新型生物脱氮技术
- 格式:ppt
- 大小:358.00 KB
- 文档页数:20
Feammox:一种新型自养生物脱氮技术Feammox:一种新型自养生物脱氮技术引言氮是生命体所需的关键元素之一,然而过量的氮排放却对环境产生了严重影响。
传统的氮脱氮技术往往需要高能耗和高维护成本,因此寻找一种低成本高效的氮脱氮技术迫在眉睫。
近年来,一种名为Feammox的自养生物脱氮技术受到了广泛关注,其被认为是一种具有巨大潜力的新型氮脱氮技术。
一、Feammox的特点和原理Feammox是铁氧化异化亚硝酸盐自养生物脱氮技术的简称,其最大的特点是能够在无需硝化作用的情况下直接将氨氮转化为氮气。
Feammox菌根据最新的研究成果被发现存在于不同环境中,例如淡水河流、湖泊、沿海海域等。
Feammox菌具有多种功能基因,包括异化亚硝酸还原酶(Hydroxylamine oxidoreductase)和亚硝态氮转肽酶(Nitrite converting enzyme),它们的相互协作使得Feammox菌能够直接将氨氮转化为氮气。
Feammox是自养生物脱氮技术的一种变体,它不依赖于硝化细菌进行氨氮转化为亚硝酸盐和硝酸盐的除氮过程,而是通过Feammox菌直接将氨氮转化为氮气。
此外,Feammox菌还能直接氧化异化亚硝酸盐(NH2NO2)为硝酸盐(NO3-),这为解决自养生物脱氮过程中的亚硝酸盐积累问题提供了一种新途径。
因此,Feammox既避免了传统脱氮技术中硝化和反硝化两个步骤的需要,也减少了对化学药剂的依赖,为氮脱氮技术带来了更高的效率和低成本。
二、Feammox的应用1. 城市污水处理厂城市污水处理厂是一个大量涉及氮排放的场所,因此在这类场所应用Feammox技术能够显著提高脱氮效率。
传统的污水处理厂中一般需要采用硝化和反硝化工艺来完成脱氮过程,而Feammox技术不仅避免了这两个步骤的需要,还能更高效地将氨氮转化为氮气。
此外,城市污水处理厂一般具有较高的硝酸盐浓度,而Feammox技术还能够将亚硝酸盐高效转化为硝酸盐,进一步降低水体中亚硝酸盐的积累。
《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。
传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。
因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。
本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。
二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。
近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。
(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。
这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。
(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。
这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。
三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。
近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。
(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。
这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。
(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。
这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。
四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。
