一轮复习配套讲义:第1篇 第3讲 简单的逻辑联结词
- 格式:doc
- 大小:807.00 KB
- 文档页数:17
第3讲简单逻辑联结词、全称量词与存在量词1.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给一个,用符号“□01∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“□02∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M中任意一个x,有p(x)成立”用符号简记为:□03∀x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成立”用符号简记为:□04∃x0∈M,p(x0).2.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)□05∃x0∈M,¬p(x0)∃x0∈M,p(x0)□06∀x∈M,¬p(x)1.命题p∧q,p∨q,¬p的真假判定p q p∧q p∨q ¬p真真真真假真假假真假假真假真真假假假假真2.确定p∧q,p∨q,¬p真假的记忆口诀如下:p∧q→见假即假,p∨q→见真即真,p 与¬p→真假相反.3.“p∨q”的否定是“(¬p)∧(¬q)”;“p∧q”的否定是“(¬p)∨(¬q)”.4.“且”“或”“非”三个逻辑联结词,对应着集合中的“交”“并”“补”,所以含有逻辑联结词的问题常常转化为集合问题处理.5.含有一个量词的命题的否定规律是“改量词,否结论”.6.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则¬q”,否命题是“若¬p,则¬q”.1.命题p :“∀x ∈N *,⎝ ⎛⎭⎪⎫12x≤12”的否定为( )A .∀x ∈N *,⎝ ⎛⎭⎪⎫12x>12B .∀x ∉N *,⎝ ⎛⎭⎪⎫12x>12C .∃x 0∉N *,⎝ ⎛⎭⎪⎫12x 0>12D .∃x 0∈N *,⎝ ⎛⎭⎪⎫12x 0>12答案 D解析 全称命题的否定为特称命题,方法是改量词,否结论,故选D.2.(2022·山西大同摸底)已知命题p ,q ,则“¬p 为假命题”是“p ∧q 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 B解析 若¬p 为假命题,则p 为真命题,由于不知道q 的真假性,所以推不出p ∧q 是真命题,所以充分性不成立.p ∧q 是真命题,则p ,q 均为真命题,则¬p 为假命题,所以必要性成立.所以“¬p 为假命题”是“p ∧q 为真命题”的必要不充分条件.3.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( ) A.[-1,3] B .(-1,3)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 因为命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”等价于“x 2+(a -1)x +1=0有两个不等的实根”,所以Δ=(a -1)2-4>0,即a 2-2a -3>0,解得a <-1或a >3.4.(2021·云南丽江模拟)命题p :甲的数学成绩不低于100分,命题q :乙的数学成绩低于100分,则p ∨(¬q )表示( )A .甲、乙两人数学成绩都低于100分B .甲、乙两人至少有一人数学成绩低于100分C .甲、乙两人数学成绩都不低于100分D .甲、乙两人至少有一人数学成绩不低于100分 答案 D解析 因为命题q :乙的数学成绩低于100分,所以命题¬q 表示乙的数学成绩不低于100分,所以命题p ∨(¬q )表示甲、乙两人至少有一人的数学成绩不低于100分.故选D.5.设有下面四个命题:p 1:∃n 0∈N ,n 20>2n 0;p 2:x ∈R ,“x >1”是“x >2”的充分不必要条件;p 3:命题“若x -312是有理数,则x 是无理数”的逆否命题;p 4:若“p ∨q ”是真命题,则p 一定是真命题.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4 D .p 1,p 3 答案 D解析 ∵n 0=3时,32>23,∴∃n 0∈N ,n 20>2n 0,∴p 1为真命题;∵(2,+∞)(1,+∞),∴x >2能推出x >1,x >1不能推出x >2,“x >1”是“x >2”的必要不充分条件,∴p 2是假命题;根据逆否命题的定义可知p 3为真命题.根据复合命题的真假判断法则可知p 4为假命题.故选D.6.已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(¬q )C .(¬p )∧(¬q )D .(¬p )∧q答案 D解析 命题p :a =0时,可得1>0恒成立;a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解得0<a <4.综上,可得实数a ∈[0,4),因此p 是假命题,则¬p 是真命题;命题q :由x 2-2x -8>0解得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,是真命题,故(¬p )∧q 是真命题.故选D.考向一 含有逻辑联结词命题真假的判断 例1 (2020·全国Ⅱ卷)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是 . ①p 1∧p 4,②p 1∧p 2,③¬p 2∨p 3,④¬p 3∨¬p 4. 答案 ①③④解析 对于命题p 1,可设l 1与l 2相交,这两条直线确定的平面为α,设l 3与l 1,l 2的交点分别为A ,B (如图),则A ∈α,B ∈α,所以AB ⊂α,即l 3⊂α,命题p 1为真命题;对于命题p 2,若三点共线,则过这三个点的平面有无数个,命题p 2为假命题; 对于命题p 3,空间中两条直线的位置关系有相交、平行或异面,命题p 3为假命题; 对于命题p 4,若直线m ⊥平面α,则m 垂直于平面α内所有直线,因为l ⊂平面α,所以m ⊥l ,命题p 4为真命题.综上可知,p 1∧p 4为真命题,p 1∧p 2为假命题,¬p 2∨p 3为真命题,¬p 3∨¬p 4为真命题.判断含有逻辑联结词的命题真假的一般步骤(1)定结构:先判断复合命题的结构形式.(2)辨真假:判断构成这个命题的每一个简单命题的真假性.(3)下结论:依据“有真或为真,有假且为假,p 和¬p 真假相反”,作出判断.1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x的图象关于直线x =π2对称,则下列判断正确的是 .①p 为真;②¬q 为假;③p ∧q 为假;④p ∨q 为真;⑤(¬p )∧(¬q )为真;⑥¬(p ∨q )为真. 答案 ③⑤⑥解析 p ,q 均为假,故p ∧q 为假,p ∨q 为假,(¬p )∧(¬q )为真,¬(p ∨q )为真.精准设计考向,多角度探究突破 考向二 全称命题、特称命题 角度全称命题、特称命题的否定例2 (1)(2021·安徽合肥质检)设命题p :∀x ∈R ,x 2-x +1>0,则¬p 为( )A.∃x0∈R,x2-x0+1>0B.∀x∈R,x2-x+1≤0C.∃x0∈R,x2-x0+1≤0D.∀x∈R,x2-x+1<0答案 C解析全称命题的否定是特称命题,同时否定结论.故选C.(2)命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数答案 B解析根据特称命题的否定为全称命题,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.一般地,写含有一个量词的命题的否定,先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论.如果所给命题中省去了量词,则要结合命题的含义加上量词,再对量词进行否定.2.(2022·西安模拟)命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,则¬p为( )A.