在气垫导轨上测定滑块的速度和加速度
- 格式:ppt
- 大小:154.50 KB
- 文档页数:9
在气垫导轨上测量速度和加速度气垫导轨为力学实验提供了一维几乎无摩擦的系统。
在气垫导轨上可以研究运动体的一维运动、碰撞及振动等。
本实验采用气垫导轨验证匀加速直线运动的公式和牛顿第一定律。
【预习提示】1. 在使用气垫导轨前,要首先将导轨调至水平状态,实验中如何将导轨调至水平?2. 实验中采用光电计时器是如何工作的,它是如何获得滑块滑过某点的瞬时速度的?【实验目的】1. 设计实验方案,验证匀加速直线运动的三个基本公式。
2. 设计实验方案,利用直线外推法验证牛顿第一定律。
3. 学会光电计时器的使用方法,能够用光电计时器测量时间、速度和加速度。
【实验原理】将已调水平的气垫导轨的一端垫上垫块,便得到一个较为理想的平直光滑斜面。
忽略空气摩擦阻尼,运动物体滑块在重力沿斜面的分力作用下作匀加速直线运动。
这种具有恒定加速度的运动有三个熟知的基本公式:v =v 0+at (1)s =v 0t +12at 2 (2) v 2=v 02+2as (3) 式中v 0、v 分别为物体在0t =和t 时刻的瞬时速度,s 为物体在t 时间内运动的距离,a 即为物体的加速度。
由牛顿第二定律可知,这时加速度a 和重力加速度g 之间关系应当为a =gsinθ=g ℎL (4) 式中θ为导轨的倾角,h 为导轨调平后一端垫高的高度,即垫块的厚度,L 为斜面的长度,即两端底脚螺丝之间的距离。
实验中用直线图解法求加速度。
如图1所示,设运动物体滑块每次均从P 处静止开始下滑,测得数据()()()112233,,,s v s v s v 、、、,根据(3)式,以s 为横坐标,v 2为纵坐标,作v 2~s图线,如果图线为一直线,说明物体作匀加速直线运动,直线的斜率为2a ,截距为v 02。
实验者可自行分析考虑,怎样利用(1)式和(2)式,由实验数据绘制求加速度a 的直线图。
图1 图2保持s 不变,即实验中两光电门位置固定不动,改变垫块的高度h ,即可求得加速度a 和相应的h 之间的直线关系,线性外推得到当0h =时,0a =,说明导轨水平时,物体不受外力作用要保持原来的匀速直线运动状态,从而验证了牛顿第一定律。
实验3 在气垫导轨上测加速度在物理实验中,由于摩擦的存在,使某些力学实验结果的误差很大,甚至使有些实验无法进行。
气垫导轨是一种阻力极小的力学实验装置。
是一个长1.5m 的三角形铝合金空腔,其一端封闭,另一端为进气口。
利用小型气源将压缩空气压入导轨空腔,再从导轨表面上的小孔喷出气流,在导轨与滑行器之间形成一层很薄的气膜,将滑行器浮起,使滑行器能在导轨上作近似不受阻力的直线运动,极大地减小了在力学实验中由于摩擦力的存在而出现的误差,使实验结果接近理论值,实验现象更加真实、直观和易于接受,从而可以进行一些较为精确的定量研究。
工业上应用气垫技术,还可以减少机械或器件的磨损,延长使用寿命,提高速度和机械效益。
所以,在机械、纺织、运输等工业生产中已得到广泛的应用,如气垫船、空气轴承等。
[实验目的]1、熟悉气垫导轨的调整和数字计时器的使用。
2、观察匀速直线运动、匀变速直线运动,验证匀变速直线运动的规律。
3、学习在气垫导轨上测滑块的速度和加速度的方法。
[实验仪器与用具]气垫导轨、气源、电脑计时器、滑块、垫块、钢卷尺等。
(见图1)(1滑块、2气垫导轨、3电脑计时器、4气源) 图1 气垫导轨[实验原理]物体做直线运动时,如果在某时刻t 到t+Δt 的时间间隔内,物体运动通过的位移为Δx ,则物体在该Δx 的时间间隔内的平均速度为tx v ∆∆=该时刻t 的瞬时速度v 为tx v t ∆∆=→∆lim显然,Δx 越小,v 就越接近于瞬时速度v 。
在实验中要测量物体在某时刻(或某位置)的瞬时速度是无法实现的。
通常是选取较小的Δx ,以保证Δt 很小,在一定的误差范围内用平均速度代替瞬时速度。
如图2所示,在气垫导轨组成的斜面上,A 、B 均是光电门,分别用v 1和v 2表示滑块通过光电门时的瞬时速度,用t 表示滑块从A 滑到B 所用的时间。
滑块由静止出发沿斜面下滑作匀加速直线运动(摩擦阻力忽略不计),则有图2 测速原理 111t x v ∆∆≈222t x v ∆∆≈tv v a 12-=由上式可见,只要测出1v 、2v 和t 就可算出物体的加速度a 。
竭诚为您提供优质文档/双击可除在气垫导轨上测加速度的实验报告篇一:大学物理实验气垫导轨实验报告气轨导轨上的实验——测量速度、加速度及验证牛顿第二运动定律一、实验目的1、学习气垫导轨和电脑计数器的使用方法。
2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。
3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。