同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。
《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。
在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。
本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。
二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。
该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。
三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。
近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。
这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。
(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。
近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。
该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。
四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。
近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。
该技术具有除磷效果好、污泥产量少等优点。
(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。
该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。
近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。
五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
生物脱氮技术生物脱氮技术是一种有效的方法,用于处理含有高浓度氮污染物的废水和污水。
它通过利用微生物的生物活性,将废水中的氮污染物转化为氮气,从而实现脱氮的目的。
这种技术在环保领域中得到了广泛应用。
本文将详细介绍生物脱氮技术的原理、应用和优势。
一、原理生物脱氮技术基于微生物的代谢活动,通过一系列微生物反应将废水中的氮污染物转化为氮气。
具体来说,生物脱氮技术主要包括硝化和反硝化两个过程。
硝化是指将废水中的氨氮转化为硝态氮的过程。
在硝化过程中,氨氮首先被氧化成亚硝酸盐,然后再被氧化成硝酸盐。
这一过程主要由硝化细菌完成。
硝化细菌通过吸收废水中的氨氮,并在氧气的存在下将其转化为硝酸盐。
反硝化是指将废水中的硝态氮还原为氮气的过程。
在反硝化过程中,硝酸盐首先被还原成亚硝酸盐,然后再被还原成氮气。
这一过程主要由反硝化细菌完成。
反硝化细菌通过吸收废水中的硝酸盐,并在缺氧的环境下将其还原为氮气。
通过硝化和反硝化两个过程,生物脱氮技术可以将废水中的氮污染物转化为氮气,从而实现脱氮的效果。
二、应用生物脱氮技术广泛应用于各种含有高浓度氮污染物的废水和污水处理系统中。
例如,生物脱氮技术可以应用于城市生活污水处理厂和工业废水处理厂。
此外,生物脱氮技术还可以应用于农业废水处理和农田灌溉水质的改善。
在城市生活污水处理厂中,生物脱氮技术可以有效地处理含有高浓度氮污染物的污水。
通过生物脱氮技术,污水中的氮污染物可以被转化为氮气,从而减少了对环境的污染。
此外,生物脱氮技术还可以提高污水处理的效率和降低运营成本。
在工业废水处理厂中,生物脱氮技术可以处理各种含有高浓度氮污染物的废水。
通过生物脱氮技术,废水中的氮污染物可以被转化为氮气,从而降低了对环境的影响。
此外,生物脱氮技术还可以减少废水处理过程中的化学药剂使用量,降低了处理成本。
在农业废水处理和农田灌溉水质改善方面,生物脱氮技术也发挥了重要作用。
通过生物脱氮技术,农业废水中的氮污染物可以被转化为氮气,从而减少了对农田的污染。
