1.1.3集合的基本运算学生学案(生)
- 格式:doc
- 大小:66.50 KB
- 文档页数:2
1.1.3《集合的基本运算(1)》导学案姓名: 班级: 组别: 组名:【学习目标】1、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2、能用韦恩图表达集合的运算,体会直观图示对理解抽象概念的作用.【重点难点】▲重点:集合的交集与并集的概念▲难点:集合的交集与并集运算的综合应用【知识链接】班主任为了了解班级中最近一段时间的学习情况,把班级中在中考中取得数学与英语单科成绩均在全校前200名的同学集合起来开座谈会。
如果把班级中在中考中取得数学或英语单科成绩在全校前200名的同学集合起来开座谈会。
若数学单科成绩列全校前200名的同学构成一个集合A ,英语单科成绩列全校前200名的同学构成一个集合B ,那么前面提到的两个座谈会的召集分别相当于集合间的什么运算?【学习过程】阅读课本第8页到第9页的并集部分的内容,尝试回答以下问题:知识点一 并集问题1、你是怎样理解并集定义中的“或”这个词的?问题2、集合A 与集合B 的并集用什么符号来表示?问题3、根据Venn 图(又称韦恩图),回答A B 与B A 有什么关系?问题4、例4中集合A 与集合B 都含有元素5、8,答案能否写成}{4,5,6,8,3,5,7,8AB =?问题5、根据韦恩图1.1-2,填空:(1)若A B ⊆,则A B =________;(2)A _____A B ;(3)B_____A B ;(4)∅_____A B .问题6、下列关系式成立吗?(1)A A A = (2)AA ∅=问题7、典例解析例1、集合A={06|2=--x x x },B={03|2=-x x x },试求A B .阅读课本第9页到10页交集部分的内容,尝试回答以下问题:知识点二 交集问题1、你是怎样理解交集定义中的“且”和“所有”这两个词的?问题2、集合A 与集合B 的交集用什么符号来表示?问题3、当集合A 与集合B 没有公共元素时,A B =________.问题4、根据韦恩图1.1-4,回答A B 与B A 有什么关系?问题5、根据韦恩图1.1-4,填空:(1)若A B ⊆,则A B =________;(2)A B _____A(3)A B _____ B(4)∅_____A B问题6:在平面直角坐标系中,第二象限内的点构成的集合为(){},x y 问题7、下列关系式成立吗?(1)A A A = (2)A∅=∅问题8、典例解析例2、已知集合A={-4,2a-1,2a },B={a-5,1-a,9},分别试求适合下列条件的a 的值.(1)9B A ∈; (2){9}=B A【基础达标】A1、设}{3,5,6,8A =,}{4,5,7,8B =,求A B ,A B .A2、设}{2450A x x x =--=,}{21B x x ==,求A B ,A B .B4、设}{A x x =是小于9的正整数,}{1,2,3B =,}{3,4,5,6C =,求A B ,A C , ()A B C ,()A B C ,)()(C A B A ,)()(C A B A .思考:从本题的结果你能发现什么规律?C5、已知集合A={1,2},集合B 满足}2,1{=B A ,则集合B 有______个,分别是________.D6、若集合A={1,3,x},B={1,2x },},3,1{x B A = ,则满足条件的实数x 有______个.【小结】A1、已知集合}32|{≤≤-=x x A ,}41|{>-<=x x x B 或,则集合B A 等于( )A 、{x |x ≤3或x >4}B 、{x |-1<x ≤3}C 、{x |3≤x <4}D 、{x |-2≤x <-1}B2、设集合}{24A x x =≤<,}{3782B x x x =-≥-,求AB ,A B .【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。
2020-2021学年高中数学新教材人教B版必修第一册学案:1.1.3 第1课时交集与并集含解析1.1.3集合的基本运算素养目标·定方向课程标准学法解读1.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.2.在具体情境中,了解全集的含义.3.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.4.能使用Venn图表达集合的基本运算,体会图形对理解抽象概念的作用。
1.学习本节时,重视对“交集”“并集”“补集"等概念的理解,特别是“且”“或”的区别,可结合维恩图或数轴理解.2.解题时注意运用图示法(维恩图、数轴、函数图像等)表示集合及进行运算,可以直观、快速地解答集合的运算问题.3.注意“集合运算"⇔“集合关系”间的转化,容易解决集合运算中的参数问题.4.养成用“交集、并集、补集”的思想去解决实际问题,提升数学学科素养。
第1课时交集与并集必备知识·探新知基础知识1.交集思考1:两个非空集合的交集可能是空集吗?提示:两个非空集合的交集可能是空集,即A与B无公共元素时,A与B的交集仍然存在,只不过这时A∩B=∅。
