,支持了量子力学的观点。
高中物理学史最全归纳总结
高中物理学史的归纳总结如下:
1. 古代物理学(公元前6世纪-17世纪):
- 古希腊时期的自然哲学家:毕达哥拉斯、阿尔克曼、希波克拉底斯、亚里士多德等人,提出了一些基础的物理理论和观点。
- 宇宙观的进展:托勒密的地心说和哥白尼的日心说。
- 科学方法的发展:伽利略的实验和观察方法。
2. 经典物理学时期(17世纪-19世纪):
- 牛顿力学:牛顿的三大力学定律和万有引力定律的提出,奠定了经典力学的基础。
- 光学的发展:牛顿的光的粒子理论和哈雷的波动理论。
- 热力学的兴起:卡诺的热机理论和卢瑟福德的热力学定律。
3. 电磁学时期(19世纪末-20世纪):
- 麦克斯韦方程组:麦克斯韦的电磁理论,统一了电磁现象的理论描述。
- 电子的发现:汤姆孙的阴极射线实验证明了电子的存在。
- 直流电学理论的建立:欧姆定律、基尔霍夫电路定律等。
4. 现代物理学时期(20世纪):
- 相对论理论:爱因斯坦的狭义相对论和广义相对论,颠覆了牛顿力学的观念。
- 量子力学的建立:普朗克的量子假设、波尔的原子理论、薛定谔的波动力学等。
- 核物理学的发展:居里夫妇的放射现象研究、爱因斯坦的质能方程、量子力学的核模型等。
总结:高中物理学史经历了古代物理学、经典物理学、电磁学和现代物理学四个阶段,涵盖了力学、热学、光学、电磁学和量子力学等多个领域的重要理论。
这些理论的发
展不仅推动了科学的进步,也深刻影响了社会和技术的发展。
高中物理学史总结高中物理学史总结物理学是对自然界中物质、能量、力量和运动的研究。
无论从哪个角度看,物理学都是科学研究的基石之一。
在高中物理学的学习过程中,学生们会接触到一系列的物理原理和定律,这些知识是在数百年的物理学发展历程中被不断积累和发展起来的。
下面将对高中物理学史进行总结。
1. 古代至中世纪物理学在古代,物理学的研究主要集中在天文学和力学方面。
古希腊的天文学家如托勒密和克勒帕提亚斯提出了地心说,认为地球处于宇宙的中心,其他星体围绕地球旋转。
而哥白尼提出了日心说,认为太阳是宇宙的中心,地球和其他星体绕太阳运行。
在力学方面,阿基米德研究浮力和杠杆原理,欧几里德发现了几何学。
到了中世纪时期,由于宗教教义的束缚,物理学的进展放缓。
2. 新时期物理学的兴起新时期的物理学发展起步于16世纪末。
伽利略是新时期物理学的奠基人之一。
他进行了一系列的实验,研究物体运动和下落的规律,提出了相对论运动观点以及等时落体定律。
伽利略的实验方法和观念变革为后来科学方法的确立奠定了基础。
同时,几位重要的科学家也为物理学发展做出了巨大贡献。
如牛顿提出了万有引力定律和三大运动定律,为经典力学的基础打下了坚实的理论基础。
而开普勒通过研究行星运动发现了行星运动的三大规律,为日后天体力学的研究奠定了基础。
3. 热学与电磁学的发展18世纪,热学和电磁学成为物理学研究的热点领域。
卡尔文和卡姆法利都在热量研究领域取得了重要的成就。
他们引入了热学的概念,研究了热传导和热力学定律。
同时,安培和法拉第等科学家在电磁学领域也做出了重要的贡献。
安培发现电流和磁场之间的关系,提出了安培定律;法拉第则发现了电流和电压之间的关系,奠定了电学基础。
4. 量子力学的出现20世纪初,量子力学的出现开创了物理学的新篇章。
普朗克提出了能量量子化的概念,爱因斯坦解释了光的量子性。
同时,玻尔通过对原子光谱研究,建立了量子理论,为原子物理学的发展奠定了基础。
在量子力学的框架下,薛定谔发展了波函数和量子力学算符的理论,建立了波粒二象性的观念。
高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
物理学史在高考中是占有一席之地的,大家不妨在假期的时候多看看这篇《物理学史汇总》,赶紧收藏吧!1.力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
高中物理历史学知识点总结一、光的历史学1. 光的波动说和粒子说早在古希腊时期,人们就对光的本质有了一定的认识。
柏拉图和亚里士多德认为,光是由眼睛发出的一种射线,对物体产生视觉效应。
但是到了17世纪,人们开始对光的本质进行更深入的研究。
伽利略、牛顿等科学家提出了光的波动说和粒子说。
而19世纪以后,光的波动说逐渐占据主导地位,直到20世纪初爱因斯坦提出了光的粒子说。
2. 光的波动说的建立光波传播的性质最早由荷兰的胡克发现。
胡克通过实验证明了光是一种波动,而不是牛顿所认为的一种粒子。
在后来的实验中,杨氏双缝干涉实验证实了光的波动性,确立了光的波动说。
此外,马克斯韦尔通过他的电磁波理论,成功地将光与电磁波联系在了一起,加深了人们对光的波动说的理解。
3. 光的粒子说的发展在20世纪初,爱因斯坦提出了光的粒子说。
他的光量子假说成功地解释了光电效应、康普顿散射等现象,并且为量子力学的发展提供了重要的线索。
二、原子的历史学1. 原子的早期理论古代的希腊哲学家就开始提出原子的概念。
但这种概念一直都是抽象的,缺乏实验依据。
直到19世纪初,多项实验结果通过化学性质和物质的质量关系,终于建立了原子学的概念。
2. 托姆逊的发现1897年,英国物理学家托姆逊发现了阴极射线由一种带负电的微粒组成,认为这种微粒是原子的组成部分。
他计算了这种微粒的质量和电荷,并提出了著名的“托姆逊模型”。
3. 卢瑟福的散射实验1909年,卢瑟福在实验室里进行了一种著名的α粒子散射实验。
实验结果表明,原子核内含有一个非常小而且带正电的粒子。
这一实验结果证实了原子的核模型。
4. 玻尔的量子理论1913年,丹麦物理学家玻尔提出了氢原子的量子力学理论。
他认为,电子绕原子核运动会产生辐射,但辐射能量是分立的,而且与电子轨道的运动状态有关。
这一理论为原子和分子的结构提供了初步的解释,并为后来的量子力学理论的发展提供了重要的依据。
三、热力学的历史学1. 热力学的基本概念古代热力学概念的开始可以追溯到古希腊时期。
高中物理学史总结一、古代物理学的发展古代物理学是物理学学科的起源,它的发展可以追溯到古代文明时期。
古代物理学主要是通过观察和实验,总结出一些物质和运动的基本规律。
其中最有代表性的莫过于古希腊的物理学家亚里士多德和克拉克。
亚里士多德提出了四种元素理论,即地、水、火、气四种物质在宇宙中的存在形式。
克拉克则成功地用实验方法验证了亚里士多德的理论,并提出了物体的自由下落规律。
二、近代物理学的起源近代物理学的起源可以追溯到17世纪的科学革命时期。
在这个时期,一系列突破性的发现和理论提出,为物理学的进一步发展奠定了基础。
其中最重要的是牛顿的三大定律和万有引力定律。
牛顿的三大定律为物体的运动提供了完整的描述,而万有引力定律则解释了物体之间相互作用的原理。
此外,伽利略的运动学研究也为近代物理学的发展做出了巨大贡献。