生物脱氮新技术研究进展随着环境保护意识的不断提高,生物脱氮技术作为一种环保节能的新型污水处理技术,越来越受到人们的。
本文将介绍生物脱氮新技术的研究背景和意义、研究进展、优缺点和发展前景,以期为相关领域的研究提供参考。
生物脱氮是指利用微生物或植物等生物手段,通过硝化和反硝化作用将废水中的氨氮和硝酸盐等含氮化合物转化为无害的氮气,从而达到废水治理和资源化的目的。
生物脱氮技术主要包括活性污泥法、生物膜法、反硝化菌法等。
这些技术均利用微生物菌群进行硝化和反硝化作用,将废水中的氨氮转化为氮气。
近年来,随着生物技术的不断发展,生物脱氮新技术也层出不穷。
下面介绍几种生物脱氮新技术的研究进展。
短程硝化反硝化技术是指在同一个反应器内,通过控制反应条件,使硝化作用和反硝化作用相继进行。
该技术可以大幅度减少反应器体积,提高反应效率,同时还可以降低能耗。
研究结果表明,短程硝化反硝化技术对氨氮和总氮的去除率均高于传统的活性污泥法。
厌氧氨氧化技术是指利用厌氧微生物将氨氮和亚硝酸盐转化为氮气的过程。
该技术的反应条件温和,无需曝气供氧,具有较高的氮去除率和能源利用率。
研究结果表明,厌氧氨氧化技术对高浓度氨氮废水的处理效果较好,但在低浓度氨氮废水处理中可能受到抑制。
悬浮生长植物脱氮技术是指利用水生植物如荷花、水葫芦等吸收废水中的氨氮,并通过植物体内的转化作用将其转化为氮气。
该技术具有投资少、操作简单、无需外加能源等优点,在低浓度氨氮废水中具有较好的处理效果。
研究结果表明,悬浮生长植物脱氮技术可以降低废水中的氨氮浓度,同时还可以改善水体生态环境。
生物脱氮新技术在氨氮和总氮的去除率、反应效率、能源利用率等方面均优于传统活性污泥法等生物脱氮技术。
但是,这些新技术尚存在一些缺点,如短程硝化反硝化技术需要控制精确的反应条件,厌氧氨氧化技术对废水的预处理要求较高,悬浮生长植物脱氮技术仅适用于低浓度氨氮废水的处理。
因此,在实际应用中,需要根据具体情况选择适合的生物脱氮技术。
污水处理中的生物脱氮技术污水处理是保护水资源和环境的重要举措之一。
而生物脱氮技术作为一种高效节能的污水处理方法,已经得到了广泛的应用和研究。
本文将重点介绍污水处理中的生物脱氮技术原理、应用案例以及未来发展趋势。
一、生物脱氮技术原理生物脱氮技术是指利用微生物将废水中的氮化合物转化为气态氮的过程。
常见的脱氮技术包括硝化-反硝化和厌氧反硝化。
其中,硝化过程是将氨氮先转化为亚硝酸盐氮,再通过细菌作用转化为硝酸盐氮。
而反硝化过程则是将硝酸盐氮还原为氮气。
厌氧反硝化技术是针对无氧环境下,通过厌氧细菌将硝酸盐氮还原为氮气。
二、生物脱氮技术的应用案例1. 活性污泥法活性污泥法是一种常见的生物脱氮技术,通过在好氧条件下,利用生物膜中的硝化细菌和反硝化细菌,将废水中的氨氮转化为氮气。
这种技术适用于中小型污水处理厂和城市污水处理厂。
2. 等温厌氧反硝化技术等温厌氧反硝化技术是近年来快速发展的生物脱氮技术之一。
该技术通过通过将反硝化与厌氧条件相结合,在相对温和的条件下提高了反硝化的效率。
这种技术适用于低温环境下的污水处理。
3. 全自动生物脱氮系统全自动生物脱氮系统是一种集成化的生物脱氮技术。
该系统通过自动控制设备,实现了对污水处理过程中关键参数的监测和调控。
这种技术具有稳定性高、运行成本低、操作简便等优点,被广泛应用于大型污水处理厂。
三、生物脱氮技术的发展趋势1. 高效节能随着能源问题的日益凸显,未来的生物脱氮技术将更加注重能源的高效利用。
例如,利用厌氧颗粒污泥技术可以在反硝化过程中产生较低的剩余物,提高能源利用效率。
2. 微生物多样性研究生物脱氮技术中的微生物扮演着重要的角色。
因此,未来的研究将更加关注微生物多样性的研究,进一步优化脱氮效果。
3. 优化污水处理工艺将生物脱氮技术与其他污水处理工艺相结合,可以进一步提高脱氮效果。
例如,与生物脱磷技术相结合,可以实现对污水中氮磷的同步去除,提高污水处理的效率。
总之,生物脱氮技术作为一种高效节能的污水处理方法,持续得到广泛研究和应用。
生物脱氮新技术★废水物化脱氮技术1.空气吹脱法:利用废水中所含氨氮的实际浓度和平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮不断地由液相转移到气相中,达到从废水中去除氨氮目的。
2.折点氯化法:将氯气或次氯酸钠投入污水,将废水中的氨氮氧化成N2的化学脱氮工艺。
