2011年高考数学试题及答案(江苏卷)
- 格式:doc
- 大小:607.50 KB
- 文档页数:13
2011江苏高考数学试卷注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
一.填空题1.设复数122,2()z i z x i x R =+=-∈,若12z z ∙为实数,则x 为 .2.一个与球心距离为1的平面截球所得圆面面积为π,则球的体积为________. 3.若ββαββαcos )cos(sin )sin(---=m ,且α是第三象限角,则sin α= ..如图在三角形ABC 中,E 为斜边()()CA CD CA CE ⋅⋅的最大值是点A 绕点C 旋转后与点10.直线x +a y +1=0与直线(a +1)x -by +3=0互相垂直,a ,b ∈R ,且ab ≠0,则|ab |的最小值 是 .E11.函数()23123x x f x x =+++的零点的个数是 . 12.已知)2()2(,)(x f x f x f -=+且为偶函数,x x f x 2)(,02=≤≤-时当,*,2)(N n x f x ∈=若,==2008),(a n f a n 则 .13.设点()a b ,在平面区域{()||1||1}D a b a b =,≤,≤中按均匀分布出现,则椭圆22221x y a b +=(a >b >0)的离心率e的概率为 . 14.若数列{n a }满足d a a nn =-+221(其中d 是常数,∈n N ﹡),则称数列{n a }是“等方差数列”. 已知数列{n b }是公差为m 的差数列,则m =0是“数列{n b }是等方差数列”的 条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要条件中的一个)二.解答题15.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为多少?(2)根据题中信息估计总体平均数是多少? (3)估计总体落在[129,150]中的概率.16. 已知函数2()4sin 2sin 22f x x x x R =+-∈,。
历年高考数学真题答案【篇一:新课标数学历年高考试题汇总及详细答案解析】/p> 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合m={0,1,2},n=?x|x2?3x?2≤0?,则m?n=() a. {1}【答案】db. {2}c. {0,1}d. {1,2}把m={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足。
所以选d.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?() a. - 5 【答案】bb.5c. - 4+ id. - 4 - iz1=2+i,z1与z2关于虚轴对称,∴z2=-2+i,∴z1z2=-1-4=-5,故选b.3.设向量a,b满足|a+b|a-ba?b = () a. 1 【答案】ab. 222c. 322d. 5|a+b|=,|a-b|=6,,∴a+b+2ab=10,a+b-2ab=6,联立方程解得=1,故选a.4.钝角三角形abc的面积是,ab=1,,则ac=()2a. 5【答案】bb.c. 2d. 11112∴b=,使用余弦定理,b2=a2+c2-2accosb,解得b=.故选b.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()a. 0.8b. 0.75c. 0.6d. 0.45【答案】a设某天空气质量优良,则随后一个空气质量也优良的概率为p,则据题有0.6=0.75?p,解得p=0.8,故选a.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()a. b. c. d.279273【答案】c7.执行右图程序框图,如果输入的x,t均为2,则输出的s= () a.4 b. 5c. 6 d. 7【答案】cx=2,t=2,变量变化情况如下: m s k 13 125 2 27 3 故选c.8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= a. 0b. 1c. 2d. 3【答案】df(x)=ax-ln(x+1),∴f′(x)=a-1.x+1∴f(0)=0,且f′(0)=2.联立解得a=3.故选d.?x?y?7≤0?9.设x,y满足约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a. 10b. 8c. 3d. 2【答案】b画出区域,可知区域为三角形,经比较斜率,可知目标函数z=2x-y 在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选b.a.c. d.b.324 【答案】d设点a、b分别在第一和第四象限,af=2m,bf=2n,则由抛物线的定义和直角三角形知识可得,33332m=2?+m,2n=2?-3n,解得m=(2+),n=(2-3),∴m+n=6.4422139244c.d.【答案】c0-1+4=.故选c.106f?x0m2,则m的12.设函数f?x??.若存在f?x?的极值点x0满足x02m2取值范围是()a.,?66,??b.,?44,??c.,?22,??d.,?14,?? 【答案】cf(x)=sin22mm2∴x0+[f(x0)]2+3,∴+3m2,解得|m|2.故选c.44第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.?x?a?的展开式中,x7的系数为15,则a=________.(用数字填写答案)101【答案】21137333c10xa=15x7∴c10a=15,a=.故a=.2214.函数f?x??sin?x?22sin?cos?x的最大值为_________. 【答案】115.已知偶函数f?x?在?0,单调递减,f?2??0.若f?x?1??0,则x的取值范围是__________.,-1)∪(3,+∞)【答案】(-∞偶函数y=f(x)在[0,+∞)上单增,且f(2)=0∴f(x)0的解集为|x|2.故解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).∴f(x-1)0的解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).在坐标系中画出圆o和直线y=1,其中m(x0,1)在直线上.由圆的切线相等及三角形外角知识,可得x0∈[-1,1].故x0∈[-1,1].已知数列?an?满足a1=1,an?1?3an?1.(Ⅰ)证明an?是等比数列,并求?an?的通项公式;(Ⅱ)证明:??…+?.12n【答案】(1) 无(1)(2)无a1=1,an+1=3an+1.n∈n*.111=3an+1+=3(an+). 222113∴{an+是首项为a1+=,公比为3的等比数列。
