设备振动与测量参数关系
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
8.1 振动的基础知识与信号的分类类似,机械振动根据振动规律可以分成两大类:稳态振动和随机振动,如图8.1所示。
振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。
只要测定这三个要素,也就决定了整个振动运动。
图8.1 振动的种类和特征简谐振动是最基本的周期运动,各种不同的周期运动都可以用无穷个不同频率的简谐运动的组合来表示。
本节讨论最为简单的单自由度系统在两种不同激励下的响应(即单自由度系统的受迫振动):质量块受力产生的受迫振动基础运动产生的受迫振动以利于正确理解和掌握机械振动测试及分析技术的有关概念。
在振动测量时,应合理选择测量参数。
如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由振动速度决定的,振动速度又与能量和功率有关,并决定了力的动量。
简谐振动简谐振动的运动规律可用简谐函数表示,即振动的运动规律为:(8.2)(8.3)比较式(8.1)至(8.3)可见,速度的最大值比位移的最大值导前900 ,加速度的最大值要比位移最大值导前1800 。
质量块受力产生的受迫振动如图8.2所示为单自由度系统在质量块受力所产生的受迫振动示意图。
在外力f(t)的作用下,质量块m的运动方程为:(8.4)式中c为粘性阻尼系数,k为弹簧刚度,位移y(t)为振动系统的输出。
这是一个典型的二阶系统,其系统频率响应函数H(ω)和幅频特性函数、相频特性函数ϕ(ω)分别为:(8.5a)图8.2 质量块受力所产生的受迫振动(8.5b)(8.5c)式中:ω基础运动的圆频率;ζ振动系统的阻尼比, ;。
(8.6) 由上式可见,在幅频特性图上,质量块受力产生的受迫振动其共振频率ωr总是小于系统的固有频率ωn,阻尼越小两者越靠近,因此,在小阻尼情况下可以采用ωr作为的ωn估计值;而在相频特性图上,不管系统的阻尼比为多少,在ωr/ωn=1时位移始终落后于激振力90°。
振动监测参数选择与判定标准机械运动消耗的能量除了做有用功外,其他的能量消耗在机械传动的各种摩擦损耗之中,并产生正常振动。
如果出现非正常的振动,说明机械发生故障。
这些振动信号包含机械内部运动部件各种变化信息。
分辨正常振动和非正常振动,采集振动参数,运用信号处理技术,提取特征信息,判断机械运行的技术状态,这就是振动检测。
在机械设备的振动监测中,往往是将测得的振动参数量值与判断标准进行对比,从而分析判定振动的原因和机器状态的好坏.目前,在现场实际应用中,主要是参照国际标准ISO、某些国外先进标准、我国的部标、专业标准,或结合本行业设备具体情况制定限值来进行分析判定.(1)振动测量的方位选择① 测量位置(测点)测量的位置选择在振动的敏感点,传感器安装方便,对振动信号干扰小的位置,如轴承的附近部位。
② 测量方向由于不同的故障引起的振动方向不同,一般测量互相垂直的三个方向的振动,即轴向(A向)、径向(H向、水平方向)和垂直方向(V向)。
例如对中不良引起轴向振动;转子不平衡引起径向振动;机座松动引起垂直方向振动。
高频或随机振动测量径向,而低频振动要测量三个方向。
总之测量方向和数量应全面描述设备的振动状态。
(2)测量参数的选择测量振动可用位移、速度和加速度三个参数表述。
这三个参量代表了不同类型振动的特点,对不同类型振动的敏感性也不同。
① 振动位移选择使用在低频段的振动测量(<10Hz),振动位移传感器对低频段的振动灵敏。
在低频段的振动,振动速度较小,可能振动位移很大,如果振动产生的应力超过材料的许用应力,就可能发生破坏性的故障。
② 振动速度选择使用在中频段的振动测量(10~1000Hz)。
在大多数情况下转动机械零件所承受的附加载荷是循环载荷,零件的主要失效形式是疲劳破坏,疲劳强度的寿命取决于受力变形和循环速度,即和振动位移与频率有关,振动速度又是这两个参数的函数,振动能量与振动速度的平方成正比。