∃a0<0,关于x的方程x2+a0x+1=0有实数解B.∃a0<0,关于x的方程x2+a0x+1=0没有实数解C.∃a0≥0,关于x的方程x2+a0x+1=0没有实数解D.∃a0≥0,关于x的方程x2+a0x+1=0有实数解答案 C解析根据全称命题的否定可知,¬p为∃a0≥0,关于x的方程x2+a0x+1=0没有实数解.故选C.3.命题“奇数的立方是奇数”的否定是.答案存在一个奇数,它的立方不是奇数解析此命题隐含了全称量词“所有”,故否定是特称命题,即“存在一个奇数,它的立方不是奇数”.角度全称命题、特称命题真假的判断例3 以下四个命题既是特称命题又是真命题的是( )A .锐角三角形有一个内角是钝角B .至少有一个实数x 0,使x 20≤0 C .两个无理数的和必是无理数 D .存在一个负数x 0,使1x 0>2答案 B解析 选项A 中,锐角三角形的所有内角都是锐角,所以A 是假命题;选项B 中,当x 0=0时,x 20=0,所以B 既是特称命题又是真命题;选项C 中,因为2+(-2)=0不是无理数,所以C 是假命题;选项D 中,对于任意一个负数x ,都有1x <0,不满足1x>2,所以D 是假命题.故选B.全称命题与特称命题真假性的两种判断方法不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题真 否定为假 假 存在一个对象使命题假 否定为真 特称命题真 存在一个对象使命题真 否定为假 假所有对象使命题假否定为真4.(2021·江西师大附中模拟)已知定义域为R 的函数f (x )不是偶函数,则下列命题一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )≠-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)≠-f (x 0) 答案 C解析 设命题p :∀x ∈R ,f (x )=f (-x ),∵f (x )不是偶函数,∴p 是假命题,则¬p 是真命题,又¬p :∃x 0∈R ,f (-x 0)≠f (x 0),故选C.考向三 利用复合命题的真假求参数范围例4 (1)已知命题p :“∀x ∈[0,1],a ≥e x”;命题q :“∃x 0∈R ,使得x 20+4x 0+a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围为( )A .[1,4]B .[1,e]C .[e ,4]D .[4,+∞) 答案 C解析 若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x,得a ≥e ;由∃x 0∈R ,使x 20+4x 0+a =0,知Δ=16-4a ≥0,则a ≤4,因此e ≤a ≤4.则实数a 的取值范围为[e ,4].故选C.(2)命题p :实数a 满足a 2+a -6≥0;命题q :函数y =ax 2-ax +1的定义域为R .若命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围为 .答案 (-∞,-3]∪[0,2)∪(4,+∞)解析 当命题p 为真时,即a 2+a -6≥0,解得a ≥2或a ≤-3;当命题q 为真时,可得ax2-ax +1≥0对任意x ∈R 恒成立,若a =0,则满足题意;若a ≠0,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4,∴0≤a ≤4.∵p ∧q 为假,p ∨q 为真,∴“p 真q 假”或“p 假q 真”,①当p 真q假时,则⎩⎪⎨⎪⎧a ≥2或a ≤-3,a >4或a <0,∴a >4或a ≤-3;②当p 假q真时,则⎩⎪⎨⎪⎧-3<a <2,0≤a ≤4,∴0≤a <2.综上,实数a 的取值范围是(-∞,-3]∪[0,2)∪(4,+∞).根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况,本例(2)中有两种情况).(2)然后再求出每个命题是真命题时参数的取值范围. (3)最后根据每个命题的真假情况,求出参数的取值范围.5.设命题p :函数f (x )=x 3-ax -1在区间[-1,1]上单调递减;命题q :函数y =ln (x 2+ax +1)的值域是R .如果命题p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,-2]∪[2,3)C .(2,3]D .[3,+∞)答案 B解析 由函数f (x )=x 3-ax -1在区间[-1,1]上单调递减,得f ′(x )=3x 2-a ≤0在[-1,1]上恒成立,故a ≥(3x 2)max =3,即a ≥3;由函数y =ln (x 2+ax +1)的值域是R ,得x2+ax +1能取到全体正数,故Δ=a 2-4≥0,解得a ≤-2或a ≥2.因为命题p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假.当p 真q 假时,可得{a |a ≥3}∩{a |-2<a <2}=∅;当p 假q 真时,可得{a |a <3}∩{a |a ≤-2或a ≥2}={a |a ≤-2或2≤a <3}.因此实数a 的取值范围是(-∞,-2]∪[2,3).故选B.1.(2021·山西阳泉高三阶段考试)设A 是奇数集,B 是偶数集,则命题“∀x ∈A ,2x ∉B ”的否定是( )A.∃x0∈A,2x0∈B B.∃x0∉A,2x0∈BC.∀x∉A,2x∉B D.∀x∉A,2x∈B答案 A解析“∀x∈A,2x∉B”即“所有x∈A,都有2x∉B”,它的否定应该是“存在x0∈A,使2x0∈B”,所以正确选项为A.2.下列命题中的假命题是( )A.∀x∈R,e x-1>0B.∀x∈N*,(x-1)2>0C.∃x0∈R,ln x0<1D.∃x0∈R,tan x0=2答案 B解析因为当x=1时,(x-1)2=0,所以B为假命题,故选B.3.命题“∀x∈R,f(x)g(x)≠0”的否定是( )A.∀x∈R,f(x)=0且g(x)=0B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x0)=0且g(x0)=0D.∃x0∈R,f(x0)=0或g(x0)=0答案 D解析根据全称命题与特称命题互为否定的关系可得,命题“∀x∈R,f(x)g(x)≠0”的否定是“∃x0∈R,f(x0)=0或g(x0)=0”.故选D.4.(2022·江西南昌摸底)下列命题的否定是真命题的是( )A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案 B解析若命题的否定是真命题,则原命题是假命题,显然A,C,D是真命题,B是假命题.故选B.5.设非空集合P,Q满足P∩Q=P,则( )A.∀x∈Q,有x∈PB.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈PD.∃x0∈P,使得x0∉Q答案 B解析因为P∩Q=P,所以P⊆Q,所以∀x∉Q,有x∉P,故选B.6.(2021·全国乙卷)已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是( )A.p∧q B.¬p∧qC.p∧¬q D.¬(p∨q)答案 A解析因为命题p为真命题,命题q为真命题,所以p∧q为真命题.故选A.7.关于命题“当m∈[1,2]时,方程x2-2x+m=0没有实数解”,下列说法正确的是( ) A.是全称命题,假命题B.是全称命题,真命题C.是特称命题,假命题D.是特称命题,真命题答案 A解析原命题的含义是“对于任意m∈[1,2],方程x2-2x+m=0都没有实数解”,但当m=1时,方程有实数解x=1,故命题是全称命题,假命题,所以A正确.8.(2022·四川南充月考)下列命题中,是真命题的全称命题的是( )A.对于实数a,b∈R,有a2+b2-2a-2b+2<0B.梯形两条对角线相等C.有小于1的自然数D.函数y=kx+1的图象过定点(0,1)答案 D解析选项A是全称命题,a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,故A是假命题;B是假命题;“存在小于1的自然数”,C是特称命题;D项,对于所有k∈R,函数y=kx +1的图象过定点(0,1),所以正确选项为D.9.