陶瓷增韧机理
- 格式:docx
- 大小:2.24 MB
- 文档页数:5
陶瓷作业姓名:王槐豪学号:1071900220 班级:0719201陶瓷韧化机理陶瓷最致命缺点是脆性,低可靠性和低重复性,这些不足严重影响陶瓷材料的应用范围。
只有改善陶瓷的断裂韧性,提高其可靠性和使用寿命,才能是陶瓷真正成为一种广泛应用的新型材料,因此陶瓷增韧技术一直是陶瓷研究的热点。
陶瓷的断裂主要是由于裂纹扩展导致的,阻止间断裂纹的扩展的方法有三种。
其一为分散裂纹尖端应力;其二为消耗裂纹扩展的能量,增大裂纹扩展所需克服的能垒;最后问转换裂纹扩展的能量。
相变韧化受相变诱发塑性钢,即TRIP (transformation induced plasticity)钢的启发,将ZrO 2 t →m 相变M s 点稳定到比室温稍低,而M d 点比室温高,使其在承载时由应力诱发产生t →m 相变,由于相变产生的体积膨胀效应和形状效应,而吸收大量的能量,从而表现出异常高的韧性。
这就是相变韧化(transformation toughening )的概念。
韧化机理分析: 1.相变韧化(∆K ICT ) ;d i <d<d c 应力诱发相变增韧(∆K ICT ) t →m 相变产生新的表面吸收能量 , 同时相变引起的体积膨胀产生压力。
2. 残余应力增韧 (∆K ICS );• 残余应力→ 闭合阻碍裂纹扩展 →残余应力韧化。
3. 显微裂纹增韧 (∆K ICM );4. 复合韧化机理;第二相颗粒增韧第二相颗粒增韧,第二相增韧主要增韧机理为残余应力增韧、微裂纹增韧、裂纹偏转增韧、颗粒桥联增韧、延性颗粒增韧;增韧的主要影响因素为物理相容性和化学相容性(不生成有害化合物合适的界面结合强度 1. 应力场模型颗粒∆a=a p -a m ;∆T=T P -T R ;α-材料的热膨胀系数,10-6/K ; E -材料的弹性模量,GPa ; ν-材料的泊松比;m ,p 分别代表基体和第二相增强颗粒; T P -基体不产生塑性变形的最高温度,K T R -所讨论的状态下的温度,Kp pmm E E TP ννα2121-++∆⋅∆=基体 r -球形颗粒半径,mm ;R -基体中某点距离球心的距离,mm ∆a 的影响:∆a>0,σr >0,σt <0,环向裂纹(收敛型); ∆a <0,σr <0,σt >0,径向裂纹(发散型) ; ∆a =0 ,P=0 ,σ=0; r>r cr c -自发萌生裂纹的邻界第二相颗粒半径2. 临界第二相颗粒尺寸(r c ) 弹性应变能: 颗粒:基体系统 U S =U P +U m =2πkP 2r 3由U S ≥2γmp 得 ;2γmp -萌生单位面积裂纹所消耗的能量,J3. 残余应力增韧 (d<d C )∆a>0∆a>0☺裂纹停止 ☺裂纹穿过第二相颗粒☺裂纹沿颗粒与基体之间的界面扩展颗粒开裂表面能:γp =2πr 2γsp克服阻力做功: W 1=1/2πPr 2u 1W t =γp + W 1=2πr 2γsp +1/2πPr 2u 1界面开裂表面能:b =4πr 2γint克服阻力做功:W 2=1/3πPr 2u 2W i =γp + W 1=4πr 2γint +1/3πPr 2u 2u 1≈u 2≈2r εb =2⨯10-3r3)(Rr P r ⋅=σ3)(21Rr P t ⋅-=σ32)21(2r E P U P P P νπ-=32)1(rE P U mm m νπ+=p P m m E E k νν2121-++=312)2(-∝kP r c πint<1/2γSP∆a≈0E P>E m 裂纹沿界面扩展。
陶瓷材料的强化影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。
从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能)和裂纹尺寸。
其中E是非结构敏感的,与微观结构有关,但对单相材料,微观结构对的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。