反之,若A∩B=∅,则A,B这两个集合可能至少有一个为空集,也可能这两个集合都是非空的,如:A={1,3,5,7,9},B={2,4,6,8,10},此时A∩B =∅.2.并集思考2:集合A∪B中的元素个数如何确定?提示:①当两个集合无公共元素时,A∪B的元素个数为这两个集合元素个数之和;②当两个集合有公共元素时,根据集合元素的互异性,同时属于A和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个集合元素个数之和减去公共元素的个数.3.交集与并集的运算性质交集的运算性质并集的运算性质A∩B=B∩A A∪B=B∪AA∩A=A A∪A=AA∩∅=∅∩A=∅A∪∅=∅∪A=A如果A⊆B,则__A∩B=A__,反之也成立如果A⊆B,则__A∪B=B__,反之也成立思考3:判断集合A={2,3}与集合B={2,3,5}的关系,并写出A∩B和A∪B,你能发现什么规律?提示:A与B的关系为A B,A∩B={2,3},A∪B={2,3,5},由以上结论可推测A⊆B⇔A∩B=A⇔A∪B=B.基础自测1.已知集合M={-1,0,1},N={0,1,2},则M∪N=(C) A.{0,1}B.{-1,0,2}C.{-1,0,1,2}D.{-1,0,1}解析:M∪N={-1,0,1,2}.2.设集合M=(-3,2),N=[1,3],则M∩N=(A)A.[1,2)B.[1,2]C.(2,3]D.[2,3]解析:因为M=(-3,2),且N=[1,3],所以M∩N=[1,2).3.已知集合M={x|x2=9},N={x|-3≤x〈3,x∈Z},则M∩N =(B)A.∅B.{-3}C.{-3,3}D.{-3,-2,0,1,2}解析:由题意,得M={-3,3},由于N={-3,-2,-1,0,1,2},则M∩N={-3}.4.若集合A={x|-5<x〈2},B={x|-3<x<3},则A∪B=__{x|-5〈x<3}__,A∩B=__{x|-3〈x<2}__.5.已知A={-1}且A∪B={-1,3},则所有满足条件的集合B=__{3}或{-1,3}__.关键能力·攻重难类型交集的运算┃┃典例剖析__■典例1(1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=(A)A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}(2)已知A={x|x≤-2或x>5},B={x|1<x≤7},则A∩B=__(5,7]__。
1.3 集合的基本运算学习目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集;3. 能使用Venn图表达集合的基本关系与基本运算.核心素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及∅问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类.学习重点:1.交集、并集定义的三种语言的表达方式及交集、并集的区别与联系;2全集与补集的定义.学习难点:利用交集并集补集含义和Venn图解决一些与集合的运算有关的问题.学习过程预习导入阅读课本,填写.1.并集一般地,由____________集合A__________集合B的元素所组成的集合,称为集合A与B 的并集,记作:_________(读作:“________”)即:A∪B=________________.Venn图表示:2.交集一般地,由____________集合A____________集合B的元素所组成的集合,叫做集合A与B 的交集,记作:___________(读作:__________)即:A∩B=_______________.Venn图表示:3.全集一般地,如果一个集合含有我们所研究问题中所涉及的____________,那么就称这个集合为全集,通常记作_______.4.补集:对于全集U的一个子集A,由全集U中所有____________的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作:____________,即:C U A=____________. 补集的Venn图表示5.常用结论:(1)A∩B___A,A∩B___B,A∩A=___,A∩∅=___,A∩B___B∩A;(2)A___A∪B,B___A∪B,A∪A=___,A∪∅=___,A∪B___B∪A;(3)(C U A)∪A=___,(C U A)∩A=___;(4)若A∩B=A,则A___B,反之也成立;(5)若A∪B=B,则A___B,反之也成立.小试牛刀1.判断(正确的打“√”,错误的打“×”)(1)集合A∪B中的元素个数就是集合A和集合B中所有元素的个数和. ()(2)当集合A与集合B没有公共元素时,集合A与集合B就没有交集. ()(3)若A∪B=⌀,则A=B=⌀. ()(4)若A∩B=⌀,则A=B=⌀. ()(5)若A∪B=A∪C,则B=C. ()(6)∁A⌀=A. ()(7)∁U(A∪B)=(∁U A)∪(∁U B). ()2.设集合M={-1,0,1},N={0,1,2},则M∪N等于()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.自主探究例1(单一运算)1.求下列两个集合的并集和交集:(1) A={1,2,3,4,5},B={-1,0,1,2,3};(2) A={x|x+1>0},B={x|-2<x<2};2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}例2(混合运算)(1)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=() A.{2}B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}(2)设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________.例3(由并集、交集求参数的值)已知M={1,2,a2−3a−1},N={-1,a,3},M∩N={3},求实数a的值.例4(由并集、交集的定义求参数的范围)设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},求a的取值范围.例5(由交集、并集的性质求参数的范围)已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式.『变条件』把例5题中的条件“A∪B=A”换为“A∩B=A”,求k的取值范围.