C51单片机汇编语言指令集
- 格式:doc
- 大小:347.50 KB
- 文档页数:5
C51单片机汇编语言逻辑右移汇编语言SHR 右移指令将操作数逻辑右移一位在C51单片机汇编语言中,逻辑右移是通过SHR(右移指令)来实现的。
逻辑右移是指将一个二进制数的各位向右移动一位,移动后的位置用0填充。
本文将详细介绍C51单片机汇编语言逻辑右移的操作步骤和具体实现方法。
1. C51单片机汇编语言概述C51单片机汇编语言是由英特尔公司开发的一种用于嵌入式系统的低级编程语言。
它被广泛应用于各种嵌入式系统中,包括家电、汽车电子、通信设备等。
C51汇编语言具有指令丰富、执行效率高、对硬件资源的灵活利用等特点,因此在嵌入式系统开发中得到了广泛的应用。
2. 逻辑右移(SHR)指令的作用和原理逻辑右移是将操作数的二进制表示向右移动一位,移动后的位置用0填充。
逻辑右移(SHR)指令是C51单片机汇编语言提供的一种操作指令,用于实现逻辑右移的功能。
逻辑右移的原理是将操作数的二进制表示向右移动一位,并在最高位位置插入0。
3. 逻辑右移操作的示例下面以一个示例来说明逻辑右移(SHR)的具体操作步骤和实现方法。
假设我们要将一个8位的二进制数A右移一位,将结果保存在另一个变量B中。
首先,将A加载到A寄存器中。
MOV A, #0xFF ; 将0xFF加载到A寄存器中接下来,通过SHR指令对A进行逻辑右移操作,并将结果保存在B中。
SHR A, #1 ; 将A右移一位,结果保存在A中MOV B, A ; 将A的值保存到B中此时,变量B中的值就是二进制数A逻辑右移一位后的结果。
上述示例中,我们将二进制数A右移一位,并将结果保存在B中。
通过逻辑右移,原二进制数中的各位向右移动一位,并在最高位位置插入0。
逻辑右移操作可以通过SHR指令来实现。
4. 总结逻辑右移是C51单片机汇编语言中常用的操作之一,通过SHR指令可以方便地实现逻辑右移的功能。
逻辑右移将操作数的二进制表示向右移动一位,移动后的位置用0填充。
在实际的嵌入式系统开发中,逻辑右移的操作能够有效地处理和优化数据,提高程序的执行效率和系统的性能。
c51 rrc 汇编写法
C51是一种常见的8位单片机系列,而RRC是C51汇编语言中的一个指令。
RRC指令是将一个寄存器中的数据循环右移一位,最高位的数据移动到最低位,同时将最低位的数据移动到最高位。
在C51汇编语言中,RRC指令的写法如下:
RRC A ; 将A寄存器中的数据循环右移一位。
这条指令表示将A寄存器中的数据进行循环右移一位。
在C51汇编语言中,A寄存器是一个累加器,用于存储运算结果或临时数据。
RRC指令可以用于对数据进行位操作,常用于加密算法、数据压缩等场景。
除了RRC指令外,C51汇编语言还包括了丰富的指令集,可以进行各种数据操作、逻辑运算、跳转等操作。
在编写C51汇编程序时,需要深入了解指令集的功能和使用方法,以及掌握寄存器的作用和特性,才能正确高效地编写程序。
总的来说,C51汇编语言中的RRC指令可以通过指定寄存器来对数据进行循环右移一位,是C51单片机编程中常用的指令之一。
在实际编写程序时,需要根据具体的需求和逻辑来合理使用RRC指令,以实现所需的功能。
单片机c51汇编语言51单片机汇编语言单片机C51汇编语言单片机(C51)是指一种集成电路上只包含一个集中式控制器的微处理器,具有完整的CPU指令集、RAM、ROM、I/O接口等功能。
汇编语言是一种低级语言,是用于编写单片机指令的一种语言。
汇编语言能够直接操作单片机的寄存器和输入/输出端口,因此在嵌入式系统的开发中非常重要。
本文将介绍单片机C51的汇编语言编程。
一、了解单片机C51单片机C51是目前应用最广泛的一种单片机系列,广泛用于各种电子设备和嵌入式系统的开发。
C51指的是Intel公司推出的一种基于MCS-51架构的单片机。
该系列单片机具有较高的性能和低功耗的特点,可用于各种控制和通信应用。
二、汇编语言的基本概念汇编语言是一种低级语言,与机器语言紧密相关。