所以强化措施大多从消除缺陷和阻止其发展着手。
值得提出的有下列几个方面。
(1)微晶, 高密度与高纯度为了消除缺陷,提高晶体的完整性,细、密、匀、纯是当前陶瓷发展的一个重要方面。
近年来出现了许多微晶、高密度、高纯度陶瓷,例如用热压工艺制造的陶瓷密度接近理论值,几乎没有气孔,特别值得提出的是各种纤维材料及晶须。
(2)预加应力人为地预加应力,在材料表面造成一层压应力层,就可提高材料的抗张强度。
脆性断裂通常是在张应力作用下,自表面开始,如果在表面造成一层残余压应力层,则在材料使用过程中表面受到拉伸破坏之前首先要克服表面上的残余压应力。
(3)化学强化如果要求表面残余压应力更高,则热韧化的办法就难以做到,此时就要采用化学强化(离子交换)的办法。
这种技术是通过改变表面的化学组成,使表面的摩尔体积比内部的大。
由于表面体积胀大受到内部材料的限制,就产生一种两向状态的压应力。
4)陶瓷材料的增韧所谓增韧就是提高陶瓷材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。
与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。
韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。
几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。
相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。
例如,利用的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。
陶瓷材料相变增韧的原理
陶瓷材料的相变增韧主要是通过晶体结构的相变来实现的。
具体原理如下:
1. 相变:陶瓷材料在某个温度范围内会发生晶体结构的相变。
相变可以使材料的结构变得更加复杂,同时也会引入一定的缺陷,如晶界、孪生和位错等。
2. 形成裂纹桥:在陶瓷材料中,裂纹是主要的断裂路径。
当材料中存在缺陷时(如晶界、孪生和位错),在外力的作用下,裂纹会被这些缺陷所吸引,从而沿着这些缺陷传播。
当裂纹遇到晶界或位错时,它可能会停止或改变方向,形成裂纹桥。
3. 物理/化学效应:相变会引起陶瓷材料的物理和化学性质的变化,从而影响裂纹的传播。
常见的相变增韧机制包括晶界化学反应、位错锁结和晶界弥散效应等。
这些效应可以增加材料的韧性和断裂韧度。
总的来说,相变增韧可以通过引入缺陷来改变材料的断裂路径,从而提高材料的韧性和抗断裂性能。
这种机制对于提高陶瓷材料的应用性能具有重要意义。
陶瓷材料的增韧机理引言:现代陶瓷材料具有耐高温、硬度高、耐磨损、而腐蚀及相对密度轻等许多优良的性能。
但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。
因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。
陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其它吸收能量的机制,这就是陶瓷脆性的本质原因。
人们经过多年努力,已探索出若干韧化陶瓷的途径,包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。
这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出强劲的竞争潜力。
增韧原理:1.1纤维增韧为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。
任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。