所以将振动速度作为衡量振动严重程度的主要指标。
设备点检中需测量的重要参数目前,很多企业都在开展点检、巡检和状态检修方面的工作,点检的主要目的是完整采集、存储、整理、分析设备数据,确诊设备的健康状况,为状态检修提供有用资料。
对于大多数机械设备,主要应采集振动、温度、声学3个方面的重要数据。
1. 点检中的振动数据测量振动是机械设备运行中的重要数据,反映振动的基本参数主要有3个:振幅、相位、频率。
描述振幅有3个物理量:位移、速度、加速度。
为了有效反映机器设备的安危状态,对于工作性质、转速、结构不同的机器,理论上应采用不同的振动物理量描述,例如对于高频或带有较大冲击的机器用加速度描述较合理;相反,对于转速较低、无明显冲击的机器,应采用振动位移来描述。
但长期以来全部沿用振动位移描述机器设备振动的大小,主要有下列原因:(1)由于有些设备(如汽轮发电机组)动静间隙很小,为避免振动过大发生动静碰摩,采用振动位移限制振动较采用速度、加速度有效。
(2)支承动刚度一定时,振动位移是转子不平衡力的单值函数,因而采用位移作为转子平衡重量计算依据较采用速度有效。
(3)故障诊断经验证明,采用振动位移描述故障特征和现象,较采用振动速度容易和直观。
(4)由于测量振动的历史原因。
期的振动测量技术,测量位移较测量速度、加速度容易,因此对振动位移建立了明确的直观概念。
尽管目前测量振动速度较测量位移容易实现,但由于上述3个原因,在目前机组振动测量、故障诊断、振动状态评价中有时虽也有采用振动烈度(速度均方根值),但没有振动位移使用得广泛。
因此对于点检仪来说,测量振动的位移必不可少,对于电厂复杂的机械设备,测量振动的速度、加速度也很有必要。
同时仪器必须有足够的频率响应范围,以满足不同转速机械使用,测量时振动数值一定要稳定。
振动频谱和相位在进行故障诊断时才具有实际意义,点检仪中相位测量和频谱分析一般没有必要。
点检仪的振动测量部分与点检仪器应整体校验,测量部分能全内置最好,有些厂家采用外配振动传感器到点检仪中,导致测量振动时传感器和点检仪测量功能不能同时校验,造成较大误差,因此,在选择点检仪时必须注意这个问题。
电气工程中的电气设备振动测试规范要求电气设备振动测试在电气工程中扮演着重要的角色。
它是评估设备结构强度、运行状态以及可靠性的一种有效手段。
为了确保测试结果的准确性和可比性,各国电气工程领域陆续出台了一系列的电气设备振动测试规范要求。
本文将对电气工程中的电气设备振动测试规范要求进行详细介绍。
1. 测试目的电气设备振动测试的目的在于评估设备的结构和功能在振动条件下的可靠性和适用性。
通过测试,可以发现潜在的缺陷、磨损、疲劳及材料质量问题,以及设备运行中可能出现的故障和故障的原因。
2. 测试范围电气设备振动测试的范围包括但不限于以下几个方面:(1)转子系统:主轴、电机和风扇等(2)承载结构:底座、支座、法兰和连接杆等(3)外壳:机箱、振动起源和噪声隔离等(4)关键零部件:滑动轴承、齿轮和联轴器等3. 测试方法根据设备使用环境和需求,电气设备振动测试可以采用不同的方法,常见的有以下几种:(1)无负载测试:在设备空转状态下进行振动测试,以评估设备转子系统的状态。
(2)负载测试:在设备正常负载下进行振动测试,以评估设备承载结构和关键零部件的状态。
(3)多方向振动测试:对设备进行多个方向的振动测试,以评估设备的综合动态性能。
(4)耐久性测试:对设备进行长时间、高强度的振动测试,以评估设备在极端条件下的可靠性和耐久性。
4. 测试设备与仪器进行电气设备振动测试时,需要使用专业的测试设备与仪器,包括但不限于以下几种:(1)振动传感器:用于测量设备的振动参数,如加速度、速度和位移等。
(2)振动分析仪:用于采集、分析和处理振动信号,以获取设备振动的频率、幅值和相位等信息。
(3)加速度计:用于测量设备在振动过程中的加速度。
(4)信号采集器:用于将振动传感器采集到的信号转换为数字信号,以进行后续的数据处理和分析。