2011江苏高考数学真题1.如图为函数()1)f x x =<<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q ,点N (0,1),若△PQN 的面积为b 时的点M 恰好有两个,则b 的取值范围为 ▲ . 解:2. 已知⊙A :221x y +=,⊙B : 22(3)(4)4x y -+-=,P 是平面内一动点,过P 作⊙A 、⊙B 的切线,切点分别为D 、E ,若PE PD =,则P 到坐标原点距离的最小值为 ▲ .解:设)(y x P ,,因为PE PD =,所以22PD PE =,即14)4()3(2222-+=--+-y x y x ,整理得:01143=-+y x ,这说明符合题意的点P 在直线01143=-+y x 上,所以点)(y x P ,到坐标原点距离的最小值即为坐标原点到直线01143=-+y x 的距离,为5113. 等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.求n a 与n b ;解:设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一,解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=4. 在ABC ∆中,2==⋅ (1)求22AC AB +(2)求ABC ∆面积的最大值.解:(1)因为||||2BC AC AB =-=,所以4222=+⋅-,又因为 2AB AC ⋅=,所以228AB AC +=;(2)设||||||AB c AC b BC a ===,,,由(1)知822=+c b ,2=a , 又因为bcbc bc a c b A 22282cos 222=-=-+=,所以A bc A bc S ABC2cos 121sin 21-==∆=222222421c b c b c b ⋅-≤34)2(21222=-+c b , 当且仅当c b a ==时取“=”,所以ABC ∆的面积最大值为3.5. 设等差数列{}n a 的公差为d ,0d >,数列{}n b 是公比为q 等比数列,且110b a =>. (1)若33a b =,75a b =,探究使得n m a b =成立时n m 与的关系; (2)若22a b =,求证:当2>n 时,n n b a <.解:记a b a ==11,则1,)1(-=-+=m m n aq b d n a a ,……………1分(1)由已知得2426a d aq a d aq ⎧+=⎨+=⎩,,消去d 得4232aq aq a -=, 又因为0≠a ,所以02324=+-q q ,所以2122==q q 或,……………5分若12=q ,则0=d ,舍去;……………6分 若22=q ,则2a d =,因此12)1(-=-+⇔=m m n aq a n a b a 1211-=-+⇔m q n , 所以1221-=+m n (m 是正奇数)时,m n b a =;……………8分(2)证明:因为0,0>>a d ,所以111212>+=+===ada d a a ab b q , …………11分2>n 时,1)1(---+=-n n n aq d n a b a =d n q a n )1()1(1-+--=d n q q q q a n )1()1)(1(22-+++++--d n n q a )1()1)(1(-+--<=[]0))(1()1()1(22=--=+--b a n d q a n所以,当n n b a n <>时,2. …………………………16分6. 已知圆O :221x y +=,O 为坐标原点.(1的正方形ABCD 的顶点A 、B 均在圆O 上,C 、D 在圆O 外,当点A 在圆O 上运动时,C 点的轨迹为E . (ⅰ)求轨迹E 的方程;(ⅱ)过轨迹E 上一定点00(,)P x y 作相互垂直的两条直线12,l l ,并且使它们分别与圆O 、轨迹E 相交,设1l 被圆O 截得的弦长为a ,设2l 被轨迹E 截得的弦长为b ,求a b +的最大值.(2)正方形ABCD 的一边AB 为圆O 的一条弦,求线段OC 长度的最值.解:(1)(ⅰ)连结OB ,OA ,因为OA =OB =1,AB =2,所以222AB OB OA =+,所以4OBA π∠=,所以34OBC π∠=,在OBC ∆中,52222=⋅-+=BC OB BC OB OC , 所以轨迹E 是以O 为圆心,5为半径的圆,所以轨迹E 的方程为522=+y x ; (ⅱ)设点O 到直线12l l ,的距离分别为12d d ,,因为21l l ⊥,所以2222212005d d OP x y +==+=, 则22215212d d b a -+-=+,则[])5)(1(2)(64)(222122212d d d d b a --++-=+≤4⎥⎥⎦⎤⎢⎢⎣⎡--⋅++-262)(622212221d d d d =22124[122()]d d -+=4(1210)8-=,当且仅当221222125,15,d d d d ⎧+=⎨-=-⎩,即22219,21,2d d ⎧=⎪⎪⎨⎪=⎪⎩时取“=”,所以b a +的最大值为 (2)设正方形边长为a ,OBA θ∠=,则cos 2a θ=,0,2θπ⎡⎫∈⎪⎢⎣⎭.当A 、B 、C 、D 按顺时针方向时,如图所示,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+-+= ⎪⎝⎭,即OC == ==由2,444θππ5π⎡⎫+∈⎪⎢⎣⎭,此时(1,1]OC ∈; 当A 、B 、C 、D 按逆时针方向时,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+--= ⎪⎝⎭,即OC ====,由2,444θππ3π⎡⎫-∈-⎪⎢⎣⎭,此时1,OC ∈, 综上所述,线段OC 1-1.7. 已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=,求实数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <,且对任意(]1,0,21∈x x ,都有121211|()()|4||f x f x x x -≤-,求实数a 的取值范围.另解:042≤--ax x 在(]1,0∈x 上恒成立,设4)(2--=ax x x g ,只需[)0,30041)1(04)0(-∈⇒⎪⎩⎪⎨⎧<≤--=<-=a a a g g .8. 已知函数2()3,()2f x mx g x x x m =+=++. (1)求证:函数()()f x g x -必有零点; (2)设函数()G x =()()1f x g x --(ⅰ)若|()|G x 在[]1,0-上是减函数,求实数m 的取值范围;(ⅱ)是否存在整数,a b ,使得()a G x b ≤≤的解集恰好是[],a b ,若存在,求出,a b 的值;若不存在,说明理由.9. 已知函数()1ax x ϕ=+,a 为正常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+,且对任意12,(0,2]x x ∈,12x x ≠,都有2121()()1g x g x x x -<--,求a 的的取值范围.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,∵92a =,令'()0f x >,得2x >,或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞.(2)∵2121()()1g x g x x x -<--,∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-,设()()h x g x x =+,依题意,()h x 在(]0,2上是减函数.当12x ≤≤时, ()ln 1ah x x x x =+++,21'()1(1)a h x x x =-++, 令'()0h x ≤,得:222(1)1(1)33x a x x x x x+≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x =+-,∵12x ≤≤,∴21'()230m x x x=+->, ∴()m x 在[1,2]上是增函数,则当2x =时,()m x 有最大值为272,∴272a ≥.当01x <<时, ()ln 1ah x x x x =-+++,21'()1(1)a h x x x =--++, 令'()0h x ≤,得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--,则21'()210t x x x=++>, ∴()t x 在(0,1)上是增函数,∴()(1)0t x t <=, ∴0a ≥,综上所述,272a ≥10. (1)设10+<<a b ,若对于x 的不等式()()22ax b x >-的解集中的整数恰有3个,则实数a 的取值范围是 ▲ .(2)若关于x 的不等式()2221x ax -<的解集中的整数恰有3个,则实数a 的取值范围是▲ .