传热学大作业
- 格式:docx
- 大小:1.15 MB
- 文档页数:14
《传热学》上机大作业二维导热物体温度场的数值模拟学校:西安交通大学姓名:张晓璐学号:10031133班级:能动A06一.问题(4-23)有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。
在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。
第一种情况:内外壁分别维持在10C ︒和30C ︒第二种情况:内外壁与流体发生对流传热,且有C t f ︒=101,)/(2021k m W h ⋅=,C t f ︒=302,)/(422k m W h ⋅=,K m W ⋅=/53.0λ二.问题分析 1.控制方程02222=∂∂+∂∂ytx t 2.边界条件所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图:对上图所示各边界:边界1:由对称性可知:此边界绝热,0=w q 。
边界2:情况一:第一类边界条件C t w ︒=10情况二:第三类边界条件)()(11f w w w t t h ntq -=∂∂-=λ 边界3:情况一:第一类边界条件C t w ︒=30情况二:第三类边界条件)()(22f w w w t t h ntq -=∂∂-=λ 三:区域离散化及公式推导如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。
利用热平衡法列出各个节点温度的代数方程。
第一种情况: 内部角点:11~8,15~611~2,5~2)(411,1,,1,1,====++++=+-+-n m n m t t t t t n m n m n m n m n m 平直边界1:11~8),2(415~2),2(411,161,16,15,161,11,12,1,=++==++=+-+-n t t t t m t t t t n n n nm m m m平直边界2:7,16~7,107~1,6,10,,======n m t n m t n m n m平直边界3:12,16~2,30;12~1,1,30,,======n m t n m t n m n m第二种情况: 内部角点:11~8,15~611~2,5~2)(411,1,,1,1,====++++=+-+-n m n m t t t t t n m n m n m n m n m 平直边界1:11~8),2(415~2),2(411,161,16,15,161,11,12,1,=++==++=+-+-n t t t t m t t t t n n n nm m m m平直边界2:7,16~7206~1,61.0,10,)2(222111111,1,,1,======∆=∆︒=+∆∆+++=-+-n m h n m m y x C t xh t xh t t t t f f n m n m n m n m λλ平直边界3:12,16~2411~1,11.0,30,)2(222222221,1,,1,======∆=∆︒=+∆∆+++=-+-n m h n m m y x C t xh t xh t t t t f f n m n m n m n m λλ内角点:20,10,)3(22)(2111116,67,78,67,57,6=︒=+∆∆++++=h C t xh t xh t t t t t f f λλ外角点:4,30,)1(222222211,112,212,1=︒=+∆∆++=h C t xh t x h t t t f f λλ4,30,2222222,11,21,1=︒=+∆∆++=h C t xh t xh t t t f f λλ4,30,22222212,1511,1612,16=︒=+∆∆++=h C t xh t xh t t t f f λλ20,10,2111112,61,51,6=︒=+∆∆++=h C t xh t xh t t t f f λλ20,10,2111118,167,157,16=︒=+∆∆++=h C t xh t xh t t t f f λλ四.编程计算各节点温度和冷量损失(冷量推导在后面)(用fortran编程)由以上区域离散化分析可以得到几十个方程,要求解这些方程无疑是非常繁琐的,所以采用迭代法,用计算机编程求解这些方程的解,就可以得到各点温度的数值。
东南大学能源与环境学院课程作业报告课程名称:传热学作业名称:传热学大作业——利用matlab程序解决热传导问题院(系):能源与环境学院专业:热能与动力工程姓名:姜学号:完成时间:2012 年11 月8日评定成绩:审阅教师:目录一.题目及要求 (3)二.各节点离散化的代数方程..............................3&13 三.源程序......................................................5&16 四.不同初值时的温度分布情况...........................7&18 五.冷量损失的计算.......................................12&24 六.计算小结 (27)传热大作业——利用matlab 程序解决复杂热传导问题姓名:姜 学号: 班级:成绩:____________________一、题目及要求计算要求:一个长方形截面的冷空气通道的尺寸如附图所示。
