介质绝缘特性与电气强度
- 格式:ppt
- 大小:1.58 MB
- 文档页数:66
(完整版)⾼电压技术答案1 ⽓体的绝缘特性与介质的电⽓强度1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?1-2简要论述汤逊放电理论。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压⽐负极性时略⾼?1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的?1-5操作冲击放电电压的特点是什么?1-6影响套管沿⾯闪络电压的主要因素有哪些?1-7具有强垂直分量时的沿⾯放电和具有弱垂直分量时的沿⾯放电,哪个对于绝缘的危害⽐较⼤,为什么?1-8某距离4m的棒-极间隙。
在夏季某⽇⼲球温度=30℃,湿球温度=25℃,⽓压=99.8kPa的⼤⽓条件下,问其正极性50%操作冲击击穿电压为多少kV?(空⽓相对密度=0.95)1-9某母线⽀柱绝缘⼦拟⽤于海拔4500m的⾼原地区的35kV变电站,问平原地区的制造⼚在标准参考⼤⽓条件下进⾏1min ⼯频耐受电压试验时,其试验电压应为多少kV?1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?答: 碰撞电离是⽓体放电过程中产⽣带电质点最重要的⽅式。
这是因为电⼦体积⼩,其⾃由⾏程(两次碰撞间质点经过的距离)⽐离⼦⼤得多,所以在电场中获得的动能⽐离⼦⼤得多。
其次.由于电⼦的质量远⼩于原⼦或分⼦,因此当电⼦的动能不⾜以使中性质点电离时,电⼦会遭到弹射⽽⼏乎不损失其动能;⽽离⼦因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减⼩,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表⾯产⽣了⼀个⾃由电⼦,此电⼦到达阳极表⾯时由于过程,电⼦总数增⾄个。
假设每次电离撞出⼀个正离⼦,故电极空间共有(-1)个正离⼦。
这些正离⼦在电场作⽤下向阴极运动,并撞击阴极.按照系数的定义,此(-1)个正离⼦在到达阴极表⾯时可撞出(-1)个新电⼦,则( -1)个正离⼦撞击阴极表⾯时,⾄少能从阴极表⾯释放出⼀个有效电⼦,以弥补原来那个产⽣电⼦崩并进⼊阳极的电⼦,则放电达到⾃持放电。
交流电气强度与绝缘强度引言:交流电是现代生活中不可或缺的能源,而绝缘材料则起到了保护电路和人身安全的重要作用。
本文将深入探讨交流电的电气强度与绝缘强度之间的关系,并分析其在实际工程中的应用。
一、交流电的电气强度交流电的电气强度是指电流在电路中传输的能力,衡量了电流在电路中流动时所经历的电场强度。
通常以伏特/米(V/m)来表示。
1.1 电气强度的定义电气强度是指在给定的电场中,单位电荷受到的力的大小。
在交流电中,这个力可以通过电流和电场强度来表示。
1.2 电气强度的计算电气强度的计算涉及到电场强度和电流的关系。
根据安培定理和库仑定律,可以得到电气强度的计算公式:E = V/d,其中E表示电气强度,V表示电压,d表示电容器两极板之间的距离。
二、绝缘强度的概念与测量方法绝缘强度是指绝缘材料能承受的最大电场强度,衡量了绝缘材料阻止电流通过的能力。
通常以千伏/毫米(kV/mm)来表示。
2.1 绝缘强度的概念绝缘强度是绝缘材料抵抗电击的能力,也是判断绝缘材料品质的重要指标之一。
它取决于绝缘材料的结构和质量,并直接影响电器设备的安全可靠性。
2.2 绝缘强度的测量方法测量绝缘强度的方法主要有直流高电压法、交流高电压法和浸水法等。
其中,交流高电压法是最常用的方法,可通过设备将高压交流电施加到被测绝缘材料上,观察其耐受能力。
三、交流电气强度与绝缘强度的关系交流电气强度和绝缘强度之间存在一定的关系,下面将从两个方面进行分析:交流电场对绝缘材料的影响和绝缘材料对交流电流的耗损。
3.1 交流电场对绝缘材料的影响交流电场对绝缘材料的影响主要表现在两个方面:电介质极化和电介质击穿。
3.1.1 电介质极化交流电场中的高频电压会引起绝缘材料内部离子的定向运动,使其极化。
极化过程中,绝缘材料内部会产生极化电流,导致电能的损耗,增加了电流的阻抗。
3.1.2 电介质击穿当交流电场强度过大时,绝缘材料可能会发生击穿现象,导致电路短路。
这是因为电场强度超过了绝缘材料的绝缘强度极限,使绝缘材料失去了绝缘的作用。
绝缘材料的电气性能绝缘材料的电气性能主要表现在电场作用下材料的导电性能、介电性能及绝缘强度。
它们分别以绝缘电阻率ρ(或电导γ)、相对介电常数εr、介质损耗角tanδ及击穿强度EB四个参数来表示。