(2021·河南济源、平顶山、许昌第二次质检)已知直线m,n和平面α,β.命题p:若m⊂α,n⊂β,α∥β,则直线m与直线n平行或异面;命题q:若m∥α,α∥β,则m∥β;命题s:若α⊥β,α∩β=m,在平面α内作直线m的垂线n,则n⊥β.则下列为真命题的是( )A.p∨(¬q) B.(¬p)∧sC.q∧(¬s) D.(¬p)∧(¬q)答案 A解析若α∥β,m⊂α,n⊂β,由于平面α与平面β没有交点,所以直线m与直线n 平行或异面,即命题p 是真命题;若m ∥α,α∥β,则m ∥β或m ⊂β,即命题q 是假命题;若α⊥β,α∩β=m ,在平面α内作直线m 的垂线n ,由面面垂直的性质定理,得n ⊥β,命题s 是真命题.对于A ,p ∨(¬q )是真命题;对于B ,p 是真命题,则¬p 是假命题,s 是真命题,则(¬p )∧s 是假命题;对于C ,s 是真命题,则¬s 是假命题,q 是假命题,则q ∧(¬s )是假命题;对于D ,p 是真命题,则¬p 是假命题,q 是假命题,则¬q 是真命题,则(¬p )∧(¬q )是假命题.故选A.10.命题p :若向量a ·b <0,则a 与b 的夹角为钝角;命题q :若cos αcos β=1,则sin (α+β)=0.下列命题为真命题的是( )A .pB .¬qC .p ∧qD .p ∨q答案 D解析 若a ,b 共线且方向相反时,a ·b <0,但a 与b 夹角为π,故p 是假命题.若cosα·cos β=1,则⎩⎪⎨⎪⎧cos α=1,cos β=1或⎩⎪⎨⎪⎧cos α=-1,cos β=-1,∴sin α=sin β=0,∴sin (α+β)=sin αcos β+cos αsin β=0,故q 是真命题,∴p ,¬q ,p ∧q 均为假命题,p ∨q 为真命题,故选D.11.短道速滑队进行冬奥会选拔赛(6人决出第一~六名),记“甲得第一名”为p ,“乙得第二名”为q ,“丙得第三名”为r ,若p ∨q 是真命题,p ∧q 是假命题,(¬q )∧r 是真命题,则选拔赛的结果为( )A .甲第一、乙第二、丙第三B .甲第二、乙第一、丙第三C .甲第一、乙第三、丙第二D .甲第一、乙没得第二名、丙第三 答案 D解析 (¬q )∧r 是真命题意味着¬q 为真,q 为假(乙没得第二名)且r 为真(丙得第三名);p ∨q 是真命题,由于q 为假,只能p 为真(甲得第一名),这与p ∧q 是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名.故选D.12.(2022·甘肃兰州模拟)已知f (x )=ln (x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x-m ,若∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫14,+∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫12,+∞D .⎝ ⎛⎦⎥⎤-∞,-12 答案 A解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.故选A.13.已知命题p :∀x ∈R ,2x <3x,命题q :∃x 0∈R ,x 20=2-x 0,则下述命题中所有真命题的序号是 .①p ∧q ;②(¬p )∧q ;③p ∨(¬q );④(¬p )∨(¬q ). 答案 ②④解析 当x <0时,2x>3x,所以命题p 为假命题.解x 2=2-x ,得x =-2或1,所以命题q 为真命题.所以p ∧q ,p ∨(¬q )为假命题,(¬p )∧q ,(¬p )∨(¬q )为真命题.14.若命题:“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是 .答案 [-3,3]解析 命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,即“∀x ∈R ,3x 2+2ax +1≥0”是真命题,故Δ=4a 2-12≤0,解得-3≤a ≤ 3.即实数a 的取值范围为[-3,3].15.(2022·四川绵阳中学模拟)已知命题p :∃x ∈⎣⎢⎡⎦⎥⎤0,π2,cos 2x +cos x -m =0为真命题,则实数m 的取值范围是 .答案 [-1,2]解析 cos 2x +cos x -m =0可变形为cos 2x +cos x =m .令f (x )=cos 2x +cos x ,则f (x )=2cos 2x +cos x -1=2⎝ ⎛⎭⎪⎫cos x +142-98.由于x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1].于是f (x )∈[-1,2].故实数m 的取值范围是[-1,2].16.(2021·南昌一中模拟)已知命题p :关于x 的方程x 2-mx -2=0在[0,1]上有解;命题q :f (x )=log 2⎝ ⎛⎭⎪⎫x 2-2mx +12在[1,+∞)上单调递增.若“¬p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为 .答案 ⎝ ⎛⎭⎪⎫-1,34解析 对于命题p :令g (x )=x 2-mx -2,则g (0)=-2,∴g (1)=-m -1≥0,解得m ≤-1,故命题p 为真命题时,m ≤-1.∴¬p 为真命题时,m >-1.对于命题q :⎩⎪⎨⎪⎧m ≤1,1-2m +12>0, 解得m <34.又由题意可得p 假q 真,∴-1<m <34,即实数m 的取值范围为⎝⎛⎭⎪⎫-1,34.17.(2022·江西上饶高三摸底)已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x 0∈[1,2],log 12(x 20-mx 0+1)<-1成立.如果“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.解 若p 为真,则∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3,∴f (x )在[-1,1]上的最小值为-3, ∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时,12≤m ≤32.若q 为真,则∃x 0∈[1,2],x 20-mx 0+1>2成立,即m <x 20-1x 0成立.设g (x )=x 2-1x =x -1x ,则g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32.∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. 当p 真q 假时,⎩⎪⎨⎪⎧12≤m ≤32,m ≥32,∴m =32;当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,∴m <12.综上所述,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <12或m =32.18.已知函数f (x )=-(x -2m )(x +m +3)(其中m <-1),g (x )=2x-2.设命题p :∀x ∈(1,+∞),f (x )<0或g (x )<0;命题q :∃x 0∈(-1,0),f (x 0)·g (x 0)<0.若p ∧q 是真命题,求m 的取值范围.解 ∵p ∧q 是真命题,∴p 与q 都是真命题. 当x >1时,g (x )=2x-2>0, 又p 是真命题,则f (x )<0. ∵m <-1,∴2m <-m -3,∴f (x )<0的解集为{x |x <2m 或x >-m -3},∴-m-3≤1,解得m≥-4;当-1<x<0时,g(x)=2x-2<0.∵q是真命题,则∃x0∈(-1,0),使得f(x0)>0,由f(x0)>0得2m<x0<-m-3,则(2m,-m-3)∩(-1,0)≠∅,又m<-1,∴2m<-2,∴-m-3>-1,解得m<-2. ∴若p∧q是真命题,m的取值范围是-4≤m<-2.。