对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。
为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。
纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料的断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。
纤维增强陶瓷基复合材料的增韧机制包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹。
1.2 晶须增韧陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体[8]。
陶瓷晶须目前常用的有SiC 晶须,Si3N4晶须和Al2O3晶须。
基体常用的有ZrO2,Si3N4,SiO2,Al2O3和莫来石等。
采用30%(体积分数)B2SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10%左右,为570MPa,断裂韧性为415MPa#m1/2,比纯莫来石提高100%以上。
王双喜等[10]研究发现,在2%(摩尔分数)Y2O32超细料中加入30%(体积分数)的SiC晶须,可以细化2Y2ZrO2材料的晶粒,并且使材料的断裂方式由沿晶断裂为主变为穿晶断裂为主的混合断裂,从而显著提高了复合材料的刚度和韧性。
陶瓷基复合材料增强机制、机理的研究现状及展望陶瓷基复合材料(CMC),一般是指相变增韧、颗粒增韧陶瓷和纤维及晶须增韧陶瓷材料。
这是目前备受重视的新型耐高温结构材料。
本文将介绍陶瓷基复合材料这种新型复合材料的机理和研究现状及展望。
与常规材料和非陶瓷复合材料相比,陶瓷材料具有耐高温、抗腐蚀、超硬度抗氧化和抗烧结等优异性能。
作为高温结构材料,尤其作为航空航天飞行器需要承受极高温度的特殊部位结构用材料具有很大的潜力。
因此世界各国都把结构陶瓷看作是对未来工业革命有重大作用的高技术新材料而给以重点研究和发展并相继开展了陶瓷汽车发动机、柴油机和航空发动机等大规模高温陶瓷热机研究计划,出现了陶瓷热,然而,常规结构陶瓷还存在缺陷和问题,主要是材料的脆性,可靠性不高等,应用于现在科技领域还有许多问题急需研究解决。
陶瓷基复合材料引起人们关注的重要原因就在于他可以改善陶瓷基材料的力学性能,特别是脆性,因此陶瓷基复合材料的发展和研究将成为陶瓷大规模应用计划取得成功的关键。
陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。
陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。
其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。
连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。
金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。
从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。
陶瓷基复合材料增韧机制的研究现状及展望现代陶瓷材料具有耐高温、硬度高、耐磨损、耐腐蚀及相对密度轻等许多优良的性能。
但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。
因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。
陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其他吸收能量的机制,这就是陶瓷脆性的本质原因。
人们经过多年努力,已探索出若干韧化陶瓷的途径包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。