解:(1)()3,1(2)⎪⎭⎫ ⎝⎛1649,92511. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β,使得n a =log n b αβ+对每一个正整数n 都成立,则βα= ▲ .12. 在直角坐标系平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 的图象上;②Q P ,关于原点对称,则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“有好点对”).已知函数⎪⎩⎪⎨⎧≥<++=,0,2,0,142)(2x ex x x x f x 则函数)(x f 的“友好点对”有 ▲ 个.13. 已知ABC ∆的三边长c b a ,,满足b a c a c b 22≤+≤+,,则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛23,32xyO已知ABC ∆的三边长c b a ,,满足b a c a c b 3232≤+≤+,,则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛35,4314. 已知分别以21,d d 为公差的等差数列{}n a ,{}n b ,满足120091,409a b ==. (1)若11=d ,且存在正整数m ,使得200920092-=+m m b a ,求2d 的最小值;(2)若0k a =,1600k b =且数列200921121,,,,,,b b b b a a a k k k k ++-,的前项n 和n S 满足200920129045k S S =+,求 {}n a 的通项公式.解:(1)证明:220092009m m a b +=-,21120092[(1)]2009a m d b md ∴+-=+-,即200940922-+=md m , ……4分2160080d m m ∴=+≥=. 等号当且仅当"1600"mm =即"40"=m 时成立,故40m =时,2min []80d = . ……7分(2)0k a =,1600k b =,120091,409a b ===++2)(1k a a k 2)12009)((2009+-+k b b k 2009(2010)22k k -=+,…10分 200920129045k S S =+1()201290452k a a k +=+=904522012+k201290452k ∴⋅+2009(2010)22k k -=+40202009201018090k ∴=⨯-,220099k ∴=-,1000k ∴= ……13分故得1,011000==a a 又,11999d ∴=-,1210001(1)999999n a a n d n ∴=+-=-,因此{}n a 的通项公式为n a n 99919991000-=. ……15分15. 已知函数)(3ln )(R a ax x a x f ∈--=. (1)当1a =时,求函数)(x f 的单调区间;(2)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45,问:m 在什么范围取值时,对于任意的[]2,1∈t ,函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值?(3)当2=a 时,设函数32)2()(-+--=xep x p x h ,若在区间[]e ,1上至少存在一个0x ,使得)()(00x f x h >成立,试求实数p 的取值范围. 24,1e e ⎛⎫+∞ ⎪-⎝⎭16. 如图,在△ABC 中,已知3=AB ,6=AC ,7BC =,AD 是BAC ∠平分线. (1)求证:2DC BD =; (2)求AB DC ⋅的值.(1)在ABD ∆中,由正弦定理得sin sin AB BDADB BAD=∠∠①, 在ACD ∆中,由正弦定理得sin sin AC DCADC CAD=∠∠②, 所以BAD CAD ∠=∠,sin sin BAD CAD ∠=∠, sin sin()sin ADB ADC ADC π∠=-∠=∠, 由①②得36BD AB DC AC ==,所以2DC BD =(2)因为2DC BD =,所以BC DC 32=. 在△ABC 中,因为22222237611cos 223721AB BC AC B AB BC +-+-===⋅⨯⨯, 所以22()||||cos()33AB DC AB BC AB BC B π⋅=⋅=⋅- 2112237()=⨯⨯⨯-=- AB CD17. 已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列.(1)证明:数列{}n a 成等比数列的充要条件是13a =;(2)设n n n n a b )1(5--=(*∈N n ),若1+<n n b b 对任意*∈N n 成立,求1a 的取值范围.18. 已知分别以1d 和2d 为公差的等差数列{}n a 和{}n b 满足181=a ,3614=b .(1)若181=d ,且存在正整数m ,使得45142-=+m mb a ,求证:1082>d ; (2)若0==k k b a ,且数列142121b b b a a a k k k ,,,,,,, ++的前n 项和n S 满足k S S 214=,求数列{}n a 和{}n b 的通项公式;(3)在(2)的条件下,令0>==a a d a c n n b n a n ,,,且1≠a ,问不等式n n n n d c d c +≤+1是否对一切正整数n 都成立?请说明理由.19. 若椭圆)0(12222>>=+b a by a x 过点(-3,2),离心率为33,⊙O 的圆心为原点,直径为椭圆的短轴,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线P A 、PB ,切点为A 、B . (1)求椭圆的方程;(2)若直线P A 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线P A 的直线方程; (3)求OB OA ⋅的最大值与最小值.(1)1101522=+y x ;(2)直线PA 的方程为:0509130103=--=+-y x y x 或 (3)20. 已知集合{}k x x x x x x D =+>>=212121,0,0),(,其中k 为正常数. (1)设21x x u =,求u 的取值范围;(2)求证:当1≥k 时,不等式⎪⎭⎫⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立; (3)求使不等式⎪⎭⎫⎝⎛-≥⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立的k 取值范围.21. 设函数x m mx x x f )4(31)(223-+-=,R x ∈,且函数)(x f 有三个互不相同的零点βα,,0,且βα<,若对任意的[]βα,∈x ,都有)1()(f x f ≥成立,求实数m 的取值范围. 解:。