(1)绝缘电阻率和绝缘电阻任何电介质都不行能是肯定的绝缘体,总存在一些带电质点,主要为本征离子和杂质离子。
在电场的作用下,它们可作有方向的运动,形成漏导电流,通常又称为泄漏电流。
电阻支路的电流Ii即为漏导电流;流经电容和电阻串联支路的电流Ia称为汲取电流,是由缓慢极化和离子体积电荷形成的电流;电容支路的电流IC称为充电电流,是由几何电容等效应构成的电流。
①在正常工作时(稳态),漏导电流打算了绝缘材料的导电性,因此,漏导支路的电阻越大,说明材料的绝缘性能越好。
②温度、湿度、杂质含量、电磁场强度的增加都会降低电介质材料的电阻率。
(2)介电常数介电常数是表明电介质极化特征的性能参数。
介电常数愈大,电介质极化力量愈强,产生的束缚电荷就愈多。
束缚电荷也产生电场,且该电场总是减弱外电场的。
现用电容器来说明介电常数的物理意义。
设电容器极板间为真空时,其电容量为Co,而当极板间布满某种电介质时,其电容量变为C,则C与Co的比值即该电介质的相对介电常数,即:在填充电介质以后,由于电介质的极化,使靠近电介质表面处消失了束缚电荷,与其对应,在极板上的自由电荷也相应增加,即填充电介质之后,极板上容纳了更多的自由电荷,说明电容被增大。
因此,可以看出,相对介电常数总是大于1的。
绝缘材料的介电常数受电源频率、温度、湿度等因素而产生变化。
频率增加,介电常数减小。
温度增加,介电常数增大;但当温度超过某一限度后,由于热运动加剧,极化反而困难一些,介电常数减小。
湿度增加,电介质的介电常数明显增加,因此,通过测量介电常数,能够推断电介质受潮程度。
大气压力对气体材料的介电常数有明显影响,压力增大,密度就增大,相对介电增大。
(3)介质损耗在沟通电压作用下,电介质中的部分电能不行逆地转变成热能,这部分能量叫做介质损耗。
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
绝缘材料的电气强度绝缘材料的电气强度是指材料在电场作用下能够承受的电压强度,也即是材料的绝缘性能。
电气强度是评价绝缘材料质量的重要指标之一,它直接影响着绝缘材料在电力系统中的安全可靠运行。
本文将从绝缘材料的定义、常见绝缘材料的电气强度以及影响电气强度的因素三个方面进行阐述。
绝缘材料是指不导电或电阻很大的材料,主要用于电力设备和电力系统中的绝缘保护。
绝缘材料的电气强度是指在特定条件下,材料能够承受的最大电场强度。
电场强度是指单位正电荷所受到的力的大小,通常以V/m(伏/米)为单位。
电气强度是指在规定的条件下,绝缘材料能够承受的最大电场强度,通常以kV/mm(千伏/毫米)为单位。
常见的绝缘材料包括橡胶、塑料、纸、玻璃等。
不同的绝缘材料具有不同的电气强度。
以橡胶为例,橡胶是一种有机高分子化合物,具有良好的弹性和绝缘性能。
橡胶的电气强度通常在10~20 kV/mm之间。
而塑料是一种常见的绝缘材料,例如聚乙烯、聚氯乙烯等,其电气强度一般在15~30 kV/mm之间。
纸作为一种绝缘材料,在电气强度方面相对较低,一般在5~10 kV/mm之间。
玻璃作为一种无机非金属材料,具有优异的绝缘性能,其电气强度可达到20~40 kV/mm以上。
绝缘材料的电气强度受到多种因素的影响。
首先是材料的性质。
绝缘材料的性质包括电性能、热性能、机械性能等。
材料的电性能主要包括介电常数和介质损耗因子。
介电常数越大,材料的电气强度越低;介质损耗因子越小,材料的电气强度越高。
其次是材料的厚度。
通常情况下,绝缘材料的电气强度随着厚度的增加而增加。
但当厚度超过一定范围时,电气强度可能会下降,这是因为材料内部可能存在疏松、气泡等缺陷,导致电场集中,从而使电气强度降低。
此外,温度也是影响绝缘材料电气强度的重要因素。
温度升高会导致绝缘材料的电气强度下降,这是因为温度升高会加速材料内部分子的热运动,增加绝缘材料的导电性。
最后,外界环境因素也会对绝缘材料的电气强度产生影响,例如湿度、污秽程度等。
第1章 气体得绝缘特性与介质得电气强度1-1气体放电过程中产生带电质点最重要得方式就是什么,为什么?答: 碰撞电离就是气体放电过程中产生带电质点最重要得方式。
这就是因为电子体积小,其自由行程(两次碰撞间质点经过得距离)比离子大得多,所以在电场中获得得动能比离子大得多。
其次.由于电子得质量远小于原子或分子,因此当电子得动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞得中性质点相近,每次碰撞都会使其速度减小,影响其动能得积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d eα个。