5. 测试结果与评估电气设备振动测试的结果和评估主要包括以下几个方面:(1)频率分析:通过对振动信号进行频谱分析,可以确定设备的主要振动频率和频率分量。
振弦传感器的频率及模数之间的关系
振弦传感器是一种常见的测量设备,用于测量物体振动的频率和模数。
频率和模数是振弦传感器最重要的参数,它们之间存在着密切的关系。
振弦传感器的频率是指物体振动的周期性重复次数,通常用赫兹(Hz)来表示。
而模数则是指振弦传感器输出信号的幅度大小,它可以用来衡量振动的强度。
频率和模数之间的关系可以通过以下几个方面来解释。
频率和模数之间存在着正相关关系。
当物体振动的频率增加时,振弦传感器所测量到的模数也会随之增大。
这是因为在高频率下,物体的振动速度较快,振弦传感器接收到的振动信号幅度会更大。
频率和模数之间也受到物体本身性质的影响。
不同物体的振动特性不同,其频率和模数之间的关系也会有所差异。
例如,柔软的材料在振动时会产生较高的模数,而硬质材料则可能产生较低的模数。
振弦传感器的灵敏度也会影响频率和模数之间的关系。
高灵敏度的振弦传感器可以更准确地测量到物体的微小振动,因此在相同频率下可以产生更高的模数。
振弦传感器的频率和模数之间存在着紧密的关系。
频率越高,模数越大,而物体的性质和传感器的灵敏度也会对这种关系产生影响。
通过准确测量和分析频率和模数之间的关系,我们可以更好地了解
物体的振动特性,为相关领域的研究和应用提供有价值的数据支持。
机械设备振动监测参数及标准一、振动诊断标准的制定依据1、振动诊断标准的参数类型通常,我们用来描述振动的参数有三个:位移、速度、加速度。
一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。
诊断参数在选择时主要应根据检测目的而选择。
如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。
2、振动诊断标准的理论依据各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。
振动的存在必然引起结构损伤及材料疲劳。
这种损伤多属于动力学的振动疲劳。
它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。
美国的齿轮制造协会(AGMA)曾对滚动轴承提出了一条机械发生振动时的预防损伤曲线,如下图所示。
图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。
理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。
由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。
而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。
但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影响。
3、振动诊断标准的分类根据标准制定方法的不同,振动诊断标准通常分为三类。
1)绝对判断标准它是根据对某类设备长期使用、观察、维修与测试后的经验总结,并在规定了正确的方法后制定的,在使用时必须掌握标准的适用范围和测定方法。
转动机械振动标准一、振动测量和评估1.1 测量仪器和工具:使用精度高、稳定性好的振动测量仪器,如测振仪、频谱分析仪等。
1.2 测量位置:在轴承座、转动轴、支撑轴承等关键部位进行测量。
1.3 测量参数:测量振幅、频率、速度、加速度等参数。
1.4 评估标准:根据机械设备的类型、规格、工作条件等因素,制定相应的振动评估标准。
二、振动源识别和消除2.1 振动源识别:通过振动频谱分析、轴承故障诊断等手段,识别出振动的源头。
2.2 消除措施:针对不同的振动源,采取相应的措施进行消除,如更换损坏的轴承、调整平衡等。