这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出较强劲的竞争潜力。
一陶瓷基复合材料增韧技术1、纤维增韧为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。
任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。
对于脆性集体和纤维来说,允许变形吸收的断裂能也很少。
为了提高这类材料的吸能,只能增加断裂表面,即增加裂纹的扩展路径。
纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。
纤维增强陶瓷基复合材料的增韧剂之包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等。
能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B4C等复相纤维。
韩桂芳等用浆疗法结合真空浸渗工艺。
制备了二维石英纤维增强多孔Si3N4·2SiO2基复合材料,增加浸渗次数虽不能有效提高复合材料强度,但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变成多级拔出。
尹洪峰等利用LPCVI技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明复合材料界面相厚度为119mm时,体积密度为2101~2105g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459MPa,断裂韧性为2010MPa/m1/2,断裂功为25170J/m2.国外学者也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。
ZrO2增韧机制ZrO2增韧机制有许多种:应力诱导相变增韧、相变诱发微裂纹增韧、表面诱发强韧化和微裂纹弯曲及分岔增韧。
1)相变增韧ZrO2 颗粒弥散在其它陶瓷基体中,当基体对ZrO2颗粒有足够的压应力,而ZrO2的颗粒度又足够小,则其相变温度可降至室温以下,这样在室温时ZrO2 仍可以保持四方相。
当材料受到外应力时(张应力),基体对ZrO2 的压抑作用得到松弛,ZrO2 颗粒即发生四方相到单斜相的转变,有7%-9%的体积膨胀,从而导致压应力的产生,不仅抵消了外力形成的张应力,而且阻止了进一步的相变。
这就是ZrO2 的相变增韧。
2)微裂纹增韧部分稳定ZrO2 陶瓷在由四方相向单斜相转变,相变出现了体积膨胀而导致产生微裂纹。
这样由ZrO2 陶瓷在冷却过程中产生的相变诱发微裂纹,以及裂纹在扩展过程中在其尖端区域形成的应力诱发相变导致的微裂纹,都将起着分散主裂纹尖端能量的作用。
从而提高了断裂能,称为微裂纹增韧。
3)表面诱发强韧化表面强化增韧陶瓷材料的断裂往往是从表面拉应力超过断裂应力开始的。
由于ZrO2陶瓷烧结体表面存在基体的约束较少,t-ZrO2很容易转变为m-ZrO2 ,而内部的t-ZrO2由于受基体各方向压力保持亚稳定状态,因此表面的m-ZrO2比内部多,而转变产生的体积膨胀使材料表面产生参与的压应力,可以抵消一部分外加的拉应力,从而造成表面强化增韧。
4)微裂纹弯曲及分岔增韧第九章1.烧结:粉末或非致密性物料经加热到低于其熔点的一定范围内,发生颗粒粘结、结构致密性增加,晶粒长大,强度和化学稳定性提高等物理变化,成为坚实集合体的过程,其中无液相时为固相烧结,有少量液相时为液相烧结。
1.烧结与烧成烧成—包括物料的预热、脱水、分解、多相反应、熔融、溶解、烧结等多种物理和化学变化;烧结—仅指粉料经加热而致密化的简单物理过程,是烧成过程的一部分。
2.烧结与熔融相同点:都是在高温下原子热振动引起。