第三讲逻辑联结词、全称量词与存在量词知识梳理·双基自测知识点一简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,(2)用联结词“或”联结命题p和命题q,记作p∨q,(3)对一个命题p的否定记作¬ p,(4)命题p∧q,p∨q,¬ p的真假判断真值表知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).3.含有一个量词的命题的否定(1)(2)p∨q的否定是(¬p)∧(¬ q);p∧q的否定是(¬p)∨(¬ q).重要结论1.逻辑联结词与集合的关系.(1)“或”与集合的“并”密切相关,集合的并集是用“或”来定义的,命题“p∨q”为真有三个含义:只有p成立,只有q成立,p、q同时成立;(2)“且”与集合的“交”密切相关,集合的交集是用“且”来定义的,命题p∧q为真表示p、q同时成立;(3)“非”与集合中的补集相类似.2.常用短语的否定词题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“2023≥2022”是真命题.( √)(2)命题p和¬ p不可能都是真命题.( √)(3)“全等三角形的面积相等”是特称命题.( ×)(4)命题¬(p∧q)是假命题,则命题p,q都是真命题.( √)题组二走进教材2.(选修2-1P23T2改编)下列命题中的假命题是( C )A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0[解析]对于C,任意x∈R,x3∈R,故选C.3.(选修2-1P18A1(3),改编)已知p:2是偶数,q:2是质数,则命题¬p,¬q,p∨q,p∧q中真命题的个数为( B )A.1 B.2C.3 D.4[解析]命题p是真命题,q是真命题,因此命题¬p,¬q都是假命题,p∨q,p∧q都是真命题,故选B.题组三走向高考4.(2020·课标Ⅱ,5分)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是①③④.①p1∧p4②p1∧p2③(¬ p 2)∨p 3 ④(¬ p 3)∨(¬ p 4)[解析] 对于命题p 1,两两相交且不过同一点的三条直线的交点记为A 、B 、C ,易知A 、B 、C 三点不共线,所以可确定一个平面,记为α,由A ∈α,B∈α,可得直线AB ⊂α,同理,另外两条直线也在平面α内,所以p 1是真命题;对于命题p 2,当三点共线时,过这三点有无数个平面,所以p 2是假命题,从而¬ p 2是真命题; 对于命题p 3,空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,从而¬ p 3是真命题;对于命题p 4,由直线与平面垂直的性质定理可知,是真命题,从而¬ p 4是假命题.综上所述,p 1∧p 4是真命题,p 1∧p 2是假命题,(¬ p 2)∨p 3是真命题,(¬ p 3)∨(¬ p 4)是真命题,所以答案为①③④.5.(2016·浙江,5分)命题“∀x ∈R ,∃n ∈N *,使得n≥x 2”的否定形式是( D ) A .∀x ∈R ,∃n ∈N *,使得n<x 2B .∀x ∈R ,∀x ∈N *,使得n<x 2C .∃x ∈R ,∃n ∈N *,使得n<x 2D .∃x ∈R ,∀n ∈N *,使得n<x 2[解析] 根据含有量词的命题的否定的概念可知,选D .6.(2015·山东,5分)若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为1.[解析] 由已知可得m≥tan x (x∈⎣⎢⎡⎦⎥⎤0,π4)恒成立.设f(x)=tan x (x∈⎣⎢⎡⎦⎥⎤0,π4),显然该函数为增函数,故f(x)的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m≥1,即实数m 的最小值为1.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点一 含逻辑联结词的命题及其真假判断——自主练透例1 (1)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( A )A .(¬ p)∨(¬ q)B .p ∧(¬ q)C .(¬ p)∧(¬ q)D .p ∨q(2)(多选)命题p :若sin x>sin y ,则x>y ;命题q :x 2+y 2≥2xy.下列命题为真命题的是( ACD ) A .p 或q B .p 且q C .qD .¬ p(3)已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p ∧q 为真;②p∨q 为假;③p∨q 为真;④(¬ p)∨(¬ q)为假. 其中,正确的是②.(填序号)[解析] (1)命题p 是“甲降落在指定范围”,则¬ p 是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则¬ q 是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为(¬ p)∨(¬ q).(2)取x =π3,y =5π6,可知命题p 是假命题;由(x -y)2≥0恒成立,可知命题q 是真命题,故¬ p 为真命题,p 或q 是真命题,p 且q 是假命题. (3)命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.考点二 含有一个量词的命题——多维探究 角度1 全称命题、特称命题的真假例2 (多选题)( 2021·山东济宁期末)下列命题中真命题是( ACD ) A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x<1D .∃x ∈R ,tan x =2[解析] 根据指数函数的值域知A 是真命题;取x =1,计算知(x -1)2=0,故B 是假命题;取x =1,计算知lg x =0<1,故C 是真命题;由y =tan x 的值域为R.知D 是真命题.故选ACD .角度2 含一个量词的命题的否定例3 (1)已知命题p :“∃x 0∈R ,ex 0-x 0-1≤0”,则¬ p 为( C ) A .∃x 0∈R ,ex 0-x 0-1≥0 B .∃x 0∈R ,ex 0-x 0-1>0 C .∀x ∈R ,e x-x -1>0 D .∀x ∈R ,e x -x -1≥0(2)(2021·陕西部分学校摸底)命题“∀x ∈R ,xx -1≥0”的否定是( D )A .∃x ∈R ,x 0x 0-1<0B .∃x ∈R ,0<x 0<1C .∀x ∈R ,xx -1≤0D .∃x ∈R ,0<x 0≤1[解析] (1)根据全称命题与特称命题的否定关系,可得¬ p 为“∀x ∈R ,e x-x -1>0”,故选C . (2)∀x ∈R ,x x -1≥0的否定是∃x 0∈R ,使xx -1不大于等于0,包括小于零和无意义,即∃x 0∈R ,0<x 0<1或x 0=1,故选D .名师点拨 MING SHI DIAN BO 全(特)称命题真假的判断方法全称命题特称命题真假 真假真假法一 证明所有对象使命题为真存在一个对象使命题为假存在一个对象使命题为真证明所有对象使命题为假法二否定为假否定为真否定为假否定为真注:当判断原命题的真假有困难时,可通过判断它的逆否命题的真假来实现. 角度3 含参命题中参数的取值范围例 4 已知f(x)=ln(x 2+1),g(x)=⎝ ⎛⎭⎪⎫12x-m ,若对于∀x 1∈[0,3],∃x 2∈[1,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是( A )A .⎣⎢⎡⎭⎪⎫14,+ ∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫13,+∞ D .⎝⎛⎦⎥⎤-∞,13 [解析] 当x∈[0,3]时,f(x)min =f(0)=0,当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)min ≥g(x)min 得0≥14-m ,所以m≥14.