假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。
试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失:(1) 内、外壁面分别维持在10℃及30℃;(2) 内、外壁面与流体发生对流传热,且有110f t C =︒、2120/()h W m K =⋅,230f t C =︒、224/()h W m K =⋅。
(取管道导热系数为0.025/()W m K λ=⋅)二、各节点的离散化的代数方程1、基本思想:将导热问题的温度场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
2、基本步骤:(1)建立控制方程以及定解条件:对于(1)问有:2.2m3m 2m1.2m h 1、t f1h 1、t f2导热微分方程22220t t x y ∂∂+=∂∂定解条件为第一类边界条件对(2)问有: 导热微分方程22220t t x y ∂∂+=∂∂定解条件为第三类边界条件(2)区域离散化:如下图所示,用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,称为节点。
传热学大作业报告二维稳态导热二维稳态导热大作业报告导热问题是传热学中非常重要的一个研究领域。
在导热问题中,我们研究的是物体内部的温度分布、热流分布以及热传导过程。
本次大作业中,我们将研究一个二维稳态导热问题,分析材料内部的温度分布情况。
在二维稳态导热问题中,我们假设热传导发生在一个二维平面内,而且热流只在平面内的两个方向上进行。
我们的目标是研究材料内部的温度分布情况,并找到材料内各个位置的温度。
为了研究这个问题,我们首先需要建立热传导的数学模型。
根据热传导方程,在稳态下,热传导的速率是不变的。
假设材料在x和y两个方向上的热传导系数分别为kx和ky,温度分布函数为T(x, y),则可以得到以下的二维热传导方程:kx * d^2T/dx^2 + ky * d^2T/dy^2 = 0这是一个二维的亥姆霍兹方程,我们可以通过求解它来得到材料内部的温度分布。
为了进一步分析问题,我们对热传导方程进行了无量纲化处理。
使用无量纲化可以简化计算,并且使得结果更加清晰。
我们引入了一个无量纲化的温度变量θ,通过以下公式进行计算:θ=(T-T0)/(T1-T0)其中T是位置(x,y)处的温度,T0是最低温度,T1是最高温度。
这样处理之后,热传导方程可以写成:d^2θ/dx^2 + σ * d^2θ/dy^2 = 0其中σ = ky / kx 是无量纲化的热传导比。
为了求解这个二维亥姆霍兹方程,我们使用了有限差分法。
首先将平面划分成一个个小的网格单元,然后在每个网格单元中,使用二阶中央差分法对方程进行离散化。
最终得到一个线性方程组,可以通过求解该方程组,得到无量纲温度分布。
为了验证我们的计算结果,我们将研究一个简单的导热问题,即一个正方形材料中心局部加热的情况。
我们假设正方形材料的一部分区域中心加热,其余区域保持恒定温度。
我们通过计算得到了材料内部的温度分布,并且将结果与理论解进行了比较。
通过对比发现,计算结果与理论解非常吻合,验证了我们的计算方法的准确性和可靠性。
计算传热学作业1、 一块厚度为2h=200mm 的钢板,放入T f =1000℃的炉子中加热,两表面换热系数h=174W/(m 2.℃),钢板的导热系数k=34.8 W/(m. ℃),热扩散率a=5.55×10-6m 2/s,初始温度T i =20℃. 求温度场的数值解;分别用显示、C-N 、隐式 解: 1、数学模型该问题属于典型的一维非稳态导热问题。
由于钢板两面对称受热,板内温度分布必以其中心截面为对称面。
因此,只要研究厚度为δ的一半钢板即可。
将x 轴的原点置于板的中心截面上。
这一半钢板的非稳态导热的数学描述为2、计算区域离散化:该一维非稳态导热问题可当做二维问题处理,有时间坐标τ和空间坐标x 。
采用区域离散方法A ,将空间区域等分为m 个子区域,得到m+1个节点。
如下图所示,纵坐标为时间,从一个时到另一个时层的间隔即时间步长为∆t ,每个时层都会对下一时层产生影响。
空间与时间网格交点(i ,k ),代表了时空区域的一个节点,其温度为,离散方法如下图。
综合考虑计算效率同时保证数值计算格式的稳定性,本文取空间步长∆x =0.01m ,时间步长∆t =5s ,对半平板空间的离散共得到11个节点。
x TaT 22∂∂=∂∂τ==τT T 00==∂∂x xT δλ=-=∂∂-x T T h xT f )(图 时间-空间区域离散化3、离散方程组对于一维非稳态方程,扩散项采用中心差分,非稳态项取时间向前差分。