不同点:熔融通过质点迁移其间距增大,并且全部组元都处于液态;烧结时质点间距变小,且至少有一相是固相;3.烧结与固相反应相同点:二个过程开始进行的温度都远低于熔融温度,在Tamman温度开始,并且过程自始至终至少有一相是固态;不同点:固相反应是一化学反应过程,至少有二组元参加,并发生化学反应最后形成化合物;烧结是一物理过程,可以是单组元或二组元,组元间不发生化学反应。
二氧化锆陶瓷的相变增韧机理和应用一、本文概述本文旨在深入探讨二氧化锆陶瓷的相变增韧机理及其在多个领域的应用。
作为一种重要的工程材料,二氧化锆陶瓷因其出色的物理和化学性质,如高硬度、高耐磨性、良好的化学稳定性和生物相容性等,在航空航天、机械、电子、生物医疗等领域具有广泛的应用前景。
然而,其脆性大的特点限制了其在某些领域的应用。
为了解决这个问题,科研工作者们发现,通过控制二氧化锆陶瓷中的相变过程,可以有效地提高其韧性,这就是所谓的相变增韧机理。
本文将首先介绍二氧化锆陶瓷的基本性质,包括其晶体结构、物理和化学性质等。
然后,将重点阐述相变增韧机理,包括其原理、影响因素以及实现方法。
在此基础上,本文将进一步探讨二氧化锆陶瓷在航空航天、机械、电子、生物医疗等领域的应用,以及在这些应用中如何利用相变增韧机理来提高其性能。
本文还将对二氧化锆陶瓷的未来发展趋势进行展望,以期为其在更多领域的应用提供理论支持和实践指导。
二、二氧化锆陶瓷的基本性质二氧化锆(ZrO₂)陶瓷是一种具有独特物理和化学性质的先进陶瓷材料。
它的主要特点包括高强度、高硬度、高耐磨性、高化学稳定性以及优异的隔热性能。
二氧化锆陶瓷还具有一种特殊的性质,即其在一定条件下可以发生相变,这种性质为二氧化锆陶瓷的增韧提供了可能。
在常温下,二氧化锆陶瓷主要以单斜晶相(m-ZrO₂)存在,这种晶相具有较高的稳定性。
然而,当受到外部应力或温度升高的影响时,部分单斜晶相二氧化锆会转变为四方晶相(t-ZrO₂)。
这种相变过程中,二氧化锆的体积会发生变化,产生微小的应力场,这些应力场可以吸收并分散外部施加的应力,从而阻止裂纹的扩展,提高陶瓷的韧性。
除了相变增韧外,二氧化锆陶瓷还可以通过添加稳定剂(如氧化钇、氧化钙等)来稳定其四方晶相,使其在室温下就能保持较高的韧性。
这种稳定化处理不仅可以提高二氧化锆陶瓷的力学性能,还可以扩大其应用范围。
二氧化锆陶瓷的基本性质为其在增韧机制和实际应用中提供了重要的基础。
说明纤维增强陶瓷基复合材料的增韧机制
纤维增强陶瓷基复合材料的增韧机制主要是通过纤维的拉伸和断裂过程来实现。
首先,纤维的延伸和断裂过程可以吸收和消耗应力,从而阻止裂纹的扩展。
纤维的高拉伸强度和高断裂韧性使得它们能够承受大量的应力,并且这些应力可以从裂纹周围分散到整个复合材料中,从而阻止裂纹扩展。
此外,纤维增强还可以改变复合材料的断裂模式。
传统的陶瓷材料在受到应力时往往会出现脆性断裂,即裂纹迅速扩展并导致材料的完全破坏。
但是,当纤维被引入到陶瓷基质中时,它们可以改变材料的断裂模式,从而将脆性断裂转化为韧性断裂。
纤维的存在可以导致裂纹分支和纤维剪切,从而分散和吸收裂纹的应力,并延缓裂纹的扩展速度,从而使材料具有更好的韧性。
此外,纤维增强材料还可以通过增加界面的强度来提高整体材料的性能。
纤维与陶瓷基质之间的界面承载着传递应力的重要作用。
通过优化界面的结构和化学性质,可以增强纤维与基质之间的相互作用,从而提高材料的综合性能。
综上所述,纤维增强陶瓷基复合材料的增韧机制主要包括纤维的拉伸和断裂过程、改变材料的断裂模式以及增强界面的强度。
这些机制的共同作用使得复合材料具有更高的韧性和更好的抗裂性能。
陶瓷增韧的主要方法及原理一、引言陶瓷是一种脆性材料,易于断裂。
为了增强其韧性,人们采用了多种方法进行改良。
本文将介绍陶瓷增韧的主要方法及原理。
二、陶瓷增韧的方法1. 颗粒增韧法颗粒增韧法是通过在陶瓷基体中添加颗粒来增强其韧性。
这些颗粒可以是金属、氧化物或碳化物等,它们与基体之间形成界面,能够吸收裂纹扩展时产生的应变能,并阻止裂纹扩展。
此外,颗粒还可以提高材料的耐磨性和抗腐蚀性。