高考数学(理)真题专题汇编:空间立体几何一、选择题(本题共9道小题,每小题0分,共0分)1.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<2.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 3243.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面4.【来源】2019年高考真题——理科数学(全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,则A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线5.【来源】0(08年全国卷2)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B. C. D.26.【来源】0(08年四川卷文)若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )(A)(B)(C)(D)7.【来源】0(08年北京卷)如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()8.【来源】2011年高考数学理(安徽)一个空间几何体得三视图如图所示,则该几何体的表面积为(A)48+(B)32817+(C)48817(D)509.【来源】2011年高考数学理(全国新课标)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为二、填空题10.【来源】2019年高考真题——理科数学(北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.12.【来源】2019年高考真题——理科数学(天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .13.【来源】2019年高考真题——理科数学(全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________.15.【来源】(07年浙江卷文)已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的取值范围是_________.16.【来源】2011年高考数学理(全国新课标)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。
2011年高考试题数学圆锥曲线(理科)解析数学一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y=⎧⇒=⎨+⎩,x ∴=y=) 在椭圆上,1=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C.6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45- 【答案】D【解析】:24(1,0)y x F = 得,准线方程为1x =-,由24(1,2),(4,4)24y xA B y x ⎧=-⎨=-⎩得=,由抛物线的定义得2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,。
2011年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高试卷总分200 试卷时间 150一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上)1.已知集合A ={-1,1,2,4},B ={-1,0,2},则A∩B=________.【答案】{-1,2}【解析】由交集的定义知A∩B={-1,1,2,4}∩{-1,0,2}={-1,2}. 【失分警示】把“∩”,“∪”意义混淆,导致求解结果错误. 【评析】本题主要考查“∩”的含义的理解及运算能力,正确识读“∩”符号的含义是解答本题的关键,属容易题. 2.函数的单调增区间是________.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
h ttp://【答案】1,2⎛⎫-+∞ ⎪⎝⎭【解析】要使有意义,则2x+1>0,即x>-12,而y =为(0,+∞)上的增函数,当x>-12时,u =2x+1也为R 上的增函数,故原函数的单调增区间是1,2⎛⎫-+∞ ⎪⎝⎭. 【失分警示】忽视2x+1>0这一约束条件是失分的主要原因. 【评析】本题主要考查复合函数单调性的判断方法及定义域的求解,考查学生逻辑推理及运算求解能力,属中等难度试题.3.设复数z 满足i(z+1)=-3+2i(i 为虚数单位),则z 的实部是________. 【答案】1【解析】解法一:∵i(z+1)=-3+2i , ∴z=32i i -+-1=-(-3i-2)-1=1+3i , 故z 的实部是1.解法二:令z =a+bi(a ,b∈R),由i(z+1)=-3+2i 得i[(a+1)+bi]=-3+2i , -b+(a+1)i =-3+2i ,∴b=3,a =1, 故z 的实部是1.【失分警示】误区一:误认为i 2=1;误区二:忽视复数相等的条件,运算失误导致求解结果错误.【评析】本题考查复数的有关概念及运算,将复数问题实数化是解决此类问题的关键,属容易题.4.根据如图所示的伪代码,当输入a ,b 分别为2,3时,最后输出的m 的值为________.【答案】3【解析】由已知可知,m 为a ,b 中的最大值,故最后输出的m 值为3.【失分警示】读不懂程序语句,导致求解结果错误.【评析】本题主要考查程序语句,对程序中条件语句的正确理解是解答本题的关键,属容易题.5.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.【答案】13【解析】从1,2,3,4这四个数中一次随机地取两个数的种数为24C =6(种),其中一个数是另一个数的两倍的数对为1,2和2,4.故符合条件的概率为26=13.【失分警示】把24C 误认为24A 是导致本题失分的主要原因.【评析】本题主要考查组合知识和古典概型,考查学生逻辑能力和分析问题、解决问题的能力,属容易题.6.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.【答案】165【解析】记星期一到星期五收到的信件数分别为x 1,x 2,x 3,x 4,x 5,则X =∴s 2=15[(x 1-X )2+(x 2-X )2+(x 3-X )2+(x 4-X )2+(x 5-X )2]=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165.【失分警示】误区一:X 求解错误.误区二:方差公式记忆错误导致s 2求解结果错误.【评析】本题主要考查方差的公式,考查学生的运算求解能力.公式记忆准确,运算无误是解答本题的关键,属中等难度试题.7.已知tan 4x π⎛⎫+⎪⎝⎭=2,则tan tan 2x x的值为________. 【答案】49【解析】【失分警示】两角和或差的正切公式记忆错误是学生丢分的主要原因.【评析】本题主要考查两角和或差的正切公式的应用,考查学生的运算求解能力,本题中由tan 4⎛⎫+ ⎪⎝⎭x π=2正确求得tanx =13是解答本题的关键,属中等难度试题.8.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f(x)=2x的图象交于P ,Q 两点,则线段PQ 长的最小值是________. 【答案】4【解析】假设直线与函数f(x)=2x的图象在第一象限内的交点为P ,在第三象限内的交点为Q ,由题意知线段PQ 的长为OP 长的2倍. 假设P 点的坐标为002,x x ⎛⎫ ⎪⎝⎭,则|PQ|=2|OP|=≥4.当且仅当20x =204x ,即x 0=2时,取“=”.【失分警示】误区一:将线段PQ 的长误认为是|PQ|2. 误区二:将|OP|最小值误认为是所求线段PQ 长的最小值.【评析】本题考查两点间距离公式及均值定理等相关知识,考查学生分析问题、解决问题的能力,将最值问题转化为均值定理来求解是解答本题的关键,属中等难度试题.9.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是________.【答案】62【解析】由图可知A =2,,∴T=π.又2πω=T ,∴ω=2ππ=2. 根据函数图象的对应关系得2×3π+φ=kπ(k∈Z),∴φ=kπ-23π(k∈Z).取φ=3π,则f(x)223x π⎛⎫+ ⎪⎝⎭,∴f(0)=23π6【失分警示】误区一:误将2π作为函数的周期,导致求ω出错. 误区二:不能根据题意正确求得φ的值,进而导致函数解析式求错,从而求错f(0)的值. 【评析】本题主要考查y =Asin(ωx+φ)的图象与性质以及三角函数周期公式T =2πω(ω>0)的求法,属理解层次,由图象准确确定φ的值是解答本题的关键.10.