当堂检测1.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.{x|-1<x<2} B.{x|0<x<1}C.{x|-1<x<0} D.{x|1<x<2}2.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则∁U(A∩B)等于()A.{2,3}B.{1,4,5}C.{4,5} D.{1,5}3.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}4.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则下图中阴影部分表示的集合为()A.{2} B.{3}C.{-3,2} D.{-2,3}5.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}6.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>-2C.a>-1 D.-1<a≤27.已知A={x|a<x≤a+8},B={x|x<-1,或x>5},若A∪B=R,则a的取值范围为________.8.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.(1)当a=10时,求A∩B,A∪B;(2)求能使A⊆(A∩B)成立的a的取值范围.——★参*考*答*案★——学习过程一、预习导入1.所有属于集合或属于集合A∪B A并B {x|x∈A,或x∈B}2.属于且属于A∩B A交B {x|∈A,且x∈B}3.所有元素U4.不属于集合A C U A {x|x∈U,且x∉A}5.(1)⊆⊆A ∅=(2)⊆⊆A A=(3)U ∅(4)⊆(5)⊆小试牛刀1.(1) ×(2) ×(3) √ (4)×(5) ×(6) √(7) ×2.D3.A4.{x|5≤x<10}自主探究例1『答案』见解析『解析』 1.(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)由题意知A={x|x>-1},用数轴表示集合A和B,如图所示,则数轴上方所有“线”下面的实数组成了A∪B,故A∪B={x|x>-2},数轴上方“双线”(即公共部分)下面的实数组成了A∩B,故A∩B={x|-1<x<2}.2.因为U={1,2,3,4,5,6},M={1,2,4},由补集的定义,可知∁U M={3,5,6}.故选C.例2『答案』(1)B(2){x|x≤2,或x≥10}{x|2<x<3,或7≤x<10}『解析』(1)A ∪B ={1,2,4,6},又C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C ={1,2,4}.(2)把全集R 和集合A 、B 在数轴上表示如下:由图知,A ∪B ={x |2<x <10}, ∴∁R (A ∪B )={x |x ≤2,或x ≥10}. ∵∁RA ={x |x <3,或x ≥7},∴(∁RA )∩B ={x |2<x <3,或7≤x <10}. 例3『答案』见解析『解析』∵M ∩N ={3},∴3∈M ;∴a 2−3a −1=3,即a 2−3a −4=0,,解得a =-1或4. 当a =-1时,与集合中元素的互异性矛盾,舍去; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.例4『答案』见解析『解析』如图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3. 例5『答案』见解析『解析』∵A ∪B =A ,∴B ⊆A ,①当B =Ø时,k +1>2k -1,∴k <2. ②当B ≠Ø,则根据题意如图所示:根据数轴可得⎩⎪⎨⎪⎧k +1≤2k -1,-3<k +1,2k -1≤4,解得2≤k ≤52.综合①②可得k 的取值范围为⎩⎨⎧⎭⎬⎫k ⎪⎪k ≤52. 变式.『答案』见解析『解析』∵A ∩B =A ,∴A ⊆B .又A ={x |-3<x ≤4},B ={x |k +1≤x ≤2k -1},可知B ≠Ø.由数轴可知⎩⎪⎨⎪⎧k +1≤-3,2k -1≥4,解得k ∈Ø,即当A ∩B =A 时,k 不存在. 当堂检测1-6.ABDADC 7.-3≤a <-18.解:(1)当a =10时,A ={x |21≤x ≤25}. 又B ={x |3≤x ≤22},所以A ∩B ={x |21≤x ≤22},A ∪B ={x |3≤x ≤25}. (2)由A ⊆(A ∩B ),可知A ⊆B , 又因为A 为非空集合, 所以⎩⎪⎨⎪⎧2a +1≥3,3a -5≤22,2a +1≤3a -5,解得6≤a ≤9.。
1.1.3 集合的基本运算-人教B版高中数学必修第一册(2019版)教案一、教学目标1.理解集合的概念,熟练掌握集合的基本运算。
2.掌握集合的交、并运算的概念及其性质,并能够进行简单的计算。
3.了解补集、差集的概念及其运算规律,并能够综合运用。
4.学会用集合表示式表示各种集合及其运算结果。
二、教学内容1.集合的概念2.集合的元素与特征3.集合的表示方法4.集合的基本运算5.集合运算的性质和规律三、教学重点和难点3.1 教学重点1.集合的概念和基本运算。
2.集合运算的性质和规律。
3.2 教学难点1.集合元素与特征的理解和运用。
2.集合运算的综合运用。
四、教学方法1.讲授与示范相结合,双向互动。
2.注重思维训练,举一反三。
3.实例演练,动手操作。
五、教学步骤5.1 集合与元素1.引入集合的概念,通过生活中实例进行解释。
2.对集合的元素和特征进行讲解,引导学生理解。
5.2 集合的表示方法1.列举不同的表示方法,如突出法、列举法、描述法。
2.结合实例演示各种表示方法的运用。
5.3 集合的基本运算1.引出集合的交、并、补、差等基本运算。
2.解析各种基本运算的概念和特点,并提供实例进行演练。