[引申1]把本例中“∃x 2∈[1,2]”改为:“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是m≥12. [解析] 当x∈[0,3]时,f(x)min =f(0)=0, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)min ≥g(x)max 得0≥12-m ,所以m≥12.[引申2]把本例中,∀x 1∈[0,3]改为∃x 1∈[0,3]其他条件不变,则实数m 的取值范围是m≥14-ln_10.[解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)max ≥g(x)min 得ln 10≥14-m ,所以m≥14-ln 10.答案:m≥14-ln 10[引申3]把本例中,∀x 1∈[0,3],∃x 2∈[1,2]改为∃x 1∈[0,3],∀x 2∈[1,2],其他条件不变,则实数m 的取值范围是m ≥12-ln 10. [解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)max ≥g(x)max ,得ln 10≥12-m ,所以m≥12-ln 10.答案:m≥12-ln 10名师点拨 MING SHI DIAN BO根据复合命题的真假求参数范围的步骤(1)先求出每个简单命题为真命题时参数的取值范围.(2)再根据复合命题的真假确定各个简单命题的真假情况(有时不一定只有一种情况). (3)最后由(2)的结论求出满足条件的参数取值范围. 〔变式训练1〕(1)(角度1)(多选题)(2020·吉林长春外国语学校高三上期中改编)下列命题中,假命题是( ABD ) A .∃x 0∈R ,sin 2 x 02+cos 2 x 02=12B .∀x ∈(0,π),sin x>cos xC .∀x ∈(0,+∞),x 2+1>x D .∃x 0∈R ,x 20+x 0=-1(2)(角度2)已知命题p :∃x 0∈R ,log 2(3x 0+1)≤0,则( B ) A .p 是假命题;¬ p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;¬ p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)>0(3)(角度3)已知命题p :“∀x ∈[1,2],x 2-a≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(¬ p)∧q”是真命题,则实数a 的取值范围是( C )A .(-∞,-2)∪{1}B .(-∞,-2]∪[1,2]C .(1,+∞)D .[-2,1](4)(角度3)已知函数f(x)=x 2+2x +a 和g(x)=2x +x +1,对∀x 1∈[-1,+∞),∃x 2∈R 使g(x 1)=f(x 2)成立,则实数a 的取值范围是[-1,+∞).[解析] (1)对于A ,由同角三角函数的平方关系,我们知道∀x ∈R ,sin 2 x 2+cos 2 x2=1,所以A 为假命题;对于B ,取特殊值,当x =π4时,sin x =cos x =22,所以B 为假命题;对于C ,一元二次方程根的判别式Δ=1-4=-3<0,所以原方程没有实数根,所以C 为真命题;对于D ,判别式Δ=1-4=-3<0,所以D 错误.故选A 、B 、D .(2)∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题,¬ p:∀x ∈R ,log 2(3x+1)>0.故选B . (3)命题p 为真命题时a≤1;命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真命题,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a)≥0,解得a≥1或a≤-2.又(¬ p)∧q 为真命题,即¬ p 真且q 真,所以a>1,即a 的取值范围为(1,+∞).故选C .(4)因为f(x)=x 2+2x +a =(x +1)2+a -1, 所以f(x)∈[a-1,+∞).因为g(x)=2x +x +1在[-1,+∞)上单调递增, 所以g(x)∈[-2,+∞).由题意得a -1≤-2, 所以a≤-1,故实数a 的取值范围是(-∞,-1].名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG简易逻辑的综合应用例5 (2019·全国卷Ⅱ,5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( A ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙[解析] 依题意,若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A .名师点拨 MING SHI DIAN BO在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.〔变式训练2〕(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( D )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[解析]由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.。
第3讲简单的逻辑联结词、全称量词与存在量词[最新考纲]1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.知识梳理1.简单的逻辑联结词(1)逻辑联结词命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题p∧q,p∨q,綈p的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.辨析感悟1.逻辑联结词的理解与应用(1)命题p∧q为假命题的充要条件是命题p,q至少有一个假命题.(√)(2)命题p∨q为假命题的充要条件是命题p,q至少有一个假命题.(×)2.对命题的否定形式的理解(3)(2013·山西四校联考改编)“有些偶数能被3整除”的否定是“所有的偶数都不能被3整除”.(√)(4)(2013·东北联考改编)命题p:∃n0∈N,2n0>1 000,则綈p:∃n∈N,2n≤1 000.(×)(5)(2013·四川卷改编)设x∈Z,集合A是奇数集,集合B是偶数集,若命题p:∀x∈A,2x∈B,则綈p:∃x∉A,2x∉B.(×)(6)已知命题p:若x+y>0,则x,y中至少有一个大于0,则綈p:若x+y≤0,则x,y中至多有一个大于0.(×)[感悟·提升]1.一个区别逻辑联结词“或”与日常生活中的“或”是有区别的,前者包括“或此、或彼、或兼”三种情形,后者仅表示“或此、或彼”两种情形.有的含有“且”“或”“非”联结词的命题,从字面上看不一定有“且”“或”“非”等字样,这就需要我们掌握一些词语、符号或式子与逻辑联结词“且”“或”“非”的关系.如“并且”、“綉”的含义为“且”;“或者”、“≤”的含义为“或”;“不是”、“∉”的含义为“非”.2.两个防范一是混淆命题的否定与否命题的概念导致失误,綈p指的是命题的否定,只需否定结论.如(5)、(6);二是否定时,有关的否定词否定不当,如(6).学生用书第7页考点一含有逻辑联结词命题的真假判断【例1】(1)设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是().A.p为真B.綈q为假C.p∧q为假D.p∨q为真(2)(2013·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为().A.(綈p)∨(綈q) B.p∨(綈q) C.(綈p)∧(綈q) D.p∨q解析(1)函数y=sin 2x的最小正周期为2π2=π,故命题p为假命题;x=π2不是y=cos x的对称轴,命题q为假命题,故p∧q为假.故选C.(2)命题“至少有一位学员没有降落在指定范围”包含以下三种情况:“甲、乙均没有降落在指定范围”“甲降落在指定范围,乙没有降落在指定范围”“乙降落在指定范围,甲没有降落在指定范围”.