已知1e ,2e 是夹角为23π的两个单位向量,a =1e -22e ,b =k 1e +2e .若a ·b=0,则实数k 的值为________. 【答案】54【解析】由题意a ·b =0即有(1e -22e )·(k 1e +2e )=0,∴k 21e +(1-2k) 1e ·2e -222e =0.又|1e |=|2e |=1,〈1e ,2e 〉=23π,∴k -2+(1-2k)·cos23π=0,∴k -2=122k -,∴k=54. 【失分警示】误区一:向量内积的定义理解不到位; 误区二:运算失误,例如将cos23π误认为是12导致求解结果错误.【评析】本题主要考查向量内积的运算,考查学生的运算求解能力.属中等难度试题.11.已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a 的值为________. 【答案】-34【解析】分类讨论:(1)当a>0时,1-a<1,1+a>1. 这时f(1-a)=2(1-a)+a =2-a ; f(1+a)=-(1+a)-2a =-1-3a.由f(1-a)=f(1+a)得2-a =-1-3a ,解得a =-32, 不符合题意,舍去.(2)当a<0时,1-a>1,1+a<1, 这时f(1-a)=-(1-a)-2a =-1-a ; f(1+a)=2(1+a)+a =2+3a ,由f(1-a)=f(1+a)得-1-a =2+3a ,解得a =-34.综合(1),(2)知a 的值为-34【失分警示】由f(1-a)=f(1+a),误认为函数f(x)的周期为1,导致求解结果错误. 【评析】本题主要考查分段函数的相关知识,能根据题目要求对a 进行分类讨论是解答此题的关键,属中等难度试题.12.在平面直角坐标系xOy 中,已知P 是函数f(x)=e x(x>0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M.过点P 作l 的垂线交y 轴于点N.设线段MN 的中点的纵坐标为t ,则t 的最大值是________. 【答案】2e +12e【解析】设P(x 0,0x e)(x 0>0), f ′(x)=(e x )′=e x,∴点P 处的切线l ,其斜率为f ′(x 0)=0x e ,过点P 作l 的垂线l′,其斜率为-0x 1e .∴直线l 的方程为,令x =0得直线l′的方程为,令x =0得由题意令∴当x0<1时,g ′(x0)>0,函数g(x0)为增函数.当x0>1时,g ′(x0)<0,函数g(x0)为减函数.∴g(x0)在x0=1处取极大值,亦即x0>0时t的最大值.【失分警示】误区一:导数的几何意义掌握不到位,不能求出y M,y N.误区二:求得函数关系t=g(x0)后,不能利用导数求t的最值.【评析】本题考查导数的几何意义、直线方程、导数的应用等相关知识,知识点较多,难度偏大,考查学生的运算求解能力、分析问题解决问题的综合能力.13.设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是________.33【解析】∵a1,a3,a5,a7成公比为q的等比数列,又a1=1,∴a3=q,a5=q2,a7=q3,又a2,a4,a6成公差为1的等差数列,∴a4=a2+1,a6=a2+2.由1=a1≤a2≤a3≤…≤a7,即有解得33≤q≤3,故q 的最小值为33.【失分警示】不理解题意,无法获得相应的不等关系是学生失分的主要原因.【评析】本题主要考查等差、等比数列的通项公式,考查学生的逻辑思维能力和分析问题、解决问题的能力,属中等难度试题. 14.设集合,B ={(x ,y)|2m≤x+y≤2m+1,x ,y∈R}.若A∩B≠∅,则实数m 的取值范围是________.【答案】【解析】由A≠∅可知m 2≥2m ,解得m≤0或m≥12.由题意知,若A∩B≠∅, 则有(1)当2m+1<2,即m<12时,圆心(2,0)到直线x+y =2m+1的距离为d 1=≤|m|,化简得2m 2-4m+1≤0, 解得1-22≤m≤1+22,所以1-22≤m<12.(2)当2m≤2≤2m+1,即12≤m≤1时,A∩B≠∅恒成立.(3)当2m>2,即m>1时,圆心(2,0)到直线x+y =2m 的距离为d 2=≤|m|,化简得m 2-4m+2≤0, 解得2-2≤m≤2+2, 所以1<m≤2+2.综上可知:满足题意的m 的取值范围为.【失分警示】读不懂题意,分析不彻底是解答本题失分的主要原因.【评析】本题主要考查圆与直线的位置关系,考查学生综合运用所学知识分析问题、解决问题的能力.能根据圆心与直线的位置关系分类讨论是解答本题的关键,本题属较难题目.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.(Ⅰ)若sin 6A π⎛⎫+ ⎪⎝⎭=2cos A ,求A 的值;(Ⅱ)若cos A =13,b =3c ,求sin C 的值. 【解析】(Ⅰ)由题设知sin Acos 6π+cos Asin 6π=2cos A.从而sin A =3cos A ,所以cosA≠0,tan A =3.因为0<A<π,所以A =3π.(Ⅱ)由cos A =13,b =3c 及a 2=b 2+c 2-2bccos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =2π.所以sin C =cos A =13.【失分警示】由余弦定理及b =3c ,求得a =22c 后,方向不明确,思维受阻.事实上有两个方向均可,一是注意到a 2+c 2=9c 2=(3c)2=b 2,出现直角三角形,二是利用正弦定理,并由a =22c>c ,直接求解.当然方法二要注意到a>c ,角C 不可能是钝角,不需要分类讨论. 【评析】本题考查同角三角函数的关系,两角和公式,正弦定理,余弦定理,对运算能力有较高要求,对解题程序设计能力考查较为深入,不同的思路运算量差别较大.16.(本小题满分14分)如图,在四棱锥P-ABCD 中,平面PAD⊥平面ABCD ,AB =AD ,∠BAD=60°,E ,F 分别是AP ,AD 的中点.求证:(Ⅰ)直线EF∥平面PCD ; (Ⅱ)平面BEF⊥平面PAD.【解析】(Ⅰ)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(Ⅱ)连结BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.【失分警示】证明过程中关键步骤省略或遗漏常导致无谓失分,此外学生对如何证面与面垂直认识模糊、思路不清也是失分的原因之一.【评析】本题考查直线与平面、平面与平面的位置关系的判定、性质,对考生的文字或符号表达能力、空间想象能力、推理论证能力均有较高要求,难度中等偏难.17.(本小题满分14分)请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).(Ⅰ)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(Ⅱ)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【解析】设包装盒的高为h(cm),底面边长为a(cm).由已知得a=2x,h=6022x-=2 (30-x),0<x<30.(Ⅰ)S=4ah=8x(30-x)=-8(x-15)2+1 800,所以当x=15时,S取得最大值.(Ⅱ)V=a 2h =22(-x 3+30x 2),V′=62x(20-x). 由V′=0得x =0(舍)或x =20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.【失分警示】应用问题的难点是建立适当的数学模型.对变量取值范围的限制不准确常常导致失分.对实际问题求最值时,也易犯经验主义错误,想当然地认为正方体时取最值.【评析】本题考查函数的概念、导数求法等基础知识,考查数学建模能力、空间想象能力、数学阅读能力、运算能力及解决实际问题的能力等,要求高,难度较大,易错点颇多.