3.引导学生进行基本运算的计算和运用。
5.4 集合运算的性质和规律1.探究集合运算的交换律、结合律、分配律等性质。
2.对集合运算规律进行讲解和演示。
3.让学生掌握集合运算的性质和规律。
5.5 集合运算综合练习1.向学生提供一定的练习题和实际问题,让其进行综合运用。
2.引导学生用集合表示式表示各种集合及其运算结果。
3.对集合运算的错误答案进行分析和纠正。
六、教学资源1.人教B版高中数学必修第一册(2019版)课本。
2.课件PPT及各种练习题。
七、教学评估1.课后给学生布置相应的练习题,对学生进行测试。
2.对学生进行课堂表现和习题的评分。
3.对本课程的教学效果进行评估,完善课程教案和改进教学内容。
八、教学反思本堂课中,我采用了多种教学方法,如讲授、示范、动手操作等方式,增强了学生的参与性和思维性。
1.1.3《集合的基本运算(2)》导学案姓名: 班级: 组别: 组名:【学习目标】1、理解全集与补集的定义,会求给定子集的补集.2、熟练掌握集合的交、并、补综合运算及应用.【重点难点】▲重点:准确利用补集定义求解补集,集合的交、并、补综合运算.▲难点:集合的交、并、补综合运算及应用.【知识链接】1、集合与子集2、集合的交、并运算【学习过程】阅读课本第10页到第11页补集部分的内容,尝试回答以下问题:知识点一 补集问题1、结合全集的定义,你认为全集是固定不变的还是依据具体问题来加以选择的?试举例说明.问题2、全集用什么符号来表示?全集U 中子集A 的补集怎么表示?问题3、结合补集的定义填空(1) U C U =__________; (2)U C ∅=__________; (3)A (A C U )=__________;(4)A (A C U )=__________; (5))(A C C U U = __________.问题4、例8中我们是用_______法来表示集合}{9U x x =是小于的正整数的,用_______法来表示集合}{1,2,3,4,5,6,7,8,9U =的.问题5、例9中集合}{U x x =是三角形的元素是什么?三角形可分为哪几类?问题6、你能理解集合U C ()A B 吗?我们是如何来求U C ()A B 的,分几个步骤?知识点二 集合的交、并、补综合运算及应用例1已知集合S={x |1<x ≤7},A={x |2≤x <5},B={x |3≤x <7},求:(1)(A C S ) (B C S );(2))(B A C S ;(3)(A C S ) (B C S );(4))(B A C S .问题1、用不等式表示的集合的交、并、补集的运算,常用什么样的数学工具来解答?问题2、请解答此题,相信你能行!思考:从本题的结果你可以发现什么规律?例2设全集}{323,22-+=a a U , ,{}2,12-=a A ,}{5=A C U ,求实数a 的值。
1.3集合的基本运算教案一、内容和内容解析1.内容并集和交集的含义及并、交的基本运算.2.内容解析教科书类比数的研究,采用了“集合的含义与表示—集合的关系—集合的运算”的研究路径学习和研究集合的,共安排了三节内容.本节是第三节内容,主要研究集合的基本运算.作为数学运算的新内容、新形式,集合的运算是学生进入高中学习的第一种运算.无论是在知识上,还是在方法上,不仅对后面的学习有直接的影响,而且也是对前面所学的知识的巩固;不仅体现了数学运算素养,也蕴含着逻辑推理的基本成分,既是学生既往逻辑思维的抽象表达,也是学生进一步学习逻辑思维的基础和前提.本节内容共需要两个课时.本节课是第一课时,重点研究集合的并集和交集.在上节类比实数之间关系研究集合间关系的基础上,教科书继续类比实数运算,联想集合的运算,类比实数的加法运算研究集合的“并”运算.教材首先从学生熟悉的集合出发,结合实例,抽象概括出集合的“并”运算和“交”运算,在此基础上,从自然语言、符号语言以及图形语言三种语言的角度帮助学生理解并集和交集的含义,在渗透类比思想、数形结合思想和化归转化思想的同时,提升学生的数学抽象素养和数学运算素养.元素与集合的关系是研究集合的“并”运算和“交”运算的基础,当我们研究两个集合的运算的时候,其实质依然是回归到了元素与集合的关系.因此,集合的并集和交集也都是从元素与集合之间的关系来定义的.如明确这一点,将有助于学生理解并集与交集的含义及其符号表示.结合以上分析,确定本节课的教学重点:并集与交集的含义,用集合语言表达数学对象或数学内容.二、目标和目标解析1.目标(1)理解两个集合的并集与交集的含义,能求两个集合的并集与交集;(2)能使用Venn图表达集合的并集与交集,体会图形对理解抽象概念的作用,渗透数形结合思想,提升直观想象素养;(3)能用集合语言表达数学对象或数学内容,并能进行自然语言、图形语言、符号语言间的转换,提升数学抽象素养.2.目标解析达成上述目标的标志是:(1)能结合简单的问题和情境解释并集与交集的含义,能求两个给定集合的并集与交集.(2)对于给定的问题和情境,能使用Venn图表达集合的“交”运算和“并”运算,从中体会图形对理解抽象概念的作用.(3)在具体问题情景中,能根据需求进行自然语言、符号语言和图形语言的转换,熟悉符号语言和图形语言的表述方式,并能使用符号语言表述数学对象,积累数学抽象经验.三、教学问题诊断分析集合的运算是学生进入高中学习的第一种运算,较初中学习的数式的运算更抽象,元素与集合的关系是其研究的基础.由于之前学生已学习了集合的概念和基本关系,同时学生已有类比实数大小关系研究集合间的关系的体验,在此类比实数加法运算研究集合的“并”运算,学生在心理上会觉得比较自然,不会感到困难.但是,由于符号语言的简约、精炼和抽象,学生在把抽象出来的并集和交集概念的自然语言表述转化为符号语言时会有困难.同时,由于受生活语言负迁移的影响,学生会对并集概念中的关键词“或”的理解存在困难.交集概念中的“且”字,由于它与生活语言中的“且”字意义差别不大,学生理解起来要比较容易.结合以上分析,确定本节课的教学难点:集合并集与交集的符号表示及识别,以及对并集概念中的关键词“或”的理解.