扩散项根据时层采用不同的处理方法,得到了三种格式的离散方程组,即显式、隐式、C-N 格式,等式左右分属不同的时层。
(1) 显示差分格式: 内部节点:()]][[]][1[]][[2]][1[]1][[2j i T j i T j i T j i T xt a j i T +-+*-+∆∆*=+左边界:]][0[21]][1[2]1][0[22j T x t a j T xt a j T ⎪⎭⎫⎝⎛∆∆**-+∆∆**-=+ 右边界:()f T j T x k t a h j T x t a j T xt a j T -∆*∆***+⎪⎭⎫ ⎝⎛∆∆**-+∆∆**-=+]][10[2]][10[21]][9[2]1][10[22(2) 隐式差分格式: 内部节点:]][[]1][1[]1][[21]][1[222j i T j i T x t a j i T x t a j i T x t a -=⎪⎪⎭⎫ ⎝⎛+-∆∆*++⎪⎭⎫⎝⎛∆∆**+-+∆∆* 左边界:]][0[]1][0[)21(]1][1[222j T j T xt a j T xt a -=+∆∆**+-+∆∆**右边界:]][10[2]1][9[)2]1][10[)21(2j T xk t h a j T xt a j T xk t h a +∆*∆***=+∆∆**++∆*∆***+(3)C-N 差分格式:内部节点:()]][1[]][[2]][1[2]][[]1][1[]1][[21]1][1[22222j i T j i T j i T x t a j i T j i T x t a j i T x t a j i T x t a -+-+∆*∆*--=⎪⎪⎭⎫ ⎝⎛+-∆∆*++⎪⎭⎫⎝⎛∆∆**+-++∆*∆*左边界:]][1[]][0[)1(]1][1[)]1][0[)1(222j T j T xt a j T xt a j T xt a -∆∆*--=+∆∆*++∆∆*--右边界:fT xk t h a j T xt a j T xt a xk t h a j T xt a j T xt a xk t h a ∆*∆***-∆∆*-∆∆*+∆*∆**--=+∆∆*++∆∆*-∆*∆**--2]][9[]][10[)1(]1][9[)]1][10[)1(22224、计算结果源程序代码: 显式:#include<stdio.h>#include<time.h> #include<cstdlib> #include<math.h> #include<stdlib.h> #include <process.h> double T[11][5000]; main()int i,j;double k;/*µ¼ÈÈϵÊý*/double h;/*»»ÈÈϵÊý*/double a;/*ÈÈÀ©É¢ÂÊ*/double x1,t1;/*x1±íʾλÖò½³¤£¬ti±íʾʱ¼ä²½³¤*/ double T0;/*T0±íʾ³õʼζÈ*/double Tf;/*Tf±íʾ¯ÎÂ*/double p,q;h=174;k=34.8;a=0.00000555;T0=20;Tf=1000;x1=0.01;t1=5;/*T[199][j]=(T[198][j]+h*x1*Tf/k)/(1+h*x1/k);*/for(i=0;i<=10;i++) T[i][0]=T0;for(j=0;j<4999;j++){ T[0][j+1]=2*a*t1*(T[1][j]-T[0][j])/(x1*x1)+T[0][j];for(i=1;i<10;i++){p=a*(T[i+1][j]-2*T[i][j]+T[i-1][j])/(x1*x1);/*q=(T[i][j+1]-T[i][j])/t1;q=p;*/T[i][j+1]=p*t1+T[i][j];}T[10][j+1]=2*h*a*t1*(Tf-T[10][j])/(x1*k)+2*a*t1*(T[9][j]-T[10][j])/(x1*x1)+T[10][j];}for(i=0;i<=10;i++){printf("%f",T[i][4999]);/*´òÓ¡Êä³ö*/printf("\n");}system("pause");}隐式:#include<stdio.h>#include<time.h>#include<cstdlib>#include<math.h>#include<stdlib.h>#include <process.h>double T[11][5000];main(){int i,j;double k;/*µ¼ÈÈϵÊý*/double h;/*»»ÈÈϵÊý*/double a;/*ÈÈÀ©É¢ÂÊ*/double x1,t1;/*x1±íʾλÖò½³¤£¬t1±íʾʱ¼ä²½³¤*/ double T0;/*T0±íʾ³õʼζÈ*/double Tf;/*Tf±íʾ¯ÎÂ*/double