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,M ,N 分别是椭圆24x +22y =1的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限.过P 作x 轴的垂线,垂足为C.连结AC ,并延长交椭圆于点B.设直线PA 的斜率为k.(Ⅰ)若直线PA 平分线段MN ,求k 的值; (Ⅱ)当k =2时,求点P 到直线AB 的距离d ; (Ⅲ)对任意的k>0,求证:PA⊥PB.【解析】(Ⅰ)由题设知,a =2,b =2,故M(-2,0),N(0,-2),所以线段MN 中点的坐标为21,2⎛⎫-- ⎪⎝⎭.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以k =221--=22. (Ⅱ)直线PA 的方程为y =2x ,代入椭圆方程得24x +242x =1,解得x =±23,因此P 24,33⎛⎫ ⎪⎝⎭,A 24,33⎛⎫--⎪⎝⎭.于是C 2,03⎛⎫- ⎪⎝⎭,直线AC 的斜率为=1,故直线AB 的方程为x-y-23=0.因此,.(Ⅲ)解法一:将直线PA 的方程y =kx 代入24x +22y =1,解得x =±.记μ=,则P(μ,μk),A(-μ,-μk).于是C(μ,0).故直线AB 的斜率为,其方程为y =2k(x-μ),代入椭圆方程得(2+k 2)x 2-2μk 2x-μ2(3k 2+2)=0,解得或x =-μ.因此.于是直线PB 的斜率因此k 1k =-1,所以PA⊥PB.解法二:设P(x 1,y 1),B(x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A(-x 1,-y 1),C(x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB 上,所以从而k 1k+1=2k 1k 2+1=2因此k 1k =-1,所以PA⊥PB.【失分警示】第(Ⅰ)小问常见错误是联解直线AP 与直线MN 的方程组.求出交点坐标(用k 表示),再由中点坐标公式构建关于k 的方程求k.运算复杂,步骤较多,易造成计算错误或耗时失分.处理第(Ⅱ)小问思维受阻后,如果利用第(Ⅲ)小问的结论通过面积法求点P 到直线AB 的距离,事实上并不太容易,需要联解方程组,当然利用k PB =-12可较快求出B 点坐标.【评析】本题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,是解析几何的经典题型.对考生的运算能力有较高的要求,对考生的心理素质的要求也较高,属难题.19.(本小题满分16分)已知a ,b 是实数,函数f(x)=x 3+ax ,g(x)=x 2+bx, f ′(x)和g′(x)分别是f(x)和g(x)的导函数.若f ′(x)g′(x)≥0在区间I 上恒成立,则称f(x)和g(x)在区间I 上单调性一致.(Ⅰ)设a>0.若f(x)和g(x)在区间[-1,+∞)上单调性一致,求b 的取值范围; (Ⅱ)设a<0且a≠b.若f(x)和g(x)在以a ,b 为端点的开区间上单调性一致,求|a-b|的最大值. 【解析】f ′(x)=3x 2+a ,g′(x)=2x+b.(Ⅰ)由题意知f ′(x)g′(x)≥0在[-1,+∞)上恒成立.因为a>0,故3x 2+a>0,进而2x+b≥0,即b≥-2x 在区间[-1,+∞)上恒成立, 所以b≥2.因此b 的取值范围是[2,+∞).(Ⅱ)令f ′(x)=0,解得x 3a -若b>0,由a<0得0∈(a,b).又因为f ′(0)g′(0)=ab<0,所以函数f(x)和g(x)在(a ,b)上不是单调性一致的.因此b≤0.现设b≤0.当x∈(-∞,0)时,g′(x)<0; 当x∈,3a ⎛-∞-- ⎝时, f ′(x)>0.因此,当x∈,3a ⎛-∞-- ⎝时, f ′(x)g′(x)<0. 故由题设得a≥3a -b≥3a -从而-13≤a<0,于是-13≤b≤0.因此|a-b|≤13,且当a =-13,b =0时等号成立.又当a =-13,b =0时,f ′(x)g′(x)=6x 219x ⎛⎫-⎪⎝⎭,从而当x∈1,03⎛⎫- ⎪⎝⎭时f ′(x)g ′(x)>0,故函数f(x)和g(x)在1,03⎛⎫- ⎪⎝⎭上单调性一致.因此|a-b|的最大值为13.【失分警示】当a<0时,由于f ′(x)的符号不确定,容易误认为先对a进行分类讨论,其次再对b进行分类讨论时,分类标准难以确定,导致分类混乱,也是常见的失分原因. 【评析】本题考查函数的概念、性质及导数等基础知识,对数形结合思想、函数与方程思想均有考查,对分类讨论思想的考查要求很高,要求考生具备较强的综合思维能力和运算能力,属难题.20.(本小题满分16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项的和为S n,已知对任意的整数k∈M,当整数n>k时,S n+k+S n-k=2(S n+S k)都成立.(Ⅰ)设M={1},a2=2,求a5的值;(Ⅱ)设M={3,4},求数列{a n}的通项公式.【解析】(Ⅰ)由题设知,当n≥2时,S n+1+S n-1=2(S n+S1),即(S n+1-S n)-(S n-S n-1)=2S1.从而a n+1-a n =2a1=2.又a2=2,故当n≥2时,a n=a2+2(n-2)=2n-2.所以a5的值为8.(Ⅱ)由题设知,当k∈M={3,4}且n>k时,S n+k+S n-k=2S n+2S k且S n+1+k+S n+1-k=2S n+1+2S k,两式相减得a n+1+k+a n+1-k=2a n+1,即a n+1+k-a n+1=a n+1-a n+1-k.所以当n≥8时,a n-6,a n-3,a n,a n+3,a n+6成等差数列,且a n-6,a n-2,a n+2,a n+6也成等差数列.从而当n≥8时,2a n=a n+3+a n-3=a n+6+a n-6,(*)且a n+6+a n-6=a n+2+a n-2.所以当n≥8时,2a n=a n+2+a n-2,即a n+2-a n=a n-a n-2.于是当n≥9时,a n-3,a n-1,a n+1,a n+3成等差数列,从而a n+3+a n-3=a n+1+a n-1,故由(*)式知2a n=a n+1+a n-1,即a n+1-a n=a n-a n-1.当n≥9时,设d=a n-a n-1.当2≤m≤8时,m+6≥8,从而由(*)式知2a m+6=a m+a m+12,故2a m+7=a m+1+a m+13.从而2(a m+7-a m+6)=a m+1-a m+(a m+13-a m+12),于是a m+1-a m=2d-d=d.因此,a n+1-a n=d对任意n≥2都成立.又由S n+k+S n-k-2S n=2S k(k∈{3,4})可知(S n+k-S n)-(S n-S n-k)=2S k,故9d=2S3且16d=2S4.解得a4=72d,从而a2=32d,a1=2d.因此,数列{a n}为等差数列.由a1=1知d=2.所以数列{a n}的通项公式为a n=2n-1.【失分警示】使用S n与a n之间的关系式时,易忽略n≥2的条件.此外,对题意的理解困难导致思维受阻也是本题的失分之处.【评析】本题考查数列的概念,数列的通项与前n项和之间的关系,以及等差数列、等比数列的基础知识,对考生的分析探究能力、运算能力、逻辑推理能力均有较高要求.数学II (附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定...其中两题,并在答题卡指定............区域内作答.....,若多做,则按作答的前两题评分。
2011江苏省高考数学真题(含答案)2011江苏高考数学试卷注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:(1)样本数据x 1 ,x 2 ,…,x n 的方差s 2=ni=11n ∑(x i -x )2,其中ni i=11x n ∑.(2)(2)直棱柱的侧面积S=ch ,其中c 为底面积,h 为高.(3)棱柱的体积V= Sh ,其中S 为底面积,h 为高.一.填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
