电介质的电气强度
- 格式:ppt
- 大小:569.00 KB
- 文档页数:22
一.电介质的电气强度「一」气体放电的基本物理过程㈠带电粒子的产生和消失⑴表征运动的物理量①平均自由行程长度:单位行程中的碰撞次数Z的倒数(电子最大)②带电粒子的迁移率:k=v/E (电子大于离子)③扩散:电子大于离子⑵带电粒子的产生(电离)①光电离②热电离③碰撞电离(主要由电子完成)④表面电离(金属表面电离比空间电离更容易发生)◇阴级表面电离可在下列情况发生:⒈正离子碰撞阴级表面⒉光电子发射⒊热电子发射⒋强场发射⑶附着:电子与中性分子结合成负离子。
气体中带电粒子数不变。
使自由电子数减少⑷带电粒子消失:①带电粒子定向运动②扩散现象③复合㈡气体放电过程*电子碰撞电离系数α:一个电子沿电场方向运动1cm的行程中所完成的碰撞电离次数平均值*γ过程:正离子碰撞阴级表面时产生的二次自由电子数自持放电条件:⑴巴申曲线: T恒定:Ub=f(pd)T非恒定:Ub=F(δd)⑵汤逊理论:⑶流注理论:*初始阶段,气体放电以碰撞电离和电子崩的形式*均匀电场,自持放电条件αd≈20◆汤逊理论与流注理论比较⑷不均匀电场放电过程①划分:电场不均匀系数f=E/Eavf=1 均匀电场f<2稍不均匀电场f>4极不均匀②电晕放电:*现象:淡紫色辉光,嘶嘶噪声,臭氧气味*危害:电晕损耗,谐波电流,非正弦电压,无线电干扰,可闻噪声,空气的有机合成*预防途径:设法限制和降低导线表面场强扩径导线或空心导线或分裂导线③极性效应起晕电压:U正棒-负板>U负棒-正板击穿电压:U正棒-负板<U负棒-正板*输电线常处于不均匀电场中,击穿发生在正极性半周,进行外绝缘冲击高压实验时,施加正极性冲击电压「二」气体介质的电气强度㈠不同电场下气隙击穿特性⑴均匀电场:①放电即击穿,无电晕,无极性,击穿时间短②击穿场强约为30kv/cm③直流,工频,冲击电压作用下击穿电压均相同,分散性小,β≈1⑵稍不均匀电场:①放电即击穿,无稳定电晕,极性效应不明显②直流,工频,冲击电压作用下击穿电压近似相同,分散性小,β≈1③实例:*球间隙:d<D/4 电场均匀d>D/4电场不均匀一般在d≦D/2范围内工作*同轴圆筒r/R<0.1 不均匀r/R>0.1 稍不均匀⑶极不均匀电场:①直流电压:棒板:击穿电压:正棒-负板<棒-棒<负棒-正板棒棒:无明显极性效应②工频交流:*击穿在正极性半周峰值附近*击穿电压:棒-棒(更均匀)>棒-板*增加气隙长度能提高"棒-板"气隙平均击穿场强,但存在饱和现象③雷电冲击电压*冲击系数β>1,分散性大*击穿通常在波尾*击穿电压:正棒-负板<棒-棒<负棒-正板④操作冲击电压1.放电时间tb*上升时间t1:所加电压从0-Us(静态击穿电压)*统计时延ts:从t1到气隙中出现第一个有效电子*放电形成时延tf:出现有效电子到间隙击穿tb=t1+ts+tftlag=ts+tf(放电时延)2.冲击电压波形标准化a标准雷电冲击电压全波:非周期性双指数衰减波(1.2/50μs)b标准雷电冲击电压截波:1.2/2~5μsc标准操作冲击电压波:非周期性双指数波(250/2500μs)3.50%冲击击穿电压*均匀稍不均匀场:U50%≈Us β≈1*极不均匀场β>14.伏秒特性*电压不高,击穿在波尾,取峰值为冲击电压*电压较高,击穿在波头,取瞬时值为冲击电压*取50%伏秒特性曲线来表征气隙冲击击穿特性*均匀电场伏秒特性平缓,不均匀电场伏秒特性陡峭5.击穿特性*220kv的超高压输电系统,按操作过电压下电气特性进行绝缘设计*各种类型电压中,以操作冲击电压下的电气强度为最小*极不均匀电场长气隙的操作冲击击穿特性具有显著"饱和"特征(正棒负板最严重) *分散性远大于雷电冲击电压(伏秒特性带宽)㈡不同大气条件下击穿特性气压↑,空气密度↑,温度↓,湿度↑ Ub↑湿度越大,水电负性捕捉自由电子数越多,极不均匀场中影响明显㈢沿面放电与污闪事故⑴沿面放电:表面闪络电压要比固体介质本身击穿电压低。
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。