二、实验仪器气垫导轨(Qg-5-1.5m)、气源(Dc-2b型)、滑块、垫片、电脑计数器(muJ-6b型)、电子天平(Yp1201型)三、实验原理1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。
2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3v??x?t?x?t4过s1、s离?sa?速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。
5、牛顿第二定律得研究若不计阻力,则滑块所受的合外力就是下滑分力,F?mgsin??mg定牛顿第二定律成立,有mgh。
假Lhh?ma理论,a理论?g,将实验测得的a和a理论进LL行比较,计算相对误差。
如果误差实在可允许的范围内(<5%),即可认为(本地g取979.5cm/s2)a?a理论,则验证了牛顿第二定律。
6、定性研究滑块所受的粘滞阻力与滑块速度的关系实验时,滑块实际上要受到气垫和空气的粘滞阻力。
考虑阻力,滑块的动力hh学方程为mg?f?ma,f?mg?ma?m(a理论-a),比较不同倾斜状态下的LL平均阻力f与滑块的平均速度,可以定性得出f与v 的关系。
四、实验内容与步骤1、将气垫导轨调成水平状态先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右的速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。
大学物理实验报告-速度、加速度的测定和牛顿运动定律的验证中国石油大学,华东,现代远程教育实验报告课程名称:大学物理(一)实验名称:速度、加速度的测定和牛顿运动定律的验证实验形式:在线模拟+现场实践提交形式:提交书面实验报告学生姓名: 学号: 年级专业层次: 学习中心:提交时间: 年月日一、实验目的1(了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2(了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3(掌握在气垫导轨上测定速度、加速度的原理和方法。
4(从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。
5(掌握验证物理规律的基本实验方法。
二、实验原理1(速度的测量一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。
当Δt?0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度(1)实际测量中,计时装置不可能记下Δt?0的时间来,因而直接用式(1)测量某点的速度就难以实现。
但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。
本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2(加速度的测量在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。
对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为(2)根据式(2)即可计算出滑块的加速度。
(2)由测量加速度设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为(3)根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
实验三 气垫导轨上测量速度和加速度【目的】1.学习气垫导轨和数字毫秒计的正确使用。
2.掌握在气垫导轨上测量平均速度、瞬时速度和加速度的方法。
3.研究力、质量和加速度之间的关系。
【原理】利用从导轨表面上的小孔喷出的压缩空气,使导轨表面与滑块之间的摩擦力大大减小,气轨上的滑块运动几乎可以看做是无摩擦的运动。
当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。
在滑块上装一与滑块运动方向严格平行、宽度为L ∆的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L ∆和遮光时间t ∆,则滑块通过光电门的平均速度为:t L v ∆∆= (2-13)若L ∆很小,则在L ∆范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。
L ∆越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与L ∆的大小无关。