为突破这一难点,教学中要让学生熟练掌握有关集合的术语和符号,并会正确地表示一些简单的集合.要让学生体会到符号语言和图形语言的优势,加强学生的使用频率,逐渐提高学生自然语言、符号语言和图形语言的转换能力.并集里的“”包含三种情况:而生活中的“或”常常是二选一、非此即彼的意思,教学中要根据自己的生活经验结合具体实例讲清两者的区别.还可以借助代数运算帮助学生理解“或”“且”的含义,比如求方程组的解集是求各个方程的解集的交集,求方程(x+2)(x+1)=0的解集,则是求方程x+2=0和x+1=0的解集的并集.教学中还要从分析元素与集合的关系入手,借助韦恩图表示并集概念中的“或”所代表的三层含义,深化学生对并集概念的理解.四、教学过程设计(一)复习引入问题1:(1)上节课我们类比实数之间的大小关系,从元素与集合之间的关系入手研究了集合间的基本关系,两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)前面我们先后研究了集合的概念和表示方法、集合间的基本关系,接下来我们还要研究什么问题?用什么方法研究?师生活动:对于(1),教师提问后学生回答问题,教师根据学生回答的情况补充、完善.对于(2),学生独立思考后交流讨论、回答问题.学生已有类比实数大小关系研究集合间基本关系的经验,所以很容易联想到类比实数加、减、乘、除等运算来研究集合的运算.设计意图:通过引导学生回顾前面所学知识和研究方法,引导学生通过类比实数运算,联想集合运算,提出要研究的问题:集合的基本运算.进一步提高类比推理的思维能力和发现问题、提出问题的能力,提升逻辑推理素养.同时,对于集合的研究,学生也经历了通过类比数的研究,从抽象新的数学对象(概念)到研究数学对象(特性、表示方法、基本关系和基本运算)的过程.这是一个完整的数学思考过程,作为一个范例,它向学生完整展示了研究数学问题的“基本套路”,这将为后续的教学提供思维方式的示范以及学习方法的引领.(二)并集1.概念的引入问题2:阅读教科书第10页“观察”,类比实数的加法运算,集合之间可以“相加”吗?师生活动:学生独立观察,充分思考,交流探讨.通过类比和交流,得出结论,即集合也可以运算.根据学生交流讨论的情况,教师可以适时地选择以下问题进行追问.追问1:你能说出集合C 与集合A,B 之间的关系吗?师生活动:学生回忆并口答两个集合间的基本关系.通过三者关系的判断复习集合间的关系.追问2:从元素与集合之间关系的角度出发,你能发现两个问题中集合C与集合A,B之间的关系吗?你能分别用自然语言、符号语言和Venn图来叙述或表示集合 C 与集合A,B 之间的这种关系吗?师生活动:学生观察、分析、讨论交流,并尝试用三种语言表示这种关系,在学生交流的基础上教师补充、总结.从元素与集合之间关系的角度出发,学生很容易发现集合C 是由A,B 这两个集合的所有元素构成的,即集合C 是由所有属于A或属于B的元素组成的,并尝试用符号语言和图形语言表示.学生可能会在用符号语言表示时遇到困难,教师要引导学生回顾描述法,分析集合C 中的元素与A,B 两个集合元素的关系,在此基础上用符号语言表示.教师要向学生强调这里的“或”所连接的并列成分之间至少要满足一个,要与生活语言中的“或”区分开,生活中的“或”常常是二选一、非此即彼的意思.追问3:类比实数加法,你能尝试归纳概括出两个集合A 与B 的并集的定义吗?师生活动:学生在前面观察、讨论、分析的基础上,由特殊到一般,经过归纳—补充或修正—完善—得出并集的定义,教师引导和补充,并给出记号和读法:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集(union set),记作A∪B,读作“A并B ”.设计意图:通过实数的加法运算让学生类比集合是否也可以“相加”,增强学生由旧知探究新知的兴趣和能力.借助具体而又简单的集合实例,让学生观察、比较与分析,启发引导学生用文字语言给出并集的定义,帮助学生更深刻地理解集合的并集的运算,也有利于培养自主探究能力、分析归纳能力、分析问题和解决问题的能力.2.概念的理解问题3:你能用符号语言和Venn图表示并集的概念吗?师生活动:教师引导学生把文字语言转换成符号语言和图形语言符号语言:图形语言:图1设计意图:在用文字语言表示定义的基础上,用符号语言和图形语言表示并集的定义,有助于学生更好地理解并集的概念和运算实质.用符号语言表示并集定义,强调数学符号的准确性,学生可从中体会数学符号的简洁性和严谨性.利用多种形态的Venn图表达集合的并集运算,学生可从中体会直观图示对理解抽象概念的作用,有助于提升数学抽象素养和直观想象素养.追问:定义中的关键词有哪些?如何理解它们?师生活动:教师引导学生分析,并结合Venn图强化对“或”的理解,如图2.所有:表示集合A与集合B的元素一个都不能少;或:所连接的并列成分之间至少要满足一个,即有三种情况;集合:两个集合求并集,结果还是一个集合.设计意图:引出定义之后,及时让学生分析定义,抓住定义的重点,比如“所有”、“或”、“集合”等关键词,帮助学生更深刻地理解集合的并集的概念及其运算实质.3.概念的巩固应用例1 设A={4,5,6,8}, B={3,5,7,8}, 求A∪B.师生活动:本题难度较小,学生自己独立完成后交流答案,查找错误原因,教师检查、反馈.追问:为什么相同的元素5和8只出现一次?请用Venn 图表示结果.(集合元素的互异性)设计意图:巩固元素个数为有限个的集合间的并集运算,注意运算过程中元素要不重不漏,公共元素在并集中只能出现一次.用Venn图表示结果,在加强直观性的同时,也为后面学习两个集合的交集做准备.例 2 设集合A= {x|-1< x < 2}, 集合B= {x| 1< x <3 },求A∪B.师生活动:学生独立思考后交流、讨论.如果学生思维遇到障碍,教师再引导学生回顾初中用数轴表示不等式解集的方法.在此基础上,引导学生利用数轴将集合A与集合B分别表示出来并进行求解.