A[11],B[11],C[11],D[11],P[11],Q[11];h=174;k=34.8;a=0.00000555;T0=20;Tf=1000;x1=0.01;t1=5;for(i=0;i<=10;i++)T[i][0]=T0;for(j=1;j<=4999;j++){for(i=1;i<=9;i++) A[i]=a*t1/(x1*x1);A[0]=0;A[10]=2*a*t1/(x1*x1);for(i=0;i<=9;i++)B[i]=-(1+2*a*t1/(x1*x1));B[0]=-(1+2*a*t1/(x1*x1));B[10]=-(1+2*a*t1*h/(k*x1))-2*a*t1/(x1*x1);for(i=1;i<=9;i++)C[i]=a*t1/(x1*x1);C[0]=2*a*t1/(x1*x1);C[10]=0;for(i=0;i<=9;i++)D[i]=-T[i][j-1];D[10]=-2*a*t1*h*Tf/(k*x1)-T[10][j-1];for(i=1;i<=10;i++){A[i] = A[i] / B[i-1];B[i] = B[i] - C[i-1] * A[i];D[i] = D[i] - A[i] * D[i-1];}T[10][j] = D[10] / B[10];for(i=9;i>=0;i--)T[i][j] = (D[i] - C[i] * T[i+1][j]) / B[i];}for(i=0;i<=9;i++){printf("%f",T[i][4999]);/*´òÓ¡Êä³ö*/printf("\n");}system("pause");}C-N:#include<stdio.h>#include<time.h>#include<cstdlib>#include<math.h>#include<stdlib.h>#include <process.h>double T[11][5000];main(){int i,j;double k;/*µ¼ÈÈϵÊý*/double h;/*»»ÈÈϵÊý*/double a;/*ÈÈÀ©É¢ÂÊ*/double x1,t1;/*x1±íʾλÖò½³¤£¬t1±íʾʱ¼ä²½³¤*/double T0;/*T0±íʾ³õʼζÈ*/double Tf;/*Tf±íʾ¯ÎÂ*/double A[11],B[11],C[11],D[11],P[11],Q[11];h=174;k=34.8;a=0.00000555;T0=20;Tf=1000;x1=0.01;t1=5;for(i=0;i<=10;i++)T[i][0]=T0;for(j=1;j<=4999;j++){for(i=1;i<=9;i++) A[i]=a*t1/(2*x1*x1);A[0]=0;A[10]=a*t1/(x1*x1);for(i=0;i<=9;i++)B[i]=-(1+a*t1/(x1*x1));B[0]=-(1+a*t1/(x1*x1));B[10]=-(1+a*t1*h/(k*x1))-a*t1/(x1*x1);for(i=1;i<=9;i++)C[i]=a*t1/(2*x1*x1);C[0]=a*t1/(x1*x1);C[10]=0;for(i=1;i<=9;i++)D[i]=-T[i][j-1]-(a*t1/(2*x1*x1))*(T[i+1][j-1]-2*T[i][j-1]+T[i-1][j-1]);D[0]=(-1+a*t1/(x1*x1))*T[0][j-1]-(a*t1/(x1*x1))*T[1][j-1];D[10]=(-a*t1*h/(k*x1)-a*t1*h/(k*x1))*Tf+(-1+a*t1*h/(k*x1)+a*t1/(x1*x1))*T[10][j-1]-a*t1*T[9][j-1]/(x1*x1);for(i=1;i<=10;i++){A[i] = A[i] / B[i-1];B[i] = B[i] - C[i-1] * A[i];D[i] = D[i] - A[i] * D[i-1];}T[10][j] = D[10] / B[10];for(i=9;i>=0;i--)T[i][j] = (D[i] - C[i] * T[i+1][j]) / B[i];}for(i=0;i<=9;i++){printf("%f",T[i][4999]);/*´òÓ¡Êä³ö*/printf("\n");}system("pause");}。
数值计算大作业一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。
物体的导热系数λ为1.0w/m·K。
边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K;要求:1、写出问题的数学描述;2、写出内部节点和边界节点的差分方程;3、给出求解方法;4、编写计算程序(自选程序语言);5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图;6、就一个工况下(自选)对不同网格数下的计算结果进行讨论;7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论;8、对4个不同表面传热系数的计算结果进行分析和讨论。