可作单独工艺,也可对生物脱氮工艺的出水进行深度处理。
出水可控制氨氮在0.1mg/L。
3.选择性离子交换法:离子交换中固相交换剂和废水中NH4+间进行化学置换反应。
设备简单、易于操作,效率高;离子交换剂用量大,需频繁再生。
对废水预处理要求高,运行成本高。
4.化学沉淀法:投加Mg2+和PO43+,使之与氨氮生成难溶复盐MgNH4PO4·6H2O沉淀物,从而达到脱氮目的。
可以处理各种浓度的氨氮废水,特别是高浓度氨氮废水。
5.化学中和法:浓度大于2%-3%的氨的碱性废水要先考虑回收利用,制成硫铵。
不易回收的可与酸性水或废气(CO、CO2、SO2)中和,若中和后达不到要求,补加化学药剂再中和。
6.乳化液膜分离法:含氨废水以选择透过液膜为分离介质,在液膜两侧通过被选择透过物质(NH3)浓度差和扩散传递为推动力,使透过物质(NH3)进入膜内,达到分离的目的。
第一部分★传统废水生物脱氮过程和原理1.2.3.素矿化。
微生物:细菌、各种霉菌。
硝化作用指微生物将NH4+氧化成NO2-,再进一步氧化成NO3-的过程。
微生物:亚硝化菌:亚硝化单胞菌(Nitrosomonas),将NH4+氧化成NO2-;硝化菌:硝化杆菌(Nitrobacter),将NO2-氧化成NO3-。
(自养型微生物)反硝化作用将NO3-或NO2-还原成N2或N2O的过程。
微生物:硝化菌(异养型微生物)二、影响因素⑴ pH:通常把硝化段运行的pH控制在7.2-8.2,反硝化段pH控制在7.5-9.2 。
⑵温度:硝化反应适宜温度为30~35℃,在此范围反应速率随温度升高而加快。
污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在.生活污水中氮的主要存在形态是有机氮和氨氮.通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮.污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类.由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域.一、生物脱氮技术生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的.生物脱氮工艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺.前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上.1.活性污泥法活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒.1活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化和反硝化作用分别在不同的构筑物中完成,如下图所示:由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好.但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大.此外,为了保持硝化所需的稳定pH 值, 往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高.可以看出,这种工艺的确具有很大的局限性.如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统.如下图:与三级生物脱氮流程相比,两级生物脱氮流程的基建费用和占地面积均有所降低,但是仍然需要外加甲醇和碱源.2前置反硝化生物脱氮系统又称缺氧-好氧活性污泥脱氮系统、A/0生物脱氮流程、改良LudMck-Euinger工艺等.前置反硝化是目前使用比较广泛的一种脱氮工艺分建式缺氧好氧活性污泥脱氮系统如下图:.除分建式系统外,本工艺还可以建成合建式装置,即将缺氧和好氧环境放在-个构筑物内,中间以挡板隔开,挡板下端与池内壁之间以一定的缝隙相通,如下图所示:采用合建式装置,对于现有推流式曝气池的改造来说更加方便.与传统的生物脱氰流程相比较,该流程具有如下优势.①由于构筑物数量减少,因而流程得以简化,占地面积减少,且缺氧段消耗原污水中的部分有机物,能够降低好氧段的有机物污泥负荷,不仅容易使硝化菌取得竞争优势,而且降低了曝气充氧的电耗,因而基建费用和运行费用均比较低.