它使用助记符来代替机器指令的二进制表示,使程序的编写更加易读。
在单片机C51汇编语言中,每一条汇编指令都对应着特定的机器指令,可以直接在单片机上执行。
三、汇编语言的基本指令在单片机C51汇编语言中,有一些基本的指令用于控制程序的执行和操作寄存器。
以下是一些常用的指令:1. MOV指令:用于将数据从一个寄存器或内存单元复制到另一个寄存器或内存单元。
2. ADD指令:用于将两个操作数相加,并将结果存储到目的寄存器中。
3. SUB指令:用于将第一个操作数减去第二个操作数,并将结果存储到目的寄存器中。
4. JMP指令:用于无条件跳转到指定的地址。
5. JZ指令:用于在条件为零时跳转到指定的地址。
6. DJNZ指令:用于将指定寄存器的值减一,并根据结果进行跳转。
四、编写单片机C51汇编程序的步骤编写单片机C51汇编程序需要按照以下步骤进行:1. 确定程序的功能和目标。
2. 分析程序的控制流程和数据流程。
3. 设计算法和数据结构。
4. 编写汇编指令,实现程序的功能。
5. 调试程序,并进行测试。
六、实例演示以下是一个简单的单片机C51汇编程序的示例,用于实现两个数的相加,并将结果输出到LED灯上:org 0H ; 程序的起始地址为0mov a, 05H ; 将05H赋值给累加器mov b, 07H ; 将07H赋值给B寄存器add a, b ; 将A寄存器和B寄存器的值相加mov P1, a ; 将相加结果输出到P1口end ; 程序结束在这个例子中,首先将05H赋值给累加器A,然后将07H赋值给B寄存器,接着使用ADD指令将A和B的值相加,将结果存储到累加器A中,最后将累加器A的值输出到P1口。
51单片机汇编语言教程汇编语言是一种低级程序设计语言,直接操作计算机硬件,能够充分发挥硬件的性能,是学习嵌入式系统开发的基础。
而51单片机是广泛应用于嵌入式系统中的一种微控制器,具有功能强大、易于掌握等特点。
本篇文章将为大家介绍51单片机汇编语言的基本概念、编程指令以及应用实例,帮助读者快速入门。
一、51单片机汇编语言概述1.1 51单片机简介51单片机是一种由英特尔公司设计的8位微控制器,其核心是一个CPU,具有RAM、ROM、I/O端口等外围设备。
它采用的是汇编语言编程,具有指令集简单、易于学习等特点,因此深受嵌入式系统开发者的喜爱。
1.2 汇编语言的基本概念汇编语言是一种低级语言,与高级语言相比,更接近计算机底层的硬件操作。
在汇编语言中,程序员通过编写指令来告诉计算机具体的操作,如数据存储、运算等。
二、51单片机汇编语言基础知识2.1 寄存器寄存器是51单片机中的一种重要的存储设备,用于存储数据、地址等信息。
51单片机共有32个寄存器,其中一部分用于存储通用数据,一部分用于存储特定功能的数据。
在汇编语言编程中,我们可以使用这些寄存器来存储数据和进行运算。
2.2 程序存储器程序存储器是51单片机中存储程序的地方,它可以分为ROM和RAM两种类型。
其中,ROM存储的是不可修改的程序代码,而RAM 存储的是可以读写的数据。
2.3 I/O端口I/O端口是51单片机与外部设备进行数据交互的接口,通过输入/输出指令,可以实现数据的输入与输出。
在汇编语言中,我们需要了解如何使用I/O端口来与外部设备进行通信。
三、51单片机汇编语言编程指令3.1 数据传输指令数据传输指令用于将数据从一个地方传输到另一个地方。
常用的数据传输指令有MOV、MOVC、MOVX等,通过这些指令可以实现数据的读取、存储和传输等操作。
3.2 算术运算指令算术运算指令用于对数据进行加、减、乘、除等运算操作。
51单片机中的算术运算指令包括ADD、SUB、MUL、DIV等,通过这些指令可以对数据进行各种运算操作。