9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。
(自选项)1、写出问题的数学描述 设H=0.1m微分方程 22220t tx y∂∂+=∂∂x=0,0<y<H :()f th t t xλ∂-=-∂ 定解条件 x=H ,0<y<H :t=t 2 y=0,0<x<H :t=t1t 1t 2h ;t fq=1000 w/m 2y=H ,0<x<H :tq yλ∂-=∂ 2、写出内部节点和边界节点的差分方程 内部节点:()()1,,1,,1,,122220m n m n m nm n m n m n t t t t t t x y -+-+-+-++=∆∆左边界: (),1,,1,1,,,022m n m n m n m nm n m n f m n t t t t t t x x h y t t y y y xλλλ-++---∆∆∆-+++∆=∆∆∆右边界: t m,n =t 2上边界: 1,,1,,,1,022m n m n m n m nm n m n t t t t t t y y q x x x x yλλλ-+----∆∆∆+++∆=∆∆∆ 下边界: t m,n =t 13、求解过程利用matlab 编写程序进行求解,先在matlab 中列出各物理量,然后列出内部节点和边界节点的差分方程,用高斯-赛德尔迭代法计算之后用matlab 画图。
传热学数值计算大作业传热学数值计算大作业一选题《传热学》第四版P179页例题 4-3二相关数据及计算方法1.厚2δ=0.06m的无限大平板受对称冷却,故按一半厚度作为模型进行计算2. δ=0.03m,初始温度t0=100℃,流体温度t∞=0℃;λ=40W/(m.K),h=1000W/(m2.K),Bi=h*△x/λ=0.25;3.设定Fo=0.25和Fo=1两种情况通过C语言编程(源程序文件见附件)进行数值分析计算;当Fo=0.25时,Fo<1/(2*(1+Bi)),理论上出现正确的计算结果;当Fo=1时,Fo>1/(2*(1+Bi)),Fo>0.5,理论上温度分布出现振荡,与实际情况不符。
三网格划分将无限大平面的一半划分为6个控制体,共7个节点。
△x=0.03/N=0.03/6=0.005,即空间步长为0.005m四节点离散方程绝热边界节点即i=1时,tij+1=2Fo△ti+1j+(1-2Fo△)tij 内部节点即0tij+1=tij(1-2Fo△Bo△-2Fo△)+2Fo△ti-1j+2Fo△Bo△tf五温度分布线图(origin)六结果分析1 空间步长,时间步长对温度分布的影响空间步长和时间步长决定了Bo和Fo,两者越小计算结果越精确,但同时计算所需的时间就越长。
2 Fo数的大小对计算结果的影响编程时对Fo=1及0.25的情况分别进行了计算,发现当Fo=1时,各点温度随时间发生振荡,某点的温度高反而会使下一时刻的温度变低,违反了热力学第二定律,因此在计算中对Fo的选取有限制。
为了保证各项前的系数均为正值,对于内节点,Fo>0.5;对于对流边界节点,Fo<1/(2*(1+Bi))。
3 备注在Fo=0.25时,为了反映较长时间后温度的分布,取T=600,并选取了其中部分时刻的温度输出进行画图。
图像显示,随着时间的增长,各点温度趋向一致。
而当Fo=1时由于结果会出现振荡,只取T=6观察即可。
传热学大作业传热学大作业——二维物体热传导问题的数值解法1.二维热传导问题的物理描述:本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。
1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的建筑物墙壁的截面。
尺寸如图中所标注。
1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需要研究墙角的1/4即可(图中阴影部分)。
假设在垂直纸面方向上不存在热量的传递,我们只需要对墙角进行二维问题的研究即可。
1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温边界条件下两类边界条件的问题。
由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。
2.二维热传导问题的数学描写:本次实验的墙角满足二维,稳态无内热源的条件,因此:壁面内满足导热微分方程:∂2t ∂x +∂2t∂y=0。
在绝热面处,满足边界条件:−λ(∂t∂n)=0。
在对流边界处满足边界条件:−λ(∂t)w=ℎ(t w−t f)3.二维热传导问题离散方程的建立:本次作业中墙角的温度场是一个稳态的连续的场。
本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。
通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。