②将缺氧段放在好氧段前边,可以起到生物选择器的作用,有利于防止污泥膨胀,改善活性污泥的沉降性能.③反硝化过程能够充分利用原污水中有机物和内源代谢产物作为电子受体,既可以减少或取消外加碳源,从面省去后曝气池,提高处理水水质,又可以保证较高的碳比,有利于反硝化的充分进行.④由于存在内循环,缺氧反硝化产生的碱度能够补偿硝化反应所造成的pH值下降,大大降低了碱投加量.前置反硝化生物脱氮系统也有自己的不足之处.一是处理出水中含有一定浓度的硝酸盐,可能污染受纳水体.第二,由于内回流比限制本工艺的脱氮率一般为70%~80%, 很难达到90%.而且,该工艺对运行管理人员的素质要求比较高.例如,如果系统运行不当,沉淀池内将发生反硝化反应,造成污泥上浮,使处理水恶化.3氧化沟工艺从工艺、流态和构造方面看,氧化沟也非常适合于生物脱氮.①氧化沟的污泥龄通常很长,一般可达15~30d,非常适合于世代时间长、增值缓慢的硝化菌存活与繁殖.②氧化沟往往做成总长达几十米甚至上百米的环行构筑物.由于循环次数多达72次其至360次,混合液沿沟道方向近似于完全混合式.然而由于工艺状况不同,混合液中溶解氧的浓度在不同位置也存在很大差异:在曝气器的附近非常容易出现DO比较高的富氧区,而在远离曝气装置的地方,容易出现DO比较低的缺氧区,使硝化和反硝化能够在同一装置中顺利进行,从而达到生物脱氮的目的.据报道,Carrousel氧化沟、交替工作氧化沟、二次沉淀池交替运行氧化沟、Orbal型氧化沟、曝气-沉淀一体化氧化沟和刺渠型一体化氧化沟等均可以用于脱氮,其脱氮效率可以达到60%-90%,例如,Carrousel氧化沟的脱氮率为90%, Orbal型氧化沟的总氮去除率也以达到85%~90%.氧化沟工艺构造简单,运行稳定,易于管理维护,出水水质好,基建费用和处理成本均较低,对原水水质水量的变化也有很强的适应性,是一种非常有竞争力的生物脱氮技术.2.生物膜法生物膜法是与活性污泥法并列的一种污水处理技术.由于生物污泥的生物固体平均停留时间与污水的水力停留时间无关,世代时间比较长、比增殖速度较小的硝化菌和亚硝化菌都能够很好的繁殖和增殖,因此各种生物膜处理工艺都具有一定的硝化功能,采用适当的运行方式,还能够达到反硝化脱氮的要求.而且,与活性污泥法相比,生物膜法还具有下列优点.①微生物浓度高,处理效率高.据实测,如果折算成曝气池的MLVSS,珥以达到 4060g/L,远远高于活性污泥处理系统.②污泥龄长,产泥量少.由于生物膜上存在的食物链较因此产泥量少,剩余污泥的处理量仅为活性污泥法的一半左右.在生物转盘上还可以生长世代时间较长的硝化菌,因此如果得当,除有效去除有机物外,还能够具有硝化和反硝化脱氮的作用,其工艺流程如下图:该工艺的脱氮原理是:由于降解有机物的好氧氧化菌的生长繁殖优先于硝化菌与亚硝化菌,因此,在前两级转盘上去除有机物的能力较强,而后两级能够产生比较充分的硝化反应,形成硝酸盐氮和亚硝酸盐氮.由于转盘低速旋转的传质作用.这些硝态氮随污水进人处于厌氧状态的淹没式转盘时,与外加甲醇充分接触,进行反硝化脱氮反应.而残留下来的甲醇再经过好氧生物转盘的处理后得到去除.。
Feammox_一种新型自养生物脱氮技术氮是生物体正常生长和代谢过程中不行或缺的元素,但过量的氮会对生态环境造成灾难性的影响。
当前主流的氮污染治理技术主要包括物理法、化学法和生物法。
相比之下,生物法因其高效、环保、经济等优势而备受关注。
然而,传统的生物法脱氮技术主要依靠于厌氧反硝化过程,其主要产物是有毒的氨和温室气体亚氮氧化物(N2O)。
与此相比,Feammox技术在脱氮过程中完全防止了亚氮氧化物的生成,可视为一种分外可行的环境友好型脱氮技术。
Feammox又被称为氨氧化短氮链微生物自养脱氨技术,其主要是指在自然环境中发现的一类能够利用铁(Fe)代替氧(O2)进行氨氧化的微生物。
这些微生物属于硝化脱氮微生物的一种,可以实现硝化和反硝化过程的同时进行,高效地将氨转化为无害的氮气(N2),从而达到脱氮的目标。
相对于传统的厌氧反硝化过程,Feammox技术不仅能够防止产生有毒产物,还能够提升脱氮效率,从而降低处理成本。
Feammox技术在自然环境中发现的微生物种类较多,其中主要包括嗜铁菌和硝化颗粒等。
这些微生物屡屡存在于含铁的环境中,如沉积物、土壤和水体等。