51汇编语言指令集符号定义表符号含义Rn R0~R7寄存器n=0~7Direct 直接地址,内部数据区的地址RAM(00H~7FH) SFR(80H~FFH) B,ACC,PSW,IP,P3,IE,P2,SCON,P1,TCON,P0@Ri 间接地址Ri=R0或R1 8051/31RAM地址(00H~7FH) 8052/32RAM地址(00H~FFH) #data 8位常数#data16 16位常数Addr16 16位的目标地址Addr11 11位的目标地址Rel 相关地址bit 内部数据RAM(20H~2FH),特殊功能寄存器的直接地址的位指令介绍指令字节周期动作说明算数运算指令1.ADD A,Rn 1 1 将累加器与寄存器的内容相加,结果存回累加器2.ADD A,direct 2 1 将累加器与直接地址的内容相加,结果存回累加器3.ADD A,@Ri 1 1 将累加器与间接地址的内容相加,结果存回累加器4.ADD A,#data 2 1 将累加器与常数相加,结果存回累加器5.ADDC A,Rn 1 1 将累加器与寄存器的内容及进位C相加,结果存回累加器6.ADDC A,direct 2 1 将累加器与直接地址的内容及进位C相加,结果存回累加器7.ADDC A,@Ri 1 1 将累加器与间接地址的内容及进位C相加,结果存回累加器8.ADDC A,#data 2 1 将累加器与常数及进位C相加,结果存回累加器9.SUBB A,Rn 1 1 将累加器的值减去寄存器的值减借位C,结果存回累加器10.SUBB A,direct 2 1 将累加器的值减直接地址的值减借位C,结果存回累加器11.SUBB A,@Ri 1 1 将累加器的值减间接地址的值减借位C,结果存回累加器12.SUBB A,0data 2 1 将累加器的值减常数值减借位C,结果存回累加器13.INC A 1 1 将累加器的值加114.INC Rn 1 1 将寄存器的值加l15.INC direct 2 1 将直接地址的内容加116.INC @Ri 1 1 将间接地址的内容加117.INCDPTR1 1 数据指针寄存器值加1说明:将16位的DPTR加1,当DPTR的低字节(DPL)从FFH溢出至00H时,会使高字节(DPH)加1,不影响任何标志位18.DEC A 1 1 将累加器的值减119.DEC Rn 1 1 将寄存器的值减120.DEC direct 2 1 将直接地址的内容减121.DEC @Ri 1 1 将间接地址的内容减122.MUL AB 1 4 将累加器的值与B寄存器的值相乘,乘积的低位字节存回累加器,高位字节存回B寄存器说明:将累加器A和寄存器B内的无符号整数相乘,产生16位的积,低位字节存入A,高位字节存入B寄存器。
51单片机汇编语言带进位加法指令带进位加法指令(4 条)这4 条指令除与[1]功能相同外,在进行加法运算时还需考虑进位问题。
ADDC A,data ;(A)+(data)+(C)(A)累加器A 中的内容与直接地址单元的内容连同进位位相加,结果存在A 中ADDC A,#data;(A)+#data +(C)(A)累加器A 中的内容与立即数连同进位位相加,结果存在A 中ADDC A,Rn ;(A)+Rn+(C)(A)累加器A 中的内容与工作寄存器Rn 中的内容、连同进位位相加,结果存在A 中ADDC A,@Ri ;(A)+((Ri))+(C)(A)累加器A 中的内容与工作寄存器Ri 指向地址单元中的内容、连同进位位相加,结果存在A 中用途:将A 中的值和其后面的值相加,并且加上进位位C 中的值。
说明:由于51 单片机是一种8 位机,所以只能做8 位的数学运算,但8 位的运算范围只有0-255,这在实际工作中是不够的,因此就要进行扩展,一般是将2 个8 位的数学运算合起来,成为一个16位的运算,这样,可以表达的数的范围就可以到达0-65535。
如何合并呢?其实很简单,让我们看一个十进制数的例子吧:66+78 这两个数相加,我们根本不在意这个过程,但事实上我们是这样做的:先做6+8(低位),然后再做6+7,这是高位。
做了两次加法,只是我们做的时候并没有刻意分成两次加法来做罢了,或者说我们并没有意识到我们做了两次加法。
之所以要分成两次来做,是因为这两个数超过了一位数所能表达的范围(0-9)。
在做低位时产生了进位,我们做的时候是在适当的位置点一下,然后在做高位加法时将这一点加进去。