2. 界面改性法界面改性法是通过在陶瓷基体与填充物之间形成高强度的化学键或物理键来增强其韧性。
这些填充物可以是纤维、颗粒或片层等,它们与基体之间形成界面,在受力时能够吸收应变能并阻止裂纹扩展。
3. 晶界工程法晶界工程法是通过控制晶界结构和组成来调控陶瓷的韧性。
晶界是不同晶粒之间的界面,其结构和组成对材料的力学性能有重要影响。
通过控制晶界的取向、密度和化学成分等,可以增强陶瓷的韧性。
4. 段隙复合法段隙复合法是通过在陶瓷基体中引入微观孔隙来增强其韧性。
这些孔隙可以是球形、板状或纤维状等,它们与基体之间形成界面,在受力时能够吸收应变能并阻止裂纹扩展。
5. 热处理法热处理法是通过改变陶瓷的组织结构和物理性质来增强其韧性。
常用的方法包括高温固相反应、快速冷却和退火等。
这些方法可以使陶瓷中形成微观结构,从而提高其韧性。
三、陶瓷增韧的原理1. 裂纹阻挡机制颗粒增韧法、界面改性法和段隙复合法都利用了裂纹阻挡机制来增强陶瓷的韧性。
当裂纹遇到填充物或孔隙时,会发生偏转、分支或停止,从而消耗裂纹扩展时产生的应变能,阻止裂纹继续扩展,提高材料的韧性。
2. 晶界阻挡机制晶界工程法利用了晶界阻挡机制来增强陶瓷的韧性。
当裂纹遇到晶界时,会发生偏转、分支或停止,从而消耗裂纹扩展时产生的应变能,阻止裂纹继续扩展,提高材料的韧性。
3. 相变机制热处理法利用了相变机制来增强陶瓷的韧性。
在高温下进行固相反应或快速冷却可以使陶瓷中形成微观结构,从而改变其物理性质和组织结构。
陶瓷作业
姓名:***
学号:********** 班级:0719201
陶瓷韧化机理
陶瓷最致命缺点是脆性,低可靠性和低重复性,这些不足严重影响陶瓷材料的应用范围。
只有改善陶瓷的断裂韧性,提高其可靠性和使用寿命,才能是陶瓷真正成为一种广泛应用的新型材料,因此陶瓷增韧技术一直是陶瓷研究的热点。
陶瓷的断裂主要是由于裂纹扩展导致的,阻止间断裂纹的扩展的方法有三种。
其一为分散裂纹尖端应力;其二为消耗裂纹扩展的能量,增大裂纹扩展所需克服的能垒;最后问转换裂纹扩展的能量。
相变韧化
受相变诱发塑性钢,即TRIP (transformation induced plasticity)钢的启发,将ZrO 2 t →m 相变M s 点稳定到比室温稍低,而M d 点比室温高,使其在承载时由应力诱发产生t →m 相变,由于相变产生的体积膨胀效应和形状效应,而吸收大量的能量,从而表现出异常高的韧性。
这就是相变韧化(transformation toughening )的概念。
韧化机理分析: 1.相变韧化(∆K ICT ) ;
d i <d<d c 应力诱发相变增韧(∆K ICT ) t →m 相变产生新的表面吸收能量 , 同时相变引起的体积膨胀产生压力。
2. 残余应力增韧 (∆K ICS );
• 残余应力→ 闭合阻碍裂纹扩
展 →残余应力韧化。
3. 显微裂纹增韧 (∆K ICM );
4. 复合韧化机理;
第二相颗粒增韧
第二相颗粒增韧,第二相增韧主要增韧机理为残余应力增韧、微裂纹增韧、裂纹偏转增韧、颗粒桥联增韧、延性颗粒增韧;增韧的主要影响因素为物理相容性和化学相容性(不生成有害化合物合适的界面结合强度 1. 应力场模型
颗粒
∆a=a p -a m ;∆T=T P -T R ;
α-材料的热膨胀系数,10-6
/K ; E -材料的弹性模量,GPa ; ν-材料的泊松比;
m ,p 分别代表基体和第二相增强颗粒; T P -基体不产生塑性变形的最高温度,K T R -所讨论的状态下的温度,K
p p
m
m E E T
P ννα2121-+
+∆⋅∆=
基体 r -球形颗粒半径,mm ;
R -基体中某点距离球心的距离,mm ∆a 的影响:
∆a>0,σr >0,σt <0,环向裂纹(收敛型); ∆a <0,σr <0,σt >0,径向裂纹(发散型) ; ∆a =0 ,P=0 ,σ=0; r>r c
r c -自发萌生裂纹的邻界第二相颗粒半径
2. 临界第二相颗粒尺寸(r c ) 弹性应变能: 颗粒:
