和、差、积、商的求导法则
- 格式:ppt
- 大小:786.00 KB
- 文档页数:35
函数导数四则运算法则
函数导数的四则运算法则是指当对函数的四则运算时,其导数的运算规则。
函数导数四则运算法则是微积分中的一个重要概念,在进行函数的计算时,以及在实际应用中,都有着重要的作用。
函数导数四则运算法则一共有四条,分别是:
1、加法法则:如果f(x)和g(x)是两个函数,那么它们的
和的导数是:f'(x)+g'(x)。
2、减法法则:如果f(x)和g(x)是两个函数,那么它们的
差的导数是:f'(x)-g'(x)。
3、乘法法则:如果f(x)和g(x)是两个函数,那么它们的
积的导数是:f(x)g'(x)+g(x)f'(x)。
4、除法法则:如果f(x)和g(x)是两个函数,那么它们的
商的导数是:[f'(x)g(x)-f(x)g'(x)]/[g(x)]^
2。
这四条函数导数四则运算法则也就是所谓的求导法则,是在函数求导中常用到的,它们分别表示了当函数进行加减乘除运算时,其导数的计算方法。
这些法则可以帮助我们更加简便、快速地求出函数的导数,从而解决函数求导中的问题。
函数导数的四则运算法则在实际应用中也有着重要的作用,比如在机器研究中,梯度下降法就使用了这些法则,它可以用来求解机器研究的复杂优化问题;此外,它还可以应用于统计学中的概率论,例如统计推断中的梯度下降法也使用了函数导数四则运算法则。
总之,函数导数四则运算法则是微积分中的一个重要概念,在数学计算、实际应用等方面都有着重要的作用,因此,研究这些法则也是十分重要的。
§2.2 导数的运算法则与基本公式一、导数的和、差、积、商运算法则如果函数()u x 、()v x 在x 处都可导,则它们的和、差、积、商在x 处也可导;(1) [()()]()()u x v x u x v x '''±=±;(2) [()()]()()()()u x v x u x v x u x v x '''⋅=+;(3) 2()()()()()()[()]u x u x v x u x v x v x v x '''⎛⎫-= ⎪⎝⎭(()0)v x ≠;推广到多个函数情形:设有n 个函数1()u x 、2()u x 、…、()n u x 都可导,则:(1)1212[()()()]()()()n n u x u x u x u x u x u x ''''±±±=±±±(2)12121212[()()()]()()()()()()()()()n n n n u x u x u x u x u x u x u x u x u x u x u x u x ''''=+++(3)[()]()ku x ku x ''=(k 为常数)定理2.3 设函数1()x f y -=在某个开区间内单调可导,且1[()]0f y -'≠,则反函数()y f x =在对应区间内可导,且11()[()]f x f y -'='.证明:0001011()lim lim lim 11[()]lim x x x y y f x x xx y yx f y y∆→∆→∆→-∆→∆'===∆∆∆∆∆==∆'∆二、基本初等函数的求导公式1.常数的导数:()0c '= (c 为常数)证明:()f x c =00()()()limlim 0x x f x x f x f x xc c x∆→∆→+∆-'=∆-==∆2.幂函数的导数:1()n n x nx -'= (n 为常数)证明:()nf x x =,0()()lim nnx x x xf x x∆→+∆-'=∆110()lim nn n n nnn nx C x C x x C x xx-∆→+∆++∆-=∆ 112210lim[()]n n n n nnnx C xC xx C x ---∆→=+∆++∆ 1n nx -=例1 求4sin y x x =+的导数.解:4(sin )y x x ''=+4()(sin )x x ''=+.34cos x x =+.例2 求5cos y x x =的导数.解:5(cos )y x x ''=55()cos (cos )x x x x ''=+.455cos sin x x x x =-.例3 求2sin xy x =的导数.解:2sin ()xy x''=2222(sin )sin ()()x x x x x ''-=. 24cos 2sin x x x x x-=. 3cos 2sin x x x x-=.例4 求23313y x x=--的导数.解:2333y xx -=--233(3)y x x -''=--.233()()(3)x x -'''=--.134233x x --=--.例5 求232x y x -=的导数.解:312223232x y x x x--==- 3122(32)y x x -''=-.3122(3)(2)x x -''=-.31223()2()x x -''=-.312292x x -=+.例6 求21xy x=+的导数. 解:2()1xy x''=+2222()(1)(1)(1)x x x x x ''+-+=+. 22212(1)x x x x +-⋅=+. 2221(1)x x -=+.3.指数函数x y a =(0,1a a >≠)的导数:()ln x x a a a '=()x xe e '= 001lim lim x x x x y a y a x x∆∆→∆→∆-'==∆∆. 证明:(1)x x x x x y a a a a +∆∆∆=-=-令1xt a ∆=-,有log (1)a x t ∆=+ 当0x ∆→时,有0t →1001lim lim log (1)log (1)x x t t a a t t y a a t t →→'==++. 1011lim ln log log (1)t x x x t a a a a a a e t →===+.4.对数函数log a y x =(0,1a a >≠)的导数:1(log )ln a x x a '= 1(ln )x x'= 证明:log a y x =的反函数为y x a =(0,1a a >≠),由定理2.3可得111()ln ln y y y a a a x a'==='.例7 求33x xy x e =-+的导数. 解:3(3)x xy x e ''=-+3()(3)()x x x e '''=-+. 233ln3x xx e =-+.例8 求2x y x e =的导数. 解:2()x y xe ''= 22()()x x x e x e ''=+.22x x xe x e=+. (2)x xe x =+.例9 求ln x y x=的导数. 解:2ln (ln )ln ()x x x x x y x x''-⋅''== 122ln 1ln xx x x x x ⋅--==.例10 求22log y x x =的导数. 解:22(log )y x x ''= 2222()log (log )x x x x ''=+. 2212log ln 2x x x x =+. 22log ln 2x x x =+.5.三角函数的导数: 1.(sin )cos x x '=2.(cos )sin x x '=-3.221(tan )sec cos x x x '== 4.221(cot )csc sin x x x '=-=-5.(sec )sec tan x x x '=⋅6.(csc )csc cot x x x '=-⋅证明:1.(sin)cosx x'=2.(cos)sinx x'=-参考前面例题.3.sin(tan)()cosxxx''=2(sin)cos sin(cos)cosx x x xx''-=22222cos sin1seccos cosx xxx x+===.同理可证(请同学自己证明) 4.21(cot )csc sin x x x'=-=- 5.(sec )sec tan x x x '=⋅ 6.(csc )csc cot x x x '=-⋅例11 求sin cos y x x x =+的导数. 解:(sin cos )y x x x ''=+(sin )(cos )x x x ''=+. sin (sin )sin x x x x x ''=+-. sin cos sin x x x x =+-. cos x x =.6.反三角函数的导数: 1.21(sin )1arc x x '=-(11x -<<)2.21(cos )1arc x x '=--( 11x -<<) 3.21(tan )1arc x x'=+ 4.21(cot )1arc x x '=-+证明:sin y arc x =的反函数是sin x y =由定理2.3 1(sin )(sin )y arc x y ''==' (sin )cos ()22y y y ππ'=-<<. 而22cos 1sin 1y y x =-=- 所以21(sin )1arc x x '=-.其余反三角函数求导公式同理可证(请同学自己证明).例12 求2arctan 1x y x =+的导数. 解:22221(1)arctan 21(1)x x x x y x +-⋅+'=+ 2212arctan (1)x x x -=+.。