那么计算机中做16 位加法时同样如此,先做低8 位的,如果两数相加后产生了进位,也要点一下做个标记,这个标记就职进位位C,在程序状态字PSW 中。
在进行高位加法是将这个C 加进去。
例如:1067H+10A0H,先做67H+A0H=107H,而107H 显然超过了0FFH,因此,最终保存在A 中的数是。
51单片机汇编语言指令教程汇集
1.MOV
MOV指令把源操作数的值复制到目的操作数。
格式如下:
MOV dest,src
dest :用于存储源操作数值的目的操作数。
src :用于取源操作数值的源操作数。
MOV指令可以把源操作数的值复制到目的操作数里,其中它的源操作数和目的操作数可以是内存单元,寄存器或立即数。
2.MVI
MVI指令把单字节立即数的值复制到其中一寄存器或内存单元。
格式如下:
MVI dest,data
dest :用于存放单字节立即数值的目的操作数。
data :用于取立即数值的立即数。
MVI指令可以把数据(data)复制到dest所指向的存储单元。
它的目的操作数可以是内存单元或寄存器,源操作数只能是8位立即数。
3.LXI
LXI指令可以把16位数据装载到左边和右边双字节寄存器中。
格式如下:
LXI rp,data
rp :用接受16位数据的双字节寄存器,它可以是BC,DE,HL或SP。
data :用于取16位立即数的立即数。
LXI指令可以把16位立即数data复制到双字节寄存器rp里。
4.LDA
LDA指令可以把存储单元中的数据装载到A寄存器中,格式如下:
LDA addr
addr :用于取存储单元数据值的存储单元地址。
LDA指令可以把存储单元addr中的数据复制到A寄存器中。
5.STA
STA指令可以把A寄存器的值存入指定的存储单元中,格式如下:
STA addr。
51单片机汇编cjnz指令题目:51单片机汇编指令cjnz的功能与应用引言:在51单片机汇编语言中,指令是程序员用来编程的基本元素之一。
其中,cjnz(Compare and Jump if Not Zero)指令是一条非常有用的条件分支指令。
本文将逐步介绍cjnz指令的功能、使用方法以及一些常见的应用场景。
第一部分:cjnz指令的功能和使用方法cjnz指令是一条带有条件判断的跳转指令。
它的基本功能是,在条件为非零时进行跳转,否则执行顺序往下执行。
使用方法如下:cpl A ; 对寄存器A中的内容进行取反操作cjnz A, Label ; 根据A寄存器的值,决定是否跳转到标签Label处其中cpl A指令是用来对寄存器A的内容进行逻辑非运算的,即将0变为1,将非零值变为零。
第二部分:cjnz指令的基本格式和实例分析cjnz指令的基本格式如下:cjnz 条件,目标地址其中,条件可以是寄存器、内部RAM、外部RAM或直接常数。
以下是一些实例分析,以进一步说明cjnz指令的使用方式和效果。
实例1:使用cjnz指令进行循环控制我们想要实现一个循环程序,将寄存器B的值依次加1,直到其值达到10为止。
可以使用cjnz指令来实现以下伪代码:loop:inc B ; 将寄存器B的值加1cjnz B, loop ; 如果B寄存器不为零,就跳转到标签loop处继续循环实例2:使用cjnz指令进行条件判断假设我们编程一个LED灯开关程序,当按下开关时,亮起LED灯,再按下开关则熄灭灯光。
可以使用cjnz指令来实现以下伪代码:main:cjnz P1.0, Led_On ; 如果P1.0口是高电平,则跳转到标签Led_On 处sjmp main ; 如果P1.0口是低电平,则一直停留在标签main处Led_On:setb P2.0 ; 设置P2.0口为高电平,从而点亮LED灯sjmp main ; 返回到标签main处,等待下一次按下开关第三部分:cjnz指令的优点和应用场景cjnz指令具有以下优点和应用场景:1. 简化程序逻辑:cjnz指令使得程序员可以通过条件判断来控制程序的执行路径,从而实现多样化的程序逻辑。