选A.或者,命题“至少有一位学员没有降落在指定范围”等价于命题“甲、乙均降落在指定范围”的否命题,即“p∧q”的否定.选A. 答案(1)C(2)A规律方法若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相对,做出判断即可.【训练1】若命题p:关于x的不等式ax+b>0的解集是{x|x>-ba},命题q:关于x的不等式(x-a)(x-b)<0的解集是{x|a<x<b},则在命题“p∧q”、“p ∨q”、“綈p”、“綈q”中,是真命题的有________.解析依题意可知命题p和q都是假命题,所以“p∧q”为假、“p∨q”为假、“綈p”为真、“綈q”为真.答案綈p,綈q考点二含有一个量词的命题否定【例2】写出下列命题的否定,并判断其真假:(1)p:∀x∈R,x2-x+14≥0;(2)q:所有的正方形都是矩形;(3)r:∃x0∈R,x20+2x0+2≤0;(4)s:至少有一个实数x0,使x30+1=0.解(1)綈p:∃x0∈R,x20-x0+14<0,假命题.(2)綈q:至少存在一个正方形不是矩形,假命题.(3)綈r:∀x∈R,x2+2x+2>0,真命题.(4)綈s:∀x∈R,x3+1≠0,假命题.规律方法对含有存在(全称)量词的命题进行否定需两步操作:(1)将存在(全称)量词改写成全称(存在)量词;(2)将结论加以否定.这类问题常见的错误是没有变换量词,或者对于结论没给予否定.有些命题中的量词不明显,应注意挖掘其隐含的量词.【训练2】 (1)(2013·江门、佛山模拟)已知命题p :∃x 0>1,x 20-1>0,那么綈p 是( ).A .∀x >1,x 2-1>0B .∀x >1,x 2-1≤0C .∃x 0>1,x 20-1≤0D .∃x 0≤1,x 20-1≤0(2)命题:“对任意k >0,方程x 2+x -k =0有实根”的否定是________. 解析 (1)特称命题的否定为全称命题,所以綈p :∀x >1,x 2-1≤0,故选B. (2)将“任意”改为“存在”,“有实根”改为“无实根”,所以原命题的否定为“存在k >0,使方程x 2+x -k =0无实根”. 答案 (1)B (2)存在k >0,使方程x 2+x -k =0无实根考点三 含有量词的命题的真假判断【例3】 下列四个命题 p 1:∃x 0∈(0,+∞),012x ⎛⎫⎪⎝⎭<013x ⎛⎫ ⎪⎝⎭;p 2:∃x 0∈(0,1),12log x 0>13log x 0; p 3:∀x ∈(0,+∞),12x⎛⎫ ⎪⎝⎭>12log x ;p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,12x⎛⎫ ⎪⎝⎭<13log x .其中真命题是( ). A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4解析 根据幂函数的性质,对∀x ∈(0,+∞),12x⎛⎫ ⎪⎝⎭>13x⎛⎫ ⎪⎝⎭,故命题p 1是假命题;由于12log x -13log x =lg x -lg 2-lg x-lg 3=lg x (lg 2-lg 3)lg 2lg 3,故对∀x ∈(0,1),12logx >13log x ,所以∃x 0∈(0,1),12log x 0>13log x 0,命题p 2是真命题;当x∈⎝ ⎛⎭⎪⎫0,12时,12x ⎛⎫ ⎪⎝⎭<1,12log x >1,故12x⎛⎫ ⎪⎝⎭>12log x 不成立,命题p 3是假命题;∀x ∈⎝ ⎛⎭⎪⎫0,13,12x ⎛⎫ ⎪⎝⎭<1,13log x >1,故12x⎛⎫ ⎪⎝⎭<13log x ,命题p 4是真命题. 答案 D学生用书第8页规律方法 判断该命题成立,对于全称命题的判断,必须对任意元素证明这个命题为真,而只要找到一个特殊元素使命题为假,即可判断该命题不成立. 【训练3】 (2013·开封二模)下列命题中的真命题是( ). A .∃x ∈R ,使得sin x +cos x =32 B .∀x ∈(0,+∞),e x >x +1 C .∃x ∈(-∞,0),2x <3x D .∀x ∈(0,π),sin x >cos x解析 因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2<32,故A 错误;当x <0时,y =2x的图象在y =3x 的图象上方,故C 错误;因为x ∈⎝ ⎛⎭⎪⎫0,π4时有sin x <cos x ,故D 错误.所以选B. 答案 B1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“綈p ”,只是否定命题p 的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真.答题模板1——借助逻辑联结词求解参数范围问题【典例】(12分)已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式ax2-ax+1>0对∀x∈R恒成立.若“p∧q”为假,“p∨q”为真,求a 的取值范围.[规范解答]∵函数y=a x在R上单调递增,∴p:a>1.不等式ax2-ax+1>0对∀x∈R恒成立,且a>0,∴a2-4a<0,解得0<a<4,∴q:0<a<4. (5分)∵“p∧q”为假,“p∨q”为真,∴p,q中必有一真一假.(7分)①当p真,q假时,{a|a>1}∩{a|a≥4}={a|a≥4}.(9分)②当p假,q真时,{a|0<a≤1}∩{a|0<a<4}={a|0<a≤1}.(11分)故a的取值范围是{a|0<a≤1,或a≥4}.(12分)[反思感悟] 解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题模板第一步:求命题p,q对应的参数的范围.第二步:根据已知条件构造新命题,如本题构造新命题“p真q假”或“p假q 真”.第三步:根据新命题的真假,确定参数的范围.第四步:反思回顾.查看关键点、易错点及解题规范.【自主体验】(2014·锦州月考)命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.解设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,所以函数g(x)的图象开口向上且与x轴没有交点,故Δ=4a2-16<0,∴-2<a<2.又∵函数f(x)=(3-2a)x是增函数,∴3-2a>1,∴a<1.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p 真q 假,则⎩⎨⎧-2<a <2,a ≥1,∴1≤a <2;(2)若p 假q 真,则⎩⎨⎧a ≤-2或a ≥2,a <1,∴a ≤-2.综上可知,所求实数a 的取值范围是(-∞,-2]∪[1,2).对应学生用书P223基础巩固题组(建议用时:40分钟)一、选择题1.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( ).A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q 解析 根据特称命题的否定为全称命题知,选D. 答案 D2.(2014·合肥质检)已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使02x <0.下列选项中为真命题的是( ). A .綈p B .q C .綈p ∨q D .綈q ∧p解析 依题意,命题p 是真命题,命题q 是假命题,因此綈p 是假命题,綈q 是真命题;则綈q ∧p 是真命题,綈p ∨q 是假命题,故选D. 答案 D3.下列命题中,真命题是( ).A .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是偶函数B .∃m 0∈R ,使函数f (x )=x 2+m 0x (x ∈R )是奇函数C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析 由函数奇偶性概念知,当m 0=0时,f (x )=x 2为偶函数,故选A. 答案 A4.下列命题中的假命题是( ). A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0= 3 C .