假设每次电离撞出一个正离子,故电极空间共有(d eα-1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ得定义,此(d e α-1)个正离子在到达阴极表面时可撞出γ(d e α-1)个新电子,则(d e α-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极得电子,则放电达到自持放电。
即汤逊理论得自持放电条件可表达为r(d e α-1)=1或γd e α=1。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现得电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压得逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多得电子崩。
当电子崩达到棒极后,其中得电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
于就是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近得电场,而略为加强了外部空间得电场。
这样,棒极附近得电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表面形成得电子立即进入强电场区,造成电子崩。
当电子崩中得电子离开强电场区后,电子就不再能引起电离,而以越来越慢得速度向阳极运动。
电气间隙的影响因素
电气间隙是指两个导体或电路之间的距离,在电气工程中具有重要的影响。
以下是一些影响电气间隙的因素:
1. 电压等级:电压等级越高,对电气间隙的要求也越高。
高电压下,电气间隙需要足够大以避免放电和击穿。
2. 介质特性:介质的绝缘性能对电气间隙有直接影响。
不同的介质有不同的介电强度和击穿强度,会影响电气间隙的设计。
3. 温度:温度对电气间隙的绝缘性能有影响。
高温环境下,介质的绝缘性能可能下降,需要更大的电气间隙来保持安全。
4. 湿度:湿度对电气间隙的绝缘性能同样有影响。
高湿度环境下,电气间隙可能容易出现漏电或击穿。
5. 材料选择:导体和绝缘材料的选择也会影响电气间隙。
不同的材料具有不同的导电性和绝缘性能,需要根据具体要求选择合适的材料。
6. 环境条件:电气间隙的设计还需要考虑环境条件,如气体、污染物、振动等因素。
这些条件可能会影响电气间隙的稳定性和可靠性。
以上是一些常见的影响电气间隙的因素,具体的设计需要根据实际情况和应用要求进行考虑。
第三章固体的绝缘特性与介质的电气强度3-1什么叫电介质的极化?极化强度是怎么定义的?3-2固体无机电介质中,无机晶体、无机玻璃和陶瓷介质的损耗主要由那些损耗组成?3-3固体介质的表面电导率除了介质的性质之外,还与那些因素有关?它们各有什么影响?3-4固体介质的击穿主要有那几种形式?它们各有什么特征?3-5局部放电引起电介质劣化、损伤的主要原因有那些?3-6聚合物电介质的树枝化形式主要有那几种?它们各是什么原因形成的?3-7均匀固体介质的热击穿电压是如何确定的?3-8试比较气体、液体和固体介质击穿过程的异同。
3-1什么叫电介质的极化?极化强度是怎么定义的?答:电介质的极化是电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。
电介质的极化强度可用介电常数的大小来表示,它与该介质分子的极性强弱有关,还受到温度、外加电场频率等因素的影响。
3-2固体无机电介质中,无机晶体、无机玻璃和陶瓷介质的损耗主要由哪些损耗组成? 答:(1)无机晶体介质只有位移极化,其介质损耗主要来源于电导;(2)无机玻璃的介质损耗可以认为主要由三部分组成:电导损耗、松弛损耗和结构损耗;(3)陶瓷介质可分为含有玻璃相和几乎不含玻璃相两类,第一类陶瓷是含有大量玻璃相和少量微晶的结构,其介质损耗主要由三部分组成:玻璃相中离子电导损耗、结构较松的多晶点阵结构引起的松弛损耗以及气隙中含水引起的界面附加损耗,tan δ相当大。
第二类是由大量的微晶晶粒所组成,仅含有极少量或不含玻璃相,通常结晶相结构紧密,tan δ比第一类陶瓷小得多。
3-3固体介质的表面电导率除了介质的性质之外,还与哪些因素有关?它们各有什么影响?答:介质的表面电导率s γ不仅与介质的性质有关,而且强烈地受到周围环境的湿度、温度、表面的结构和形状以及表面粘污情况的影响。
(1)电介质表面吸附的水膜对表面电导率的影响由于湿空气中的水分子被吸附于介质的表面,形成一层很薄的水膜。