设计意图:是针对例1的一个提高,集合中元素的个数由有限个到无限个,学生的思维产生冲突,在寻求发现新的解决方法的过程中,引出“数轴”这一辅助工具,直观表现集合的并运算过程,渗透数形结合的思想方法,培养学生类比、分析问题和解决问题的能力.教学中要注意数轴上的空心点.通过该问题的解决,使学生意识到用描述法表示的连续型元素的数的集合,运算时常借助数轴来计算结果.4.性质问题4:下列关系式成立吗?师生活动:学生独立思考、交流讨论,教师引导学生根据并集运算的定义对性质进行合理解释.设计意图:巩固、加深对集合的并集运算和集合元素“互异性”的理解,进一步体会空集的意义,关注集合运算的特殊性,提升学生的逻辑推理能力.(三)交集过渡语:前面我们研究了集合的并运算,我们首先由特殊到一般,通过观察、归纳、抽象出并集的定义,并用符号语言和图形语言表示定义,接着对定义中的关键词进行了分析,最后又依据定义研究了并运算的两个性质.由例1和例2(引导学生看例1中的Venn图和例2中的数轴)可知,这里还有一个特殊的集合,这个集合的元素是由两个集合的公共元素组成的,类比“并集”的研究过程,请你对这种集合运算进行研究.问题5:由两个集合所有元素合并可得两集合的并集,而由两个集合的公共元素组成的集合又会是两集合的一种怎样的运算?阅读教科书第11页上的第二个思考,请类比“并集”的研究过程对这种运算进行研究.师生活动:类比“并集”的研究过程探究“交集”运算,学生独立思考后再交流,教师引导启发学生完成相关学习内容.设计意图:探究交集运算,培养学生的自学能力以及发现问题、提出问题、分析和解决问题的能力,为终身发展培养基本素质.根据学生自主探究、交流情况,教师可以灵活选择以下问题进行追问.1.概念的引入追问1:阅读教科书第11页第二个“思考”,从元素与集合之间关系的角度出发,你能发现两个问题中集合C与集合A,B之间的关系吗?你能分别用自然语言、符号语言和Venn 图来叙述或表示集合C与集合A,B之间的关系吗?师生活动:类比“并集”的研究过程,学生观察、讨论、分析,发现集合C是由这A,B两个集合的公共元素或者说相同元素构成的,即集合C是由所有既属于集合A又属于集合B 的元素组成的,并用符号语言和图形语言表示集合C与集合A,B之间的关系.追问2:类比两个集合的并集,你能归纳概括出两个集合A与B的交集的定义吗?师生活动:类比“并集”概念建构的思维过程,学生在前面观察、讨论、分析的基础上,由特殊到一般,尝试给出交集的定义,教师引导、补充和完善,并给出记号和读法:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与集合B的交集(intersection set),记作A ∩B,读作“ A交B ”.设计意图:类比“并集”概念建构的思维过程(观察—归纳—抽象),借助具体而又简单的集合实例,学生通过观察、比较与分析,归纳共同特征,由此引出集合的“交”运算,并类比并集,用文字语言给出交集的定义,帮助学生更深刻地理解集合的交运算,再次培养学生的自主探究能力、分析归纳能力、分析问题和解决问题的能力.这里用已形成的思维操作程式指导“交集”概念的建构,这样的思维过程所承载的思维训练指向是“合情推理”,而且思维活动的开展也易于学生操作.2.概念的理解问题6:你能用符号语言和Venn图表示交集的概念吗?师生活动:类比并集,学生独立思考,把文字语言转换成符号语言和图形语言.需要强调的是,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.符号语言:;图形语言:图3.设计意图:再次让学生体会数学符号的简洁性、严谨性和直观图示对理解抽象概念的作用,帮助学生更好地理解交集的概念和运算实质,进一步培养数学抽象素养和直观想象素养.追问4:定义中的关键词有哪些?如何理解它们?师生活动:类比“并集”的研究过程,学生自己分析定义中的关键词.所有:表示集合A与集合B的公共元素一个都不能少;且:同时、公共之意,既属于集合A又属于集合B的元素;集合:两个集合求交集,结果还是一个集合.设计意图:引出定义之后,及时让学生分析定义,抓住定义的重点,比如“所有”、“且”、“集合”等关键词,帮助学生更深刻地理解集合的交集的概念及其运算实质.3.概念的巩固应用例3 立德中学开运动会,设A= {x|x是立德中学高一年级参加百米赛跑的同学} ,B= {x|x是立德中学高一年级参加跳高比赛的同学}, 求A∩B.师生活动:学生回顾集合的表示方法和交集的含义,独立解决问题,教师个别指导、反馈.教学中可利用教学班级这个实际模型对该问题进行改编.设计意图:巩固交集的定义,利用实际模型加深学生对交集的理解.例4 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.追问:平面内两条直线的关系有几种?(平行、相交或重合)如何用集合语言来表示它们之间的关系呢?师生活动:引导学生回顾平面内两条直线的位置关系及其特征.根据集合交集的含义,学生尝试用集合运算表示直线的位置关系,教师检查,作个别指导并进行反馈.设计意图:主要目的在于使用集合语言描述几何对象及其之间的关系,加深学生对集合的关系和运算的理解.4.性质问题7:下列关系式成立吗?师生活动:类比并集的性质,学生独立思考、分析,依据交集定义进行合理解释.设计意图:巩固、加深对集合的交运算和集合元素“互异性”的理解,进一步体会空集的意义,关注集合运算的特殊性.练习:教科书第12页练习第1,2题.师生活动:学生做练习,教师根据学生练习情况给予反馈.(四)归纳总结、布置作业教师引导学生回顾本节知识,并回答以下问题:(1)什么是并集?什么是交集?它们之间有什么联系与区别?请完成下列表格.(2)你是如何研究集合的并集和交集的?(3)如何求两个集合的并集和交集?设计意图:从知识内容、研究方法和蕴含的重要数学思想等方面对本节课进行小结,通过对知识方法的梳理和归纳,帮助学生构建知识网络.同时,利用表格通过对比,使学生能区分并集和交集的概念,认识到“并”“或”与记号“∪”之间的对应关系,以及“交”“且”与记号“∩”之间的对应关系,有助于学生正确识别相关符号表述.布置作业:教科书习题1.3第1,2,3题.五、目标检测设计1.设A= {a,b,d,e}, B= {b,c,e,f},求A∩B,A∪B.设计意图:考查学生对元素个数为有限个的集合间的并集运算和交集运算的理解和掌握程度.设计意图:考查学生对元素个数为无限个的集合间的并集运算和交集运算的理解和掌握程度.3.设A= {x|x是等腰三角形},B= {x|x是直角三角形}, 求A∩B,A∪B.设计意图:考查学生对集合间的并集运算和交集运算的理解和掌握程度.此题是在既往概念学习的基础上,要求学生从集合中元素的特征性质出发,经过逻辑推理得出两个集合并集和交集的运算结果,并用符号语言予以表达,需要学生具有一定的逻辑推理能力.。