∀x ∈R ,x 3>0D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x <sin x解析 当x =1时,lg x =0,故命题“∃x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“∃x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“∀x ∈R ,x 3>0”是假命题;当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0<sin x ,故“∀x∈⎝ ⎛⎭⎪⎫π2,π,tan x <sin x ”是真命题. 答案 C5.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ).A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析 命题p 1是真命题,p 2是假命题,故q 1为真,q 2为假,q 3为假,q 4为真. 答案 C 二、填空题6.命题:“∀x ∈R ,e x ≤x ”的否定是________. 答案 ∃x 0∈R ,e x 0>x 07.已知命题p :x 2+3x -3>0;命题q :13-x >1,若“綈q 且p ”为真,则x 的取值范围是________.解析 因为“綈q 且p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x>1或x <-3,由⎩⎨⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3,所以x 的取值范围是(-∞,-3)∪(1,2]∪[3,+∞). 答案 (-∞,-3)∪(1,2]∪[3,+∞)8.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎨⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0.综上,-8≤a ≤0. 答案 [-8,0] 三、解答题9.分别指出“p ∨q ”、“p ∧q ”、“綈p ”的真假. (1)p :梯形有一组对边平行;q :梯形有两组对边相等.(2)p :1是方程x 2-4x +3=0的解;q :3是方程x 2-4x +3=0的解. (3)p :不等式x 2-2x +1>0的解集为R ;q :不等式x 2-2x +2≤1的解集为∅. 解 (1)p 真q 假,∴“p ∨q ”为真,“p ∧q ”为假,“綈p ”为假. (2)p 真q 真,∴“p ∨q ”为真,“p ∧q ”为真,“綈p ”为假. (3)p 假q 假,∴“p ∨q ”为假,“p ∧q ”为假,“綈p ”为真.10.已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,若“p ∧q ”为假,“p ∨q ”为真,求实数c的取值范围.解 ∵函数y =c x 在R 上单调递减,∴0<c <1. 即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1. 又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,∴c ≤12.即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1. 又∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. ①当p 真, q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12,且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.综上所述,实数c 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪12<c <1.能力提升题组(建议用时:25分钟)一、选择题1.(2014·湖南五市十校联考)下列命题中是假命题的是( ). A .∃α ,β∈R ,使sin(α+β)=sin α+sin β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减D .∀a >0,函数f (x )=ln 2 x +ln x -a 有零点解析 对于A ,当α=0时,sin(α+β)=sin α+sin β成立;对于B ,当φ=π2时,f (x )=sin(2x +φ)=cos 2x 为偶函数;对于C ,当m =2时,f (x )=(m -1)·xm 2-4m +3=x -1=1x ,满足条件;对于D ,令ln x =t ,∀a >0,对于方程t 2+t -a =0,Δ=1-4(-a )>0,方程恒有解,故满足条件.综上可知,选B. 答案 B2.(2013·衡水二模)已知命题p :“∃x 0∈R ,使得x 20+2ax 0+1<0成立”为真命题,则实数a 满足( ).A .[-1,1)B .(-∞,-1)∪(1,+∞)C .(1,+∞)D .(-∞,-1)解析 “∃x 0∈R ,x 20+2ax 0+1<0”是真命题,即不等式x 2+2ax +1<0有解,∴Δ=(2a )2-4>0,得a 2>1,即a >1或a <-1. 答案 B 二、填空题3.(2014·宿州检测)给出如下四个命题:①若“p ∧q ”为假命题,则p ,q 均为假命题;②命题“若a >b ,则2a >2b -1”的否命题为“若a ≤b ,则2a ≤ 2b -1”; ③“∀x ∈R ,x 2+1≥1”的否定是“∃x 0∈R ,x 20+1≤1”;④在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件.其中不正确的命题的序号是________.解析 若“p ∧q ”为假命题,则p ,q 至少有一个为假命题,所以①不正确;②正确;“∀x ∈R ,x 2+1≥1”的否定是“∃x 0∈R ,x 20+1<1”,所以③不正确;在△ABC 中,若A >B ,则a >b ,根据正弦定理可得sin A >sin B ,所以④正确.故不正确的命题有①③.答案 ①③三、解答题4.已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.解 若方程x 2+mx +1=0有两个不等的负根,则⎩⎨⎧Δ=m 2-4>0,m >0,解得m >2,即命题p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0,解得1<m <3,即q :1<m <3.因“p 或q ”为真,所以p ,q 至少有一个为真,又“p 且q ”为假,所以命题p ,q 至少有一个为假,因此,命题p ,q 应一真一假,即命题p 为真、命题q 为假或命题p 为假、命题q 为真.∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3.解得:m ≥3或1<m ≤2,即实数m 的取值范围是(1,2]∪[3,+∞).基础回扣练——集合与常用逻辑用语 (对应学生用书P225)(建议用时:60分钟)一、选择题1.(2014·深圳二次调研)已知集合A={0,1},则满足条件A∪B={2,0,1,3}的集合B共有().A.1个B.2个C.3个D.4个解析由题知B集合必须含有元素2,3,可以是{2,3},{2,1,3},{2,0,3},{2,0,1,3},共4个,故选D.答案 D2.(2014·济南4月模拟)已知集合A={x||x-1|<2},B={x|log2x<2},则A∩B =().A.(-1,3) B.(0,4) C.(0,3) D.(-1,4)解析将两集合分别化简得A={x|-1<x<3},B={x|0<x<4},故结合数轴得A∩B={x|-1<x<3}∩{x|0<x<4}={x|0<x<3}.答案 C3.(2014·滁州模拟)定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B的所有元素之和是().A.0 B.2 C.3 D.6解析∵z=xy,x∈A,y∈B,且A={1,2}, B={0,2},∴z的取值有:1×0=0;1×2=2;2×0=0;2×2=4.