基体
系统 U S =U P +U m =2πkP 2r 3
由U S ≥2γmp 得 ;2
γmp -萌生单位面积裂纹所消耗的能量,J
3. 残余应力增韧 (d<d C )
∆a>0
∆a>0
☺裂纹停止 ☺裂纹穿过第二相颗粒
☺裂纹沿颗粒与基体之间的界面扩展
颗粒开裂表面能:γp =2πr 2
γsp
克服阻力做功: W 1=1/2πPr 2
u 1
W t =γp + W 1=2πr 2γsp +1/2πPr 2
u 1
界面开裂表面能:b =4πr 2
γint
克服阻力做功:W 2=1/3πPr 2
u 2
W i =γp + W 1=4πr 2γint +1/3πPr 2
u 2
u 1≈u 2≈2r εb =2⨯10-3
r
3
)(R
r P r ⋅=σ3
)(21R
r P t ⋅-=σ3
2)21(2r E P U P P P νπ
-=32
)1(r
E P U m
m m νπ+=p P m m E E k νν2121-+
+=31
2)2(-
∝kP r c π
int<1/2γSP
∆a≈0
E P>E m 裂纹沿界面扩展。
裂纹偏转和裂纹桥联增韧
裂纹偏转:裂纹尖端效应,指裂纹扩展过程中当裂纹遇上偏转元(如增强相、界面等)时所发生倾斜和偏转。
裂纹桥联:裂纹尾部效应,它发生在裂纹尖端,靠桥联元(剂)连接裂纹的两个表面并提供一个使裂纹面相互靠近的应力,即闭合应力,这样导致强度因子随裂纹扩展而增加。
三、延性颗粒增韧
增韧机理:裂纹尖端形成的塑性变形区导致裂纹尖端屏蔽
由延性颗粒形成的延性裂纹桥基体与延性颗粒的α和E值相等时,延性裂纹桥最佳增韧效果。
当α和E值相差足够大时,裂纹偏转绕过金属颗粒,增韧效果较差。
四、纳米颗粒增强增韧
增强颗粒与基体颗粒的尺寸匹配与残余应力是纳米复合材料中的重要增强、增韧机理。
ZrO2/nano-SiC纳米复相陶瓷的透射电镜观察表明,纳米颗粒在基体晶内和晶界分布,纳米颗粒有团聚现象,纳米颗粒对裂纹有钉扎作用。
长纤维韧化
主要增韧机理:
•纤维断裂
•纤维脱粘
•纤维拔出
•裂纹桥联
•裂纹转向(裂纹偏转)
界面解理(纤维脱粘):复合材料在
纤维脱粘后产生了新的表面,因此需要消
耗能量。
(尽管单位面积的表面能很小,
但所有脱粘纤维总的表面能则很大。
)
纤维拔出:指靠近裂纹尖端的纤维在外应力作用下沿着它和基体的界面滑出的现象。
纤维拔出会使裂纹尖端应力松弛,从而减缓了裂纹的扩展。
纤维拔出需外力做功,因此起到增韧作用。
纤维拔出能总大于纤维脱粘能,纤维拔出的增韧效果要比纤维脱粘更强。
裂纹桥联:对于特定位向和分布的纤维,裂纹很难偏转,只能沿着原来的扩展方向继续扩展。
这时紧靠裂纹尖端处的纤维并未断裂,而是在裂纹两岸搭起小桥,使两岸连在一起。
在裂纹表面产生一个压应力,以抵消外加应力的作用,从而使裂纹难以进一步扩展,起到增韧作用。
裂纹偏转:在扩展裂纹尖端应力场中的增强体会导致裂纹发生弯曲从而干扰应力场,导致基体的应力强度降低,起到阻碍裂纹扩展的作用。
随着增强体长径比和体积比增加,裂纹弯曲增韧效果增加。
短纤维及晶须韧化
主要增韧机理:
•晶须拔出
•晶须桥联
•裂纹偏转
由于纤维周围的应力场,基体中的裂纹一般难
以穿过纤维,而仍按原来的扩展方向继续扩展。
它更易绕过纤维并尽量贴近纤维表面扩展,即裂纹偏转。
裂纹偏转可绕着增强体倾斜发生偏转或扭转偏转。
偏转
后裂纹受的拉应力往往低于偏转前的裂纹,而且裂纹的
扩展路径增长,裂纹扩展中需消耗更多的能量因而起到
增韧作用。
增强体的长径比越大,裂纹偏转增韧效果就
越好。
定性分析:
◆当晶须的某一端距离主裂纹的长度小于l po时将
拔出,拔出长度
l≦l po
◆当晶须两端距离主裂纹的长度大于l po时,晶须
在拔出过程中断裂,拔出长度
l≦l po
界面结合强度的作用:
●界面结合强度过高晶须拔出少,断裂多,
韧性提高少,承载作用增强,强度提高多。
●界面结合强度过低,晶须拔出功减少,对
强度、韧性不利。
●有一个最佳界面结合强度。