.......... 1、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A 2、函数)12(log)(5+=x x f 的单调增区间是__________3、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ Read a ,b If a >b Then m ←a Else m ←b End If Print m5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s7、已知,2)4tan(=+πx 则x x2tan tan 的值为__________ 8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f3ππ12710、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________2-13、设7211a a a≤≤≤≤Λ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________14、设集合},,)2(2|),{(222R y x m y x m y x A ∈≤+-≤=,},,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程活盐酸步骤。
2011年普通高等学校招生全国统一考试(江苏卷)解析版–数学一、试卷整体分析2011年江苏卷数学试卷难度不太大,考察的知识点较为全面,涉及到了初中、高中的各个方面。
整张试卷前两大题都是选择题,难度较低,第三大题是填空,难度适中,第四大题是解答题,难度较大。
整张试卷的知识点覆盖了高中数学的大部分章节,主要考察了函数、导数、解析几何、数列和三角函数的知识点。
二、各题解析第一大题第一大题是多选题,共10小题,每题2分,总分20分。
该部分考查的是函数的知识点,主要是对于函数的定义,图像分析等进行考查,在整张试卷里较为简单。
需要考生留意的是某些选项中对于函数的定义和图像的分析混淆在一起,在选择时需要看清楚,分辨清楚。
第二大题第二大题为单选题,共8小题,每题3分,总分24分。
该部分考查的是导数的知识点,其中涉及到求导的基本方法和性质,在本部分中也应该比较容易掌握。
需要注意选择时仔细看清题目中涉及到的性质和定义,不要被表述方式所干扰。
第三大题第三大题为填空题,共5小题,每题4分,总分20分。
该部分主要考察的是解析几何和三角函数的知识点,难度适中,需要一定基础的掌握和记忆。
需要留意的是填空空格的数量和格式,以及解析几何和三角函数的公式和基本性质的掌握。
第四大题第四大题为解答题,共3小题,每题16分,总分48分。
该部分难度较大,主要考察的是数列和三角函数的综合应用。
需要对数列的求和、通项公式、公比等有足够的理解和应用能力,对于三角函数的综合应用,需要掌握三角函数的基本性质和运用技巧。
需要注意的是解答题需要有完整的表述方式和推导过程,需要做到清晰易懂。
三、考试经验2011年江苏卷数学试卷难度不大,属于同等卷中较容易的一份试卷。
需要考生留意的是各部分题目不同的考察点和难度程度,做好各部分之间的时间分配,不要在简单的选择题上浪费时间,保证解答题部分有足够充裕的时间。
在做题时需要仔细阅读题目,理解题意,弄清楚要求,避免出现理解偏差的问题。
2003年普通高等学校招生全国统一考试(江苏卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)如果函数2y ax bx a =++的图象与x 轴有两个交点,则点(,)a b aOb 在平面上的区域(不包含边界)为( c )(2)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( b )(A )81 (B )-81 (C )8 (D )-8 (3)已知==-∈x tg x x 2,54cos ),0,2(则π( )(A )247 (B )-247 (C )724 (D )-724 (4)设函数0021,1)(0,,0,12)(x x f x x x x f x 则若>⎪⎩⎪⎨⎧>≤-=-的取值范围是( ) (A )(-1,1) (B )(1,)-+∞(C )(-∞,-2)∪(0,+∞) (D )(-∞,-1)∪(1,+∞)(5)O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P 满足[)(),0,,AB AC OP OA P ABACλλ=++∈+∞则的轨迹一定通过ABC 的(A )外心(B )内心(C )重心(D )垂心(6)函数1ln,(1,)1x y x x +=∈+∞-的反函数为( )a (A)(B) (C) (D)(A )1,(0,)1x x e y x e -=∈+∞+ (B )1,(0,)1x xe y x e +=∈+∞- (C )1,(,0)1x x e y x e -=∈-∞+ (D )1,(,0)1x xe y x e +=∈-∞- (7)棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )(A )33a (B )34a (C )36a (D )312a(8)设20,()a f x ax bx c >=++,曲线()y f x =在点00(,())P x f x 处切线的倾斜角的取值范围为0,,4P π⎡⎤⎢⎥⎣⎦则到曲线()y f x =对称轴距离的取值范围为 ( ) (A )10,a ⎡⎤⎢⎥⎣⎦ (B )10,2a ⎡⎤⎢⎥⎣⎦ (C )0,2b a ⎡⎤⎢⎥⎣⎦ (D )10,2b a ⎡-⎤⎢⎥⎣⎦(9)已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )83(10)已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x (11)已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)(12)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )(A )π3(B )4π(C )π33(D )π62003年普通高等学校招生全国统一考试(江苏卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上(13)92)21(xx -的展开式中9x 系数是(14)某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取___________,__________,___________辆(15)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有___________________种(以数字作答)(16)对于四面体ABCD ,给出下列四个命题①,,AB AC BD CD BC AD ==⊥若则②,,AB CD AC BD BC AD ==⊥若则③,,AB AC BD CD BC AD ⊥⊥⊥若则④,,AB CD AC BD BC AD ⊥⊥⊥若则 其中真命题的序号是__________________.