介质绝缘特性与电气强度
- 格式:ppt
- 大小:1.58 MB
- 文档页数:66
(完整版)⾼电压技术答案1 ⽓体的绝缘特性与介质的电⽓强度1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?1-2简要论述汤逊放电理论。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压⽐负极性时略⾼?1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的?1-5操作冲击放电电压的特点是什么?1-6影响套管沿⾯闪络电压的主要因素有哪些?1-7具有强垂直分量时的沿⾯放电和具有弱垂直分量时的沿⾯放电,哪个对于绝缘的危害⽐较⼤,为什么?1-8某距离4m的棒-极间隙。
在夏季某⽇⼲球温度=30℃,湿球温度=25℃,⽓压=99.8kPa的⼤⽓条件下,问其正极性50%操作冲击击穿电压为多少kV?(空⽓相对密度=0.95)1-9某母线⽀柱绝缘⼦拟⽤于海拔4500m的⾼原地区的35kV变电站,问平原地区的制造⼚在标准参考⼤⽓条件下进⾏1min ⼯频耐受电压试验时,其试验电压应为多少kV?1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?答: 碰撞电离是⽓体放电过程中产⽣带电质点最重要的⽅式。
这是因为电⼦体积⼩,其⾃由⾏程(两次碰撞间质点经过的距离)⽐离⼦⼤得多,所以在电场中获得的动能⽐离⼦⼤得多。
其次.由于电⼦的质量远⼩于原⼦或分⼦,因此当电⼦的动能不⾜以使中性质点电离时,电⼦会遭到弹射⽽⼏乎不损失其动能;⽽离⼦因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减⼩,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表⾯产⽣了⼀个⾃由电⼦,此电⼦到达阳极表⾯时由于过程,电⼦总数增⾄个。
假设每次电离撞出⼀个正离⼦,故电极空间共有(-1)个正离⼦。
这些正离⼦在电场作⽤下向阴极运动,并撞击阴极.按照系数的定义,此(-1)个正离⼦在到达阴极表⾯时可撞出(-1)个新电⼦,则( -1)个正离⼦撞击阴极表⾯时,⾄少能从阴极表⾯释放出⼀个有效电⼦,以弥补原来那个产⽣电⼦崩并进⼊阳极的电⼦,则放电达到⾃持放电。
交流电气强度与绝缘强度引言:交流电是现代生活中不可或缺的能源,而绝缘材料则起到了保护电路和人身安全的重要作用。
本文将深入探讨交流电的电气强度与绝缘强度之间的关系,并分析其在实际工程中的应用。
一、交流电的电气强度交流电的电气强度是指电流在电路中传输的能力,衡量了电流在电路中流动时所经历的电场强度。
通常以伏特/米(V/m)来表示。
1.1 电气强度的定义电气强度是指在给定的电场中,单位电荷受到的力的大小。
在交流电中,这个力可以通过电流和电场强度来表示。
1.2 电气强度的计算电气强度的计算涉及到电场强度和电流的关系。
根据安培定理和库仑定律,可以得到电气强度的计算公式:E = V/d,其中E表示电气强度,V表示电压,d表示电容器两极板之间的距离。
二、绝缘强度的概念与测量方法绝缘强度是指绝缘材料能承受的最大电场强度,衡量了绝缘材料阻止电流通过的能力。
通常以千伏/毫米(kV/mm)来表示。
2.1 绝缘强度的概念绝缘强度是绝缘材料抵抗电击的能力,也是判断绝缘材料品质的重要指标之一。
它取决于绝缘材料的结构和质量,并直接影响电器设备的安全可靠性。
2.2 绝缘强度的测量方法测量绝缘强度的方法主要有直流高电压法、交流高电压法和浸水法等。
其中,交流高电压法是最常用的方法,可通过设备将高压交流电施加到被测绝缘材料上,观察其耐受能力。
三、交流电气强度与绝缘强度的关系交流电气强度和绝缘强度之间存在一定的关系,下面将从两个方面进行分析:交流电场对绝缘材料的影响和绝缘材料对交流电流的耗损。
3.1 交流电场对绝缘材料的影响交流电场对绝缘材料的影响主要表现在两个方面:电介质极化和电介质击穿。
3.1.1 电介质极化交流电场中的高频电压会引起绝缘材料内部离子的定向运动,使其极化。
极化过程中,绝缘材料内部会产生极化电流,导致电能的损耗,增加了电流的阻抗。
3.1.2 电介质击穿当交流电场强度过大时,绝缘材料可能会发生击穿现象,导致电路短路。
这是因为电场强度超过了绝缘材料的绝缘强度极限,使绝缘材料失去了绝缘的作用。
绝缘材料的电气性能绝缘材料的电气性能主要表现在电场作用下材料的导电性能、介电性能及绝缘强度。
它们分别以绝缘电阻率ρ(或电导γ)、相对介电常数εr、介质损耗角tanδ及击穿强度EB四个参数来表示。
(1)绝缘电阻率和绝缘电阻任何电介质都不行能是肯定的绝缘体,总存在一些带电质点,主要为本征离子和杂质离子。
在电场的作用下,它们可作有方向的运动,形成漏导电流,通常又称为泄漏电流。
电阻支路的电流Ii即为漏导电流;流经电容和电阻串联支路的电流Ia称为汲取电流,是由缓慢极化和离子体积电荷形成的电流;电容支路的电流IC称为充电电流,是由几何电容等效应构成的电流。
①在正常工作时(稳态),漏导电流打算了绝缘材料的导电性,因此,漏导支路的电阻越大,说明材料的绝缘性能越好。
②温度、湿度、杂质含量、电磁场强度的增加都会降低电介质材料的电阻率。
(2)介电常数介电常数是表明电介质极化特征的性能参数。
介电常数愈大,电介质极化力量愈强,产生的束缚电荷就愈多。
束缚电荷也产生电场,且该电场总是减弱外电场的。
现用电容器来说明介电常数的物理意义。
设电容器极板间为真空时,其电容量为Co,而当极板间布满某种电介质时,其电容量变为C,则C与Co的比值即该电介质的相对介电常数,即:在填充电介质以后,由于电介质的极化,使靠近电介质表面处消失了束缚电荷,与其对应,在极板上的自由电荷也相应增加,即填充电介质之后,极板上容纳了更多的自由电荷,说明电容被增大。
因此,可以看出,相对介电常数总是大于1的。
绝缘材料的介电常数受电源频率、温度、湿度等因素而产生变化。
频率增加,介电常数减小。
温度增加,介电常数增大;但当温度超过某一限度后,由于热运动加剧,极化反而困难一些,介电常数减小。
湿度增加,电介质的介电常数明显增加,因此,通过测量介电常数,能够推断电介质受潮程度。
大气压力对气体材料的介电常数有明显影响,压力增大,密度就增大,相对介电增大。
(3)介质损耗在沟通电压作用下,电介质中的部分电能不行逆地转变成热能,这部分能量叫做介质损耗。
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。