1.1.3集合的基本运算教案篇一:第一课时1.1.3集合的基本运算教案20XX-20XX学年上学期高一数学备课组教案主备课教师:邱惠彬备课组老师:篇二:高中数学1.1.3集合的基本运算教案新人教a版必修11.1.3集合的基本运算学习目标:(1)理解交集与并集的概念;(2)掌握两个较简单集合的交集、并集的求法;(3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;(4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
教学重点:交集和并集的概念教学难点:交集和并集的概念、符号之间的区别与联系合作探究展示:一、问题衔接我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P8思考题),引入并集概念。
二、新课教学1.并集一般地,由所有属于集合a或属于集合B的元素所组成的集合,称为集合a与B的并集(Union)记作:a∪B读作:“a并B”即:a∪B={x|x∈a,或x∈B}Venn图表示:说明:B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P8-9例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合a与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合a与B的交集。
2.交集一般地,由属于集合a且属于集合B的元素所组成的集合,叫做集合a与B的交集(intersection)。
记作:a∩B读作:“a交B”即:a∩B={x|∈a,且x∈B}交集的Venn 图表示1说明:两个集合求交集,结果还是一个集合,是由集合a与B的公共元素组成的集合。
例题(P9-10例6、例7)拓展:求下列各图中集合a与B的并集与交集a集3.探索研究a∩B?a,a∩B?B,a∩a=a,a∩?=?,a∩B=B∩aa?a∪B,B?a∪B,a∪a=a,a∪?=a,a∪B=B∪a三、归纳小结(略)四、作业布置书面作业:P12习题1.1,第6-8题拓展提高:题型一已知集合的交集、并集求参数问题22例1已知集合a?a,a?1,?3,B?a?3,2a?1,a?1,若a?B???3?,???2?求实数a解:∵a?B???3?,∴?3?B,而a?1??3,∴当a?3??3,a?0,a??0,1,?3?,B???3,?1,1?,这样a?B???3,1?与a?B???3?矛盾;当2a?1??3,a??1,符合a?B???3?∴a??1练习1已知集合a??4,2a?1,a,B??a?5,1?a,9?,若a?B??9?,求a的值2??答案a=-3例2.已知a?x2a?x?a?3,B?xx??1或x?5,若a?B??,求a的取值范围.解(1)若a??,由a?B??,此时2a?a?3?a?32????a??,由a?B??,(2)若?2a??11???a?3?5解得??a?22?2a?a?3?综上所述,a的取值范围是?a????1?a?2或a?3?.2?练习2上题中若a?B?R,求a的取值范围。
《1.1.3集合的基本运算》学案(一)【学习目标】1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;【基础知识】一、复习引入新课题1.已知A={1,2,3}, S={1,2,3,4,5},则A S , {x|x ∈S 且x ∉A}= 。
2.用适当符号填空:0 {0} 0 Φ Φ {x|x 2+1=0,X ∈R} {0} {x|x<3且x>5} {x|x>6} {x|x<-2或x>5} {x|x>-3} {x>2}二、新课探究学习:问题1:我们知道,实数有加法运算。
类比实数的加法运算,集合是否也可以“相加”呢? 请同学们考察下列各个集合,你能说出集合C 与集合A.B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数1.教学交集、并集概念及性质:① 探讨:设{4,5,6,8}A =,{3,5,7,8}B =,试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并).② 讨论:如何用文字语言、符号语言分别表示两个集合的交、并?③ 定义交集: ④ 讨论:A ∩B 与A 、B 、B ∩A 的关系?A ∩A =__________ A ∩Φ=__________⑤ 图示五种交集的情况:…⑥ 练习(口答):A ={x|x>2},B ={x|x<8},则A ∩B = ;A ={等腰三角形},B ={直角三角形},则A ∩B = 。
⑦定义并集: ⑧分析:与交集比较,注意“所有”与“或”条件;“x ∈A 或x ∈B ”的三种情况。
⑨讨论:A ∪B 与集合A 、B 的关系?→ A ∪A = A ∪Ф= A ∪B 与B ∪A⑩练习(口答): A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;设A ={锐角三角形},B ={钝角三角形},则A ∪B = ;A ={x|x>3},B ={x|x<6},则A ∪B = ,A ∩B = 。