若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S 的2个光电门的始末速度1v 和2v ,则滑块的加速度:Sv v a 22122-= (2-14)根据牛顿第二定律F = m a (2-15)如图2-11所示,水平气轨上质量为M 的滑块A ,用细绳通过轻滑轮B 与砝码C 相连,在忽略各摩擦力,不计线的质量,线不伸长的条件下,对于滑块A ,根据牛顿第二定律有T = M a (2-16)式中T 为绳子的张力,对于质量为m 的砝码,根据牛顿第二定律有mg - F = m a(2-17)由式(2-16)和式(2-17)得mg =(M +m )a (2-18)式(2-18)表明,当系统总质量保持不变时,加速度与合外力成正比,当合外力保持恒定时,加速度与系统总重量成正比,若实验证明了式(2-18)成立,亦即验证了牛顿第二定律。
实验35 核磁共振实验1946年伯塞尔用吸收法观测到了石蜡中质子的核磁共振信号,布洛赫几乎同时用感应法发现了液态水的核磁共振现象,为此他们分享了1952年的诺贝尔物理学奖金。
核磁共振是指具有磁矩的原子核在恒定磁场的作用下对一定频率的射频电磁波产生的共振吸收现象。
核磁共振已经广泛地应用到许多学科领域,是物理、化学、生物和医学研究中的一项重要实验技术。
【实验目的】1.观察核磁共振实验现象。
2.了解核磁共振实验的基本原理和方法。
3.用核磁共振法测定H 1和F 19的γ值和g 因子。
【实验原理】解释核磁共振现象有经典和量子两种观点。
一、量子力学观点根据量子力学理论,原子核自旋磁矩和自旋角动量的关系为P μγ= (35-1) 其中g m q N2=γ,称为旋磁比,q 、N m 分别为原子核的电荷和质量,g 为原子核的朗德因子,对质子,5586=g 。
原子核自旋磁矩和自旋角动量在空间取向是量子化的,其自旋角动量和自旋磁矩为1)J(J P J += (35-2))(12+=γ=μJ J g m q P NJ J (35-3) 其中J 是核自旋量子数,其值为半整数或整数。
当质子数和质量数均为偶数时,0J =,当质量数为偶数而质子数为奇数时, ,2,1,0=J ,当质量数为奇数时,),5,3,1(2/ ==n n J 。
πh/2= ,h 为普朗克常数。
没有外磁场的情况下,原子核处于由量子数J 标志的某一能量状态,称为能级。
当有外磁场存在时,自旋角动量P 在外磁场0B 方向(z 方向)的分量为J Z m P = (35-4)其中J J J J m J -+--=,,,,11 ,称为原子核的磁量子数。
这时磁矩与外磁场相互作用能为000B m B P μB E Z γ-=γ-=θ-=⋅-=cos B μ0 (35-5)可见量子数J 标志的能级分裂为12+J 个超精细能级,这种能级称为塞曼能级。
每个超精细能级由J m 标志,可取12+J 个值。
竭诚为您提供优质文档/双击可除在气垫导轨上测加速度的实验报告篇一:大学物理实验气垫导轨实验报告气轨导轨上的实验——测量速度、加速度及验证牛顿第二运动定律一、实验目的1、学习气垫导轨和电脑计数器的使用方法。
2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。
3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。
二、实验仪器气垫导轨(Qg-5-1.5m)、气源(Dc-2b型)、滑块、垫片、电脑计数器(muJ-6b型)、电子天平(Yp1201型)三、实验原理1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。
2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3v??x?t?x?t4过s1、s离?sa?速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。
5、牛顿第二定律得研究若不计阻力,则滑块所受的合外力就是下滑分力,F?mgsin??mg定牛顿第二定律成立,有mgh。
假Lhh?ma理论,a理论?g,将实验测得的a和a理论进LL行比较,计算相对误差。
如果误差实在可允许的范围内(<5%),即可认为(本地g取979.5cm/s2)a?a理论,则验证了牛顿第二定律。
6、定性研究滑块所受的粘滞阻力与滑块速度的关系实验时,滑块实际上要受到气垫和空气的粘滞阻力。
考虑阻力,滑块的动力hh学方程为mg?f?ma,f?mg?ma?m(a理论-a),比较不同倾斜状态下的LL平均阻力f与滑块的平均速度,可以定性得出f与v 的关系。
四、实验内容与步骤1、将气垫导轨调成水平状态先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右的速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。