他通过实验和数学推导,提出了匀速运动和自由落体运动的规律,并强调了用数学方法描述物理现象的重要性。
三、电磁学的兴起19世纪电磁学的兴起标志着物理学的一个重要里程碑。
安培、法拉第、麦克斯韦等科学家的研究成果,为电磁学的发展提供了坚实的理论基础。
安培的电流定律和法拉第的电磁感应定律为电磁学打开了新的研究领域。
同时,麦克斯韦的电磁场理论和麦克斯韦方程组的形成奠定了电磁学的基础。
电磁学的兴起不仅为科学技术的发展带来了巨大的推动力,也为光学的发展提供了重要的参考。
麦克斯韦的电磁辐射理论奠定了电磁波和光的关系,并通过实验证实了光是电磁波的一种表现形式。
四、相对论与量子力学的革新20世纪初,相对论和量子力学的提出彻底改变了人们对物理世界的认识。
爱因斯坦的狭义相对论和广义相对论揭示了时间、空间和质量之间的关系以及引力的本质。
相对论对于高速运动和强引力场下的物理现象提供了统一的解释,对于物理学的发展具有深远的影响。
量子力学的提出则深刻地改变了人们对微观世界的认识。
通过研究原子和分子尺度下的物理现象,科学家们发现了量子现象的存在,如波粒二象性、不确定性原理等。
高考高中物理学史归纳总结物理学是自然科学的一部分,从古至今几千年的演进中,其发展逐渐形成各个学派和学说。
高考高中物理学史的归纳总结,将帮助我们了解物理学的发展历程,并对高中物理知识有更全面的认识和理解。
本文将按照年代顺序,介绍高考高中物理学史并进行归纳总结。
第一阶段:古代物理学术的发展古代物理学主要涉及天体运动和力的研究。
代表性的学派有古希腊的亚里士多德学派和古代中国的阴阳五行学说。
亚里士多德学派:亚里士多德是古希腊的一位伟大哲学家,他的物理学理论主要基于观察和推测,主张地球是宇宙的中心,天体运动是由天体的固有本性推动的。
阴阳五行学说:阴阳五行学说是古代中国对宇宙万物形成和演化的解释。
其中,五行学说强调木、火、土、金、水五种元素相互关系的相生相克规律,对自然界的变化和人类活动进行了解释。
第二阶段:近代经典力学的奠基近代经典物理学主要以牛顿力学为代表,对物体的运动、力的作用和力学定律进行了系统的研究,为后续的物理学发展奠定了基础。
牛顿力学:牛顿创立了经典力学的三大定律,分别是惯性定律、动量定律和作用反作用定律。
这些定律有效地描述了物体的运动规律,并对质点和刚体的运动进行了研究。
第三阶段:电磁学和能量守恒定律的发现电磁学的发展标志着物理学的进一步扩展,能量守恒定律的提出则为物理学建立了一个更完整的理论框架。
麦克斯韦方程组:麦克斯韦方程组的提出将电磁学和光学相统一,为后续电磁波的研究奠定了基础。
这一突破性的成果对通信技术和电磁波谱的应用具有重大影响。
能量守恒定律:能量守恒定律是指在孤立系统中,能量的总量保持不变。
这一定律的提出对于分析物体运动和相互作用过程中的能量转化和传递具有重要意义。
第四阶段:量子力学和相对论的浪潮20世纪初,量子力学和相对论的出现彻底颠覆了经典物理学的基本观念,引发了重要的科学革命。
量子力学:量子力学是描述微观粒子行为的理论体系。
它提出了波粒二象性的概念,建立了波函数和薛定谔方程等重要理论。
高中物理学史总结一.力学中的物理学史1、亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。
2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。
3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。
另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。
4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6。
67×11-11N·m2/kg2(微小形变放大思想)。
二.电、磁学中的物理学史1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。
3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。
7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。
三.光学中的物理学史1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。
高中物理中出现的所有物理学史资料的总结
1、胡克:英国物理学家;发现了胡克定律(F弹=kx)
2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但
伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出s正比于t。
并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物
体如不受外力作用将维持匀速直线运动的结论。
后由牛顿归纳成惯性定律。
伽利略的科学推理
方法是人类思想史上最伟大的成就之一。
3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有
引力定律,奠定了以牛顿定律为基础的经典力学。
4、开普勒:丹麦天文学褰;发现了行星运动规律的开普勒三定律奠定了万有引力定律的基础。
5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。
6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。
7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了
坚实的基础。
研究电流通过导体时的发热,得到了焦耳定律。
8、开尔文:英国科学褰;创立了把一273℃作为零度的热力学温标。
9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。
10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。
11、欧姆:德国物理学察;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流
强度、电动势、电阻等概念,并确定了它们的关系。
12、奥斯特:丹麦科学察;通过试验发现了电流能产生磁场。
13、安培:法国科学家;提出了著名的分子电流假说。
14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。
15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。
16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场