故A*B={0,2,4}.∴集合A*B的所有元素之和为0+2+4=6.答案 D4.(2013·陕西五校质检)已知两个非空集合A={x|x(x-3)<4},B={x|x≤a},若A∩B=B,则实数a的取值范围是().A.(-1,1) B.(-2,2)C.[0,2) D.(-∞,2)解析解不等式x(x-3)<4,得-1<x<4,所以A={x|-1<x<4};又B是非空集合,所以a≥0,B={x|0≤x≤a2}.而A∩B=B⇔B⊆A,借助数轴可知a2<4,解得0≤a<2,故选C.答案 C5.(2014·厦门质检)若集合P={1,2,3,4},Q={x|0<x<5,x∈R},则下列论断正确的是().A.x∈P是x∈Q的充分不必要条件B.x∈P是x∈Q的必要不充分条件C.x∈P是x∈Q的充分必要条件D.x∈P是x∈Q的既不充分也不必要条件解析P为Q的真子集,故P中元素一定在Q中,反之不成立.故选A.答案 A6.(2013·湖南卷)“1<x<2”是“x<2”成立的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当1<x<2时,必有x<2;而x<2时,如x=0,推不出1<x<2,所以“1<x<2”是“x<2”的充分不必要条件.答案 A7.(2014·长沙模考(二))下列命题错误的是().A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.对命题p:任意x∈R,均有x2+x+1<0,则綈p为:存在x∈R,使得x2+x+1≥0C.“三个数a,b,c成等比数列”是“b=ac”的充分不必要条件D.“x>2”是“x2-3x+2>0”的充分不必要条件解析对于A,命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,因此选项A正确.对于B,对命题p:任意x∈R,均有x2+x +1<0,则綈p为:存在x∈R,使得x2+x+1≥0,因此选项B正确.对于C,若a,b,c成等比数列,则b2=ac,当b<0时,b=-ac;若b=ac,有可能a=0,b=0,c=0,则a,b,c不成等比数列,因此“a,b,c成等比数列”是“b=ac”的既不充分也不必要条件.对于D,注意到由x>2得x2-3x+2=(x -1)·(x-2)>0;反过来,由x2-3x+2>0不能得知x>2,如取x=0时,x2-3x +2>0,但此时0<2,因此选项D正确.故选C.答案 C8.(2013·深圳调研)下列命题为真命题的是().A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否命题为“若x<-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,使得x2+x-1<0,则綈p:∀x∈R,使得x2+x-1>0解析对于A,“p真q假”时,p∨q为真命题,但p∧q为假命题,故A错;对于C,否命题应为“若x≥-1,则x2-2x-3≤0”,故C错;对于D,綈p 应为“∀x∈R,使得x2+x-1≥0”,所以D错;故选B.答案 B9.(2013·太原检测)已知p:x-1x≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是().A.(2+2,+∞) B.(-∞,2+2] C.[2,+∞) D.[6,+∞)解析x-1x≤0⇒0<x≤1⇒1<2x≤2,由题意知,22+2-m≤0,即m≥6,故选D.答案 D10.已知数列{a n}是等比数列,命题p:“若a1<a2<a3,则数列{a n}是递增数列”,则在命题p及其逆命题、否命题和逆否命题中,真命题的个数为().A.1 B.2 C.3 D.4解析若已知a1<a2<a3,则设数列{a n}的公比为q,有a1<a1q<a1q2.当a1>0时,解得q>1,此时数列{a n}是递增数列;当a1<0时,解得0<q<1,此时数列{a n}也是递增数列.反之,若数列{a n}是递增数列,显然有a1<a2<a3,所以命题p及其逆命题都是真命题.由于命题p的逆否命题和命题p是等价命题,命题p的否命题和命题p的逆命题互为逆否命题,也是等价命题,所以命题p的否命题和逆否命题都是真命题,故选D.答案 D二、填空题11.(2014·金华第二次统练)已知M,N为集合I的非空真子集,且M,N不相等,若∁I(M∩N)=∁I N,则M∪N=________.解析由Venn图可知N⊆M,∴M∪N=M.答案M12.已知集合A={0,2},B={1,a2},若A∪B={0,1,2,4},则实数a的值为________.解析由题意知a2=4,所以a=±2.答案±213.已知f(x)=ln(1+x)的定义域为集合M,g(x)=2x+1的值域为集合N,则M∩N =________.解析由对数与指数函数的知识,得M=(-1,+∞),N=(1,+∞),故M∩N =(1,+∞).答案(1,+∞)14.已知命题p:“∃x0∈(0,+∞),x0>1x0”,命题p的否定为命题q,则q是“________”;q的真假为________(填“真”或“假”).解析全称命题的否定为特称命题,所以命题q为:∀x∈(0,+∞),x≤1 x.答案∀x∈(0,+∞),x≤1x假15.(2013·海口模拟)若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是________.解析∵∃x∈R,使得x2+(a-1)x+1<0是真命题,∴Δ=(a-1)2-4>0,即(a-1)2>4,∴a-1>2或a-1<-2,∴a>3或a<-1.答案(-∞,-1)∪(3,+∞)16.(2013·昆明质检)下面有三个命题:①关于x的方程mx2+mx+1=0(m∈R)的解集恰有一个元素的充要条件是m=0或m =4;②∃m 0∈R ,使函数f (x )=m 0x 2+x 是奇函数;③命题“x ,y 是实数,若x +y ≠2,则x ≠1或y ≠1”是真命题.其中真命题的序号是________.解析 ①中,当m =0时,原方程无解,故①是假命题;②中,当m =0时,f (x )=x 显然是奇函数,故②是真命题;③中,命题的逆否命题“x ,y 是实数,若x =1且y =1,则x +y =2”为真命题,故原命题为真命题,因此③为真命题. 答案 ②③三、解答题17.已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |x 2-2mx +m 2-4≤0,x ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.解 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[1,3],∴⎩⎨⎧ m -2=1,m +2≥3,得m =3. (2)∁R B ={x |x <m -2,或x >m +2}.∵A ⊆∁R B ,∴m -2>3或m +2<-1.∴m >5或m <-3.故实数m 的取值范围是(-∞,-3)∪(5,+∞).18.已知命题p :关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},命题q :函数y =lg(ax 2-x +a )的定义域为R ,如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.解 由关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},知0<a <1; 由函数y =lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R ,则⎩⎨⎧a >0,1-4a 2<0,解得a >12. 因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,当p 假,q 真时,由⎩⎪⎨⎪⎧ a >1,a >12⇒a >1;当p 真,q 假时,由⎩⎪⎨⎪⎧ 0<a <1,a ≤12⇒0<a ≤12. 综上,知实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12∪(1,+∞).。