(写出所有真命题的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤(17)(本小题满分12分)有三种产品,合格率分别为0.90,0.95和0.95,各抽取一件进行检验(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率(精确到0.001)(18)(本小题满分12分)已知函数()sin()(0,0)f x x R ωϕωϕπ=+>≤≤是上的偶函数,其图象关于点3(,0)4M π对称,且在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数ωϕ和的值 (19)(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G (Ⅰ)求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (Ⅱ)求点1A 到平面AED 的距离E GD CBAC 1B 1A 1(20)(本小题满分12分)已知常数0,(0,),a c a i >==向量经过原点O 以c i λ+为方向向量的直线与经过定点(0,)2A a i c λ-以为方向向量的直线相交于P ,其中R λ∈试问:是否存在两个定点E 、F ,使得PE PF +为定值若存在,求出E 、F 的坐标;若不存在,说明理由(21)(本小题满分12分)已知0,a n >为正整数(Ⅰ)设()n y x a =-,证明1'()n y n x a -=-;(Ⅱ)设()()n nn f x x x a =--,对任意n a ≥,证明1'(1)(1)'(n n f n n f n ++>+(22)(本小题满分14分)设0a >,如图,已知直线:l y ax =及曲线2:,C y x C =上的点1Q 的横坐标为11(0).(1)n a a a C Q n <<≥从上的点作直线平行于x 轴,交直线11n n l P P ++于点,再从点作直线平行于y 轴,交曲线1.(1,2,3,n n C Q Q n +=于点 …)的横坐标构成数列{}n a(Ⅰ)试求1n n a a +与的关系,并求{}n a 的通项公式; (Ⅱ)当111,2a a =≤时,证明1211()32n k k k k a a a ++=-<∑ (Ⅲ)当1a =时,证明1211()3nk k k k a a a ++=-<∑2003年普通高等学校招生全国统一考试数 学 试 题(江苏卷)答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221- 14.6,30,10 15.120 16.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C. (Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P因为事件A ,B ,C 相互独立,恰有一件不合格的概率为176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P 答:恰有一件不合格的概率为0.176. 解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯= 解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分。
2011年高考数学试题及答案(江苏卷)
注意事项:
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:
(1)样本数据x 1 ,x 2 ,…,x n 的方差s 2=n i=11n ∑(x i -x )2,其中
n
i i=11x n ∑.
(2)(2)直棱柱的侧面积S=ch ,其中c 为底面积,h 为高.
(3)棱柱的体积V= Sh ,其中S 为底面积,h 为高.
一.填空题:本大题共14小题,每小题5分,共计70分,请
把答案填写在答题卡的相应位置上。
1、已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A
2、函数)12(lo g
)(5+=x x f 的单调增区间是__________ 3、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________
4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________
Read a ,b
If a >b Then
m ←a
Else
m ←b
End If
Print m
5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______
6、某老师从星期一到星期五收到信件数分别是10,6,8,5,
6,则该组数据的方差___2=s
7、已知,2)4t an(=+π
x 则x x
2tan tan 的值为__________
8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数x x f 2
)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________
9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f
3ππ127
10、已知→
→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→
→b a ,则k 的值为
11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________
12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的
图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________
13、设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________
14、设集合
},,)2(2|),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________
二、解答题:本大题共6小题,共计90分,请在答题卡指定2
-E
P
区域内作答,解答时应写出文字说明、证明过程活盐酸步骤。
15、在△ABC 中,角A 、B 、C 所对应的边为c b a ,,
(1)若,cos 2)6si n(A A =+π
求A 的值;
(2)若c b A 3,31cos ==,求C si n 的值.
16、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD , AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点
求证:(1)直线EF ‖平面PCD ;
(2)平面BEF ⊥平面PAD
17、请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm
(1)若广告商要求包装盒侧面积S (cm 2
)最大,试问x 应取何值?
(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。
P
x x E
F A B D C
18、如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆
1242
2=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭
圆于点B ,设直线PA 的斜率为k
(1)当直线PA 平分线段MN ,求k 的值;
(2)当k=2时,求点P 到直线AB 的距离d ;
(3)对任意k>0,求证:PA ⊥PB
N M P A
x y
B C
19、已知a ,b 是实数,函数
,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致
(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;
(2)设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值
20、设M 为部分正整数组成的集合,数列}{n a 的首项11=a ,前n 项和为n S ,已知对任意整数k 属于M ,当n>k 时,)(2k n k n k n S S S S +=+-+都成立
(1)设M={1},22=a ,求5a 的值;(2)设M={3,4},求数列}{n a 的通项公式。