及磁感线、电场线的概念。
17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。
18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。
19、赫兹:德国科学寨;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波
的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。
20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。
发明了摆钟。
21、托马斯·杨:英国物理学寨;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干
涉现象。
(双孔或双缝干涉)
22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学察里特发现紫外线
后,发现了当高速电子打在管壁上,管壁能发射出x射线一伦琴射线。
23、普朗克:德国物理学家;提出量子概念一电磁辐射(含光辐射)的能量是不连续的,E与频率1)成正比。
其在热力学方面也有巨大贡献。
24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学寨,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。
提出了“质能方程”。
25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一
种运动的物体都有一种波与之对应。
26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工
核反应,发现了质子。
27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。
28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。
29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。
30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。
31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。
32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方
法获得放射性同位素。
光学及原子物理学详细的常识
光学
1.1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
2.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。
这两种学说都不能解释当时观察到的全部光现象。
1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象
1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。
1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,1887年由赫兹证实。
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X 射线的人体照片。
1900年,德国物理学家普朗克为解释物体热辐射规律提出电磁波的发射和吸收不是连续的,
而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律。
1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。
(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
光具有波粒二象性,光是电磁波、概率波、横波(光的偏振说明光是一种横波)。
光的电磁说中要注意电磁波谱,还要注意原子光谱。
3.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐
射电磁波谱,为量子力学的发展奠定了基础。
4.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美英两国物理学家得到了电子束在金属晶体上的衍射图案。
电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。
原子物理学
1.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原
子的枣糕模型。
2.1909年-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核
式结构模型。
由实验结果估计原子核直径数量级为10 -15 m 。
3.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。
天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。
衰变的快慢(半衰期)与原子所处的物理和化学状态无关。
4.1917年密立根测定电子的电量。
5.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。
并
预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。
6.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。
1942年在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、
水泥防护层等组成)。
7.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。
人工控制核聚变的一个可能
途径是利用强激光产生的高压照射小颗粒核燃料。
8.现代粒子物理
1932年发现了正电子,1964年提出夸克模型;
粒子分为三大类:媒介子,传递各种相互作用的粒子如光子;
轻子,不参与强相互作用的粒子如电子、中微子;
强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,
夸克带电量可能为元电荷的1
3
或
2
3。