三、轴承损伤检测和预防3.1 检测方法:采用轴承故障诊断技术,如振动分析、润滑油分析等。
3.2 预防措施:定期检查轴承的润滑状态、更换润滑油,保证轴承的正常运转。
四、机器平衡和校准4.1 平衡测试:在机器运转过程中,对机器进行平衡测试,确定不平衡量。
4.2 校准措施:采取相应的校准措施,如加装平衡块、调整轴承间隙等,消除不平衡量。
五、振动隔离和减振措施5.1 隔离措施:在轴承座、支撑轴承等部位采用弹性支承、隔振器等隔离措施。
5.2 减振措施:采用阻尼材料、减振器等减振措施,降低机器的振动传递。
六、机器维护和保养6.1 日常维护:定期检查机器的运转状态,包括轴承润滑状况、紧固件是否松动等。
6.2 定期保养:按照规定的保养周期,对机器进行保养,如更换润滑油、清洗机器等。
七、人员培训和管理7.1 培训内容:对操作人员进行振动基础知识、机器操作规程等方面的培训。
7.2 管理措施:制定严格的操作规程和管理制度,确保操作人员遵守安全操作规程。
八、环境影响评估和管理8.1 环境影响评估:对机器运行过程中产生的噪声、振动等环境影响进行评估。
8.2 管理措施:采取降噪、减振等措施,降低对环境的影响,如采用低噪声设备、建设隔音罩等。
第二部分 结构动力学实验一 结构振动测试系统及基本参数的测量一、 实验目的与要求1、了解结构振动测试系统的基本组成、仪器设备的基本原理和操作方法。
2、学习简谐振动中的频率和幅值(位移、速度、加速度)的测量方法。
二、 实验原理1、结构振动测试系统一般由激振系统、传感器及放大系统、数据采集与处理三部分组成。
2、对于简谐振动: 位移 t A x ωsin =速度 )2/sin(πωω+=t A x加速度 )sin(2πωω+=t A x(1)信号发生器:用来发生正弦信号,其频率和电压幅值可调。
(2)功率放大器:将来自信号发生器的电压信号进行功率放大输出,用以推动振动台工作。
(3)电磁式振动台:振动台的台面可以按照信号发生器输出的信号的频率和幅值振动。
(4)加速度传感器:将被测系统的机械振动量(加速度)转换成电量。
(5)速度传感器:将被测系统的机械振动量(速度)转换成电量。
(6)位移传感器:将被测系统的机械振动量(位移)转换成电量。
(7)电荷放大器:将加速度传感器输出的较小的电荷信号放大成可供检测的电压信号。
(8)测振放大器:将速度型测振传感器输出的较小的电流信号放大成可供检测的电压信号。
(9)位移放大器:将位移型测振传感器输出的较小的电流信号放大成可供检测的电压信号。
(10)数据采集与分析系统:记录和分析结构振动的各个参数。
四、实验步骤1、按图所示连接实验仪器设备,并仔细检查确认无误。
2、依此打开信号发生器、功率放大器,预热5分钟。
然后打开各放大器、数据采集与分析系统。
3、将信号发生器置于正弦信号输出,输出频率为10Hz。
4、缓慢调节信号发生器的电压,使振动台产生振动,在数据采集与分析系统中的示波器上观察到一个较稳定的正弦波形。
5、记录各仪器的指示值。
6、根据各仪器的标定系数,确定振动台的振动(加速度、速度、位移)幅值。
7、改变振动频率(10-100Hz),每隔10Hz,重复4、5、6项的内容。
8、将各仪器设备的输出旋扭恢复到零,依此关闭信号发生器、功率放大器、各个传感器放大器的开关,并关闭数据采集与分析系统。
振动位移具体地反映了间隙的大小,振动速度反映了能量的大小,振动加速度反映了冲击力的大小。
也可以认为,低频范围内,振动强度与位移成正比;在中频范围内,振动强度与速度成正比;在高频范围内,振动强度与加速度成正比。
正是由于上述原因,在工厂的实际应用中,在通常情况下,大机组转子的振动用振动位移的峰峰值[μm]表示,用装在轴承上的非接触式电涡流位移传感器来测量转子轴颈的振动;大机组轴承箱及缸体、中小型机泵的振动用振动速度的有效值[mm/s]表示,用装在机器壳体上的磁电式速度传感器或压电式加速度传感器来测量;齿轮的振动用振动加速度的单峰值[g]表示,用加速度传感器来测量。