1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A .{x |x >-2}B .{x |x >-1}C .{x |-2<x <-1}D .{x |-1<x <2} (2)若将(1)中A 改为A ={x |x >a },求A ∪B ,A ∩B . (1)答案 A解析 画出数轴,故A ∪B ={x |x >-2}.(2)解 如图所示,当a <-2时,A ∪B =A ,A ∩B ={x |-2<x <2}; 当-2≤a <2时,A ∪B ={x |x >-2},A ∩B ={x |a <x <2}; 当a ≥2时,A ∪B ={x |-2<x <2或x >a },A ∩B =∅.已知集合的交集、并集求参数【例2】 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =R ,求a 的取值范围. 解 (1)由A ∩B =∅, ①若A =∅, 有2a >a +3,∴a >3. ②若A ≠∅,如图:∴⎩⎪⎨⎪⎧2a ≥-1a +3≤52a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2或a >3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑.变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧1a ≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2}C.{x|x<1} D.{x|x≤2}答案 A2.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的个数是()A.1个B.2个C.3个D.4个答案 C解析②③④正确.3.设A={x|1≤x≤3},B={x|x<0或x≥2},则A∪B等于()A.{x|x<0或x≥1} B.{x|x<0或x≥3}C.{x|x<0或x≥2} D.{x|2≤x≤3}答案 A解析结合数轴知A∪B={x|x<0或x≥1}.4.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是() A.3≤a<4 B.-1<a<4 C.a≤-1 D.a<-1答案 C解析结合数轴知答案C正确.5.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。
1.1.3集合的基本运算学生学案(生)
问:实数有加法运算,两个集合是否也可以相加呢?考察下列各个集合,你能说出集合C 与集合A ,B 之间的关系吗?
(1){}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A ;
(2){}是有理数x x A =,{}是无理数x x B =,{}是实数x x C =.
学生讨论并引出新课题.
例1:(1)设A={4,5,6,8},B={3,5,7,8},求:A ∪B 。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A ∪B 。
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
例2:(1)设A={4,5,6,8},B={3,5,7,8},求:A B 。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A B 。
例3(课本P9例7) 设平面内直线l 1上的点的集合为L 1,直线l 2上点的集合为L 2,试用集合的运算表示l 1,l 2的位置关系。
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
变式训练3:求下列各图中集合A 与B 的并集与交集
问:在问题{}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A 中,我们若把集合C 作为全集,请你说出集合A 与B 有怎样的关系吗?
例4(课本P11例8) ① 设U={x|X 是小于9的正实数},A={1,2,3}B={3,4,5,6}
求C U A ,C U B 。
② 设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A ∩B ,C U (A ∩B )。
课堂练习:(课本P11练习NO :1,2,3,4)
**结论归纳(重要):
⑴求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
⑵集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
(C U A )∪A=U ,(C U A )∩A=∅ 若A ∩B=A ,则A ⊆B ,反之也成立
若A ∪B=B ,则A ⊆B ,反之也成立
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B ),则x ∈A ,或x ∈B
布置作业
A 组:
1、(课本P11习题1.1A 组NO :6)
A B A(B) A B B A B A ()()();()()().U U U U U U C A C B C A B C A C B C A B == 摩根律
2、(课本P11习题1.1A组NO:7)
3、(课本P11习题1.1A组NO:8)
4、(课本P11习题1.1A组NO:9)
5、(课本P11习题1.1A组NO:10)
B组:
1、(课本P11习题1.1B组NO:1)
2、(课本P11习题1.1B组NO:2)
3、(课本P11习题1.1B组NO:3)
4、(课本P11习题1.1B组NO:4)
5、设A={(x,y)|y=-4x+6},{(x,y)|y=5x-3},求A B.。