对1/4墙角的网格划分如下:选取步长Δx=Δy=0.1m,为了方便研究,对导热物体的网格节点进行编码,编码规则如下:x,y坐标轴的方向如图所示,x,y轴的单位长度为步长Δx, 取左下角点为(1,1)点,其他点的标号为其在x,y轴上的坐标。
以此进行编码,进行离散方程的建立。
建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影标出):首先以对流边界条件下的墙角为例1.外壁面上,平直边界节点:建立离散方程:λΔy t i+1,j−t i,jΔx+λΔx2t i,j+1−t i,jΔy+λΔx t i,j−1−t i,j+hoΔx(t fo−t i,j)=0以(i,j)为中心节点,进一步整理得:t i,j=λ2·(t i,j−1+t i,j+1)+λ·t i+1,j+ℎo·Δx·t fo2.外部角点:建立离散方程:ho·Δx(t fo−t i,j)+λΔy2ti,j+1−ti,jΔx+λΔx2·t i,j−1−t i,jΔy=0以(i,j)为中心节点,进一步整理得:t i,j=λ2·(t i+1,j+t i,j−1)+ℎo·Δx·t foλ+ℎo·Δx3.绝热+对流边界角点:建立离散方程:ho·Δy2·(t fo−t i,j)+λΔx2·t i,j+1−t i,jΔy+λΔy2·t i+1,j−t i,jΔx=0以(i,j)为中心节点,进一步整理得:t i,j=λ2·(t i,j+1+t i+1,j)+ℎo·Δy2·t foλ+ℎo·Δy24.内部角点:建立离散方程:hi·Δx·(t fi−t i,j)+λ·Δx·t i,j+1−t i,jΔy+λΔy·t i−1,j−t i,jΔx+λΔy2·t i+1,j−t i,jΔx+λΔx2·t i,j−1−t i,jΔx=0以(i,j)为中心节点,进一步整理得:t i,j=λ2·(t i+1,j+t i,j−1)+λ(t i,j+1+t i−1,j)+ℎi·Δx·t fi3λ+ℎi·Δx5.绝热平直边界节点:建立离散方程:λΔx2·t i,j+1−t i,jΔy+λΔx2·t i,j−1−t i,jΔx+λΔy·t i−1,j−t i,jΔx=0以(i,j)为中心节点,进一步整理得:t i,j=λ2·(t i,j−1+t i,j+1)+λ·t i−1,j6.对于普通内部节点:建立离散方程:λΔx·t i,j+1−t i,jΔy+λΔx·t i,j−1−t i,jΔy+λΔy·t i−1,j−t i,jΔx+λΔyt i+1,j−t i,jΔx=0以(i,j)为中心节点,进一步整理得:t i,j=λ·(t i,j−1+t i,j+1+t i−1,j+t i+1,j)4λ等温边界条件下:等温边界下内部节点和绝热边界下的节点离散方程与上述5,6式形式相同,在等温壁面处,节点方程只需写成t i,j=t w即可4.方程的求解:由上图可知,本题中有16*12=192个节点,相应地,就会有192个待求解的离散方程。
西安交通大学传热学大作业一、物理问题有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图1-1所示,假设在垂直于纸面方向上用冷空气及砖墙的温度变化很小,可以近似地予以忽略。
在下列两种情况下试计算:砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。
第一种情况:内外壁分别均匀维持在0℃及30℃;第二种情况:内外壁均为第三类边界条件,且已知:K m W K m W h C t K m W h C t ∙=∙=︒=∙=︒=∞∞/53.0砖墙导热系数/20,10/4,30222211λ二、数学描写由对称的界面必是绝热面,可取左上方的四分之一墙角为研究对象,该问题为二维、稳态、无内热源的导热问题。
控制方程:02222=∂∂+∂∂y tx t边界条件:① 给出了边界上的温度,属于第一类边界条件:由对称性知边界1绝热: 0=w q ; 边界2、3为等温边界:t w2=0℃,t w3=30℃② 给出了边界上的边界上物体与周围流体间的表面传热系数h 及周围流体的温度t f ,属于第三类边界条件 由对称性知边界1绝热: 0=w q ;边界2为对流边界,)()(2f w w w t t h n tq -=∂∂-=λ; 边界3为对流边界,)()(3f w w w t t h n t q -=∂∂-=λ。
1-1图2-1图三、数学模型网格划分:将长方形截面离散成31×23个点,用有限个离散点的值的集合来代替整个截面上温度的分布,通过求解按傅里叶导热定律、牛顿冷却公式及热平衡法建立的代数方程,来获得整个长方形截面的温度分布,进而求出其通过壁面的冷量损失。
步长为0.1m ,记为△x=△y=0.1m 。
采用热平衡法,利用傅里叶导热定律和能量守恒定律,按照以导入元体(m,n )方向的热流量为正,列写每个节点代表的元体的代数方程。