科学家们通过在试验室中模拟自然环境,成功培育出了一些Feammox微生物种类,并探究了其脱氮机理和应用潜力。
探究发现,Feammox微生物的脱氮能力与环境中的铁含量密切相关。
适当增加环境中的铁含量能够增加Feammox微生物的活性和脱氮效率,进一步提高这种新型脱氮技术的应用性能。
Feammox技术的应用潜力巨大。
目前,已经有探究团队开始在废水处理领域中应用Feammox技术,实现了高效率的脱氮。
相比传统的氮污染治理技术,Feammox技术具有操作简易、投资成本低等优势。
此外,Feammox技术还可以在农业领域中应用,对农田的氮循环进行调控,实现农业生产的可持续进步。
尽管Feammox技术在氮污染治理领域中呈现出了巨大的潜力,但目前对其了解还不够深度。
新型生物脱氮工艺原理1.硝化作用:在新型生物脱氮工艺中,首先进行的是硝化作用。
在这一过程中,氨氮被硝化细菌氧化为亚硝酸盐氮。
硝化细菌是一种广泛存在于自然环境中的微生物群落,它们能够利用氨氮等物质为能源进行代谢活动,将氨氮氧化为亚硝酸盐氮。
这一过程中,需供给足够的氧气作为废水中的硝化细菌的代谢需要。
2.反硝化作用:在硝化作用完成后,需要进行反硝化作用来进一步去除废水中的氨氮。
反硝化细菌是一种能够利用亚硝酸盐氮作为电子受体进行代谢活动的微生物群落。
亚硝酸盐氮会被反硝化细菌还原为氮气,并排放到大气中。
这一过程中,需同时供给有机物作为废水中的反硝化细菌的碳源,以维持其代谢活动。
3.硝化反硝化同步工艺:新型生物脱氮工艺不仅包括硝化作用和反硝化作用,还采用了硝化反硝化同步工艺。
这一工艺中,硝化和反硝化同时进行,从而实现氨氮的高效去除。
废水中的亚硝酸盐氮同时作为硝化和反硝化细菌的底物,使得氨氮的转化率更高,去除效果更好。
4.膜分离技术:新型生物脱氮工艺中常使用膜分离技术,利用特殊的膜材料将废水中的硝酸盐氮和氨氮分离出来。
膜分离技术能够将微生物和废水中的有机物分离开来,从而有效地防止微生物的流失,并提高脱氮效果。
常见的膜分离技术包括超滤、微滤和逆渗透等。
综上所述,新型生物脱氮工艺通过微生物的代谢活动将废水中的氨氮转化为无害的氮气排放。
利用硝化和反硝化作用以及硝化反硝化同步工艺,可以高效、稳定地去除废水中的氨氮。
而膜分离技术则可以保护微生物群落并提高脱氮效果。
这一工艺在处理污水中的氨氮问题上具有重要的应用价值。
短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术短程硝化反硝化生物脱氮技术是一种新型的污水处理技术,可以高效地去除污水中的氮污染物,具有技术简单、运行稳定等特点。
本文将从介绍短程硝化反硝化生物脱氮技术的原理和流程、应用和优势、发展前景等方面进行展开。
一、短程硝化反硝化生物脱氮技术的原理和流程短程硝化反硝化生物脱氮技术是基于微生物菌群的协同作用而实现的一种脱氮过程。
它通过合适的操作条件和控制策略,促进污水处理系统内的硝化和反硝化反应,使污水中的氨氮转化为亚硝态氮和硝态氮,再进一步转化为氮气释放到大气中。
短程硝化反硝化生物脱氮技术的流程通常分为硝化阶段和反硝化阶段。
在硝化阶段,将进入系统的氨氮通过硝化细菌作用转化为亚硝态氮或硝态氮。
然后,在反硝化阶段,利用特定的微生物将亚硝态氮或硝态氮还原为氮气,并最终释放到大气中。
二、短程硝化反硝化生物脱氮技术的应用和优势短程硝化反硝化生物脱氮技术在污水处理领域得到了广泛的应用。
它适用于处理含有高浓度氨氮的污水,如农业养殖废水、城市污水和工业废水等。
与传统的生物脱氮技术相比,短程硝化反硝化生物脱氮技术具有以下优势:1. 技术简单易行:采用短程硝化反硝化生物脱氮技术,无须引入额外的化学药剂和设备,仅需调节系统的氧化还原电位、温度和pH值等操作条件即可实现高效的脱氮效果。
2. 能耗低:短程硝化反硝化生物脱氮技术采用生物方法进行氮污染物的处理,相较于传统的物理和化学方法,具有更低的能耗和运行成本。
3. 运行稳定:短程硝化反硝化生物脱氮技术中的微生物菌群具有较强的适应能力和生物活性,能够在不同的环境条件下保持较高的活性和稳定性,使得污水处理系统能够长期稳定运行。
4. 减少对环境的负荷:短程硝化反硝化生物脱氮技术将氮污染物转化为氮气释放到大气中,减少了对水体和土壤的氮负荷,对环境的影响较小。
三、短程硝化反硝化生物脱氮技术的发展前景短程硝化反硝化生物脱氮技术作为一种新型的污水处理技术,具有较为广阔的发展前景。