第一种情况:()()()()()()()()()()⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+++==︒==︒==︒==︒==︒==︒==︒==︒=+-+-代表内部点,,点4126~6,1018,26~6,106,18~6,10,2618~6,10,631~1,3023,31~1,301,23~1,30,3123~1,30,11,1,,1,1,n m t t t t t n C m t n C m t n C n t n C n t n C m t n C m t n C n t n C n t n m n m n m n m n m 第二种情况对于外部角点(1,1)、(1,23)、(31,1)、(31,,23)有:()()02222,1,,22,,1,22=∆∆-+-∆+∆∆-+-∆±±x y t t t t x h y x t t t t yh n m n m n m f n m n m n m f λλ 得到:()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=++=++=++=22,3123,3023,312,311,301,3122,123,223,12,11,21,11865331400186533140018653314001865331400t t t t t t t t t t t t 同理可得:对于内部角点(6,6)(6,18)(26,6)(26,18) ,有()()()()()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++++=++++=++++=++++=7,2618,2518,2719,2618,267,266,256,275,266,2618,717,619,618,518,67,66,75,66,56,671853359533592000718533595335920007185335953359200071853359533592000t t t t t t t t t t t t t t t t t t t t对于外部边界节点有()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++==+++==+++==+++=+-+-+-+-20~2,29253146537360020~2,29253146537360022~2,29253146537360022~229253146537360023,123,122,23,1,11,12,1,1,311,31,30311,11,1,21m t t t t m t t t t n t t t t n t t t t m m m m m m m m n n n n n n n n ,,, 对于内部边界节点有()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++==+++==+++==+++=+-+-+-+-25~7,6125330653153100025~7,6125330653153100017~7,6125330653153100017~7,6125330653153100018,118,119,18,6,16,15,6,1,261,26,27261,61,6,56n t t t t n t t t t n t t t t n t t t t m m m m m m m m n n n n n n n n ,, 对于内部节点有()1,1,,1,1,41+-+-+++=n m n m n m n m n m t t t t t传热问题的有限差分解法中主要采用迭代法。
传热学大作业——二维物体热传导
问题的数值解法
1.二维热传导问题的物理描述:
本次需要解决的问题是结合给定的边界条件,通过二维导热物体的数值解法,求解出某建筑物墙角稳态下的温度分布t以及单位长度壁面上的热流量φ。
1.1关于边界条件和研究对象选取的物理描述:如图所示为本次作业需要求解的
建筑物墙壁的截面。
尺寸如图中所标注。
1.2由于墙角的对称性,A-A,B-B截面都是绝热面,并且由于对称性,我们只需
要研究墙角的1/4即可(图中阴影部分)。
假设在垂直纸面方向上不存在热量
的传递,我们只需要对墙角进行二维问题的研究即可。
1.3 关于导热量计算截面的物理描述:本次大作业需要解决对流边界条件和等温
边界条件下两类边界条件的问题。
由于对称性,我们只需研究1/4墙角外表面和内表面的导热量再乘4,即是墙壁的总导热量。
2.二维热传导问题的数学描写:
本次实验的墙角满足二维,稳态无内热源的条件,因此:
壁面内满足导热微分方程:
∂2t ∂x2+∂2t
∂y2
=0。
在绝热面处,满足边界条件:
−λ(∂t
∂n
)=0。
在对流边界处满足边界条件:
−λ(∂t
∂n )w
=ℎ(t w −t f )
3.二维热传导问题离散方程的建立:
本次作业中墙角的温度场是一个稳态的连续的场。
本次作业中将1/4墙角的温度场离散化,划分成若干小的网格,每个网格的节点看成以它为中心的一个小区域的代表。
通过这些节点,采用“热平衡法”,建立起相应的离散方程,通过高斯-赛德尔迭代法,得到最终收敛的温度场,从而完成对墙角温度场的数值解。
对1/4墙角的网格划分如下:
选取步长Δx =Δy =0.1m ,为了方便研究,对导热物体的网格节点进行编码,编码规则如下:
x,y 坐标轴的方向如图所示,x,y 轴的单位长度为步长Δx , 取左下角点为(1,1)点,其他
点的标号为其在x,y 轴上的坐标。
以此进行编码,进行离散方程的建立。
建立离散方程,要对导热物体中的节点根据其边界条件进行分类(特殊节点用阴影
标出):首先以对流边界条件下的墙角为例
1.外壁面上,平直边界节点:
建立离散方程:
λΔy t i+1,j−t i,j
Δx
+λ
Δx
2
t i,j+1−t i,j
Δy
+λ
Δx
2
t i,j−1−t i,j
Δy
+hoΔx(t fo−t i,j)=0
以(i,j)为中心节点,进一步整理得:
t i,j=λ
2·(t i,j−1+t i,j+1)+λ·t i+1,j+ℎo·Δx·t fo
2λ+ℎo·Δx
2.外部角点:
建立离散方程:
ho·Δx(t fo−t i,j)+λΔy
2
t i,j+1−t i,j
Δx+λ
Δx
2
·
t i,j−1−t i,j
Δy
=0
以(i,j)为中心节点,进一步整理得:
t i,j=λ
2·(t i+1,j+t i,j−1)+ℎo·Δx·t fo
λ+ℎo·Δx
3.绝热+对流边界角点:
建立离散方程:
ho·Δy
2
·(t fo−t i,j)+λ
Δx
2
·
t i,j+1−t i,j
Δy
+λ
Δy
2
·
t i+1,j−t i,j
Δx
=0
以(i,j)为中心节点,进一步整理得:
t i,j=λ
2·(t i,j+1+t i+1,j)+ℎo·
Δy
2·t fo
λ+ℎo·
Δy
2
4.内部角点:
建立离散方程:
hi·Δx·(t fi−t i,j)+λ·Δx·t i,j+1−t i,j
Δy
+λΔy·
t i−1,j−t i,j
Δx
+λ
Δy
2
·
t i+1,j−t i,j
Δx
+λΔx
2
·
t i,j−1−t i,j
Δx
=0
以(i,j)为中心节点,进一步整理得:
t i,j=λ
2·(t i+1,j+t i,j−1)+λ(t i,j+1+t i−1,j)+ℎi·Δx·t fi
3λ+ℎi·Δx
5.绝热平直边界节点:
建立离散方程:
λΔx
2
·
t i,j+1−t i,j
Δy
+λ
Δx
2
·
t i,j−1−t i,j
Δx
+λΔy·
t i−1,j−t i,j
Δx
=0
以(i,j)为中心节点,进一步整理得:
t i,j=λ
2·(t i,j−1+t i,j+1)+λ·t i−1,j
2λ
6.对于普通内部节点:
建立离散方程:
λΔx·t i,j+1−t i,j
Δy
+λΔx·
t i,j−1−t i,j
Δy
+λΔy·
t i−1,j−t i,j
Δx
+λΔy
t i+1,j−t i,j
Δx
=0以(i,j)为中心节点,进一步整理得:
t i,j=
λ·(t i,j−1+t i,j+1+t i−1,j+t i+1,j)
4λ
等温边界条件下:等温边界下内部节点和绝热边界下的节点离散方程与上述5,6式形式相同,在等温壁面处,节点方程只需写成t i,j =t w 即可
4.方程的求解:
由上图可知,本题中有16*12=192个节点,相应地,就会有192个待求解的离散方程。
在如此高阶次的方程组下,根据目前的计算机发展水平,采用克莱姆法则求解是不现实的,因此,采用方便计算机求解的高斯—赛德尔迭代法进行迭代求解。
根据数学上的“主对角线占优”原则,在我们采用热平衡法导出差分方程时,如果每一个方程都选用导出该方程的中心节点的温度作为迭代变量,那么迭代一定收敛。
在计算过程中往往需要进行足够多的次数,迭代才能收敛。
判断收敛的方法是在相邻两次迭代值之差(或相对偏差)的绝对值足够小时,称已达到迭代收敛,迭代计算终止。
本次计算中采用绝对残差判据:
max|t i
(k)
−t i
(k+1)
|≤ε
下面是本次作业所采用的程序框图:
,
4.方程的求解(续):
对于对流边界条件下,内壁面和外壁面的热流量可以根据对流换热公式:
ϕ=∑h·Δy·Δt+∑h·Δx·Δt
在等温边界条件下,由于环境未知,无法直接在等温壁面上进行计算。
但由于稳态导热,可以借助等温壁面附近的截面(下图中标红)进行计算。
公式为:
ϕ=∑λ·Δx·Δt
Δy
+∑λ·Δy·
Δt
Δx
5.计算程序源代码:(请见附件)
等温边界条件:
运算结果:
计算获得的各网格节点温度(分歧点用红色标出):
热流量:
ϕ1=60.4
ϕ2=60.4
根据“热电模拟”实验获得的各网格节点温度(分歧点用红色标出):
热流量:
ϕ1=60.35
ϕ2=60.35
温度分布图像:
x
y
t
5
10
15
20
25
30
246810121416
02
4
6
8
10
12
x
y
5
1015
20
25
30
对流边界条件:
运算结果:
热流量:
ϕ1=28.3
ϕ2=28.3
热流量:
ϕ1=28.3
ϕ2=28.1
温度分布图像:
5101520
253035x
y
t
101214
1618202224
2628
246810121416
02
4
6
810
12
x
y
10
12
14
1618
20
2224
2628。