函数的导数公式与和差法则
- 格式:pptx
- 大小:696.29 KB
- 文档页数:16
导数的基本公式及运算法则导数是微积分中的一个重要概念,描述了函数在其中一点的变化率。
导数的基本公式和运算法则可以帮助我们求解各种函数的导数,进而解决相关的求导问题。
下面将详细介绍导数的基本公式和运算法则。
1.基本公式:-常数函数:如果f(x)=c是一个常数函数,那么它的导数为0,即f'(x)=0。
- 幂函数:对于幂函数f(x) = x^n,其中n是实数,那么它的导数为f'(x) = nx^(n-1)。
- 指数函数:对于指数函数f(x) = a^x,其中a是正实数且不等于1,那么它的导数为f'(x) = a^x * ln(a)。
- 对数函数:对于对数函数f(x) = log_a(x),其中a是正实数且不等于1,那么它的导数为f'(x) = 1 / (x * ln(a))。
- 三角函数:对于三角函数sin(x)、cos(x)、tan(x),它们的导数分别为cos(x)、-sin(x)、sec^2(x)。
- 反三角函数:对于反三角函数asin(x)、acos(x)、atan(x),它们的导数分别为1 / sqrt(1 - x^2)、-1 / sqrt(1 - x^2)、1 / (1 +x^2)。
2.运算法则:-常数法则:如果f(x)=c是一个常数函数,那么对于任何x,有f'(x)=0。
-基本运算法则:a.和法则:对于函数f(x)=u(x)+v(x),其中u(x)和v(x)是可导函数,那么它的导数为f'(x)=u'(x)+v'(x)。
b.差法则:对于函数f(x)=u(x)-v(x),其中u(x)和v(x)是可导函数,那么它的导数为f'(x)=u'(x)-v'(x)。
c.乘法法则:对于函数f(x)=u(x)*v(x),其中u(x)和v(x)是可导函数,那么它的导数为f'(x)=u'(x)*v(x)+u(x)*v'(x)。
导数公式导数运算法则导数是微积分中的一个重要概念,用于描述函数在其中一点的变化速率。
导数的计算涉及到一系列的运算法则,这些法则可以帮助我们更快、更方便地求取函数的导数。
在以下讨论中,假设函数f(x)和g(x)是可导函数,c是常数。
一、四则运算法则1.加法法则:(f+g)'(x)=f'(x)+g'(x)这个法则表示如果一个函数是两个可导函数的和,那么它的导数等于这两个函数的导数之和。
2.减法法则:(f-g)'(x)=f'(x)-g'(x)同样地,如果一个函数是两个可导函数的差,那么它的导数等于这两个函数的导数之差。
3.乘法法则:(fg)'(x) = f'(x)g(x) + f(x)g'(x)这个法则说明了如果一个函数是两个可导函数的乘积,那么它的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数。
4.除法法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^2这个法则表示,如果一个函数是一个可导函数除以另一个可导函数,那么它的导数等于分子函数的导数乘以分母函数,减去分子函数乘以分母函数的导数,再除以分母函数的平方。
二、连锁法则1.复合函数的导数:如果y=f(u)和u=g(x)是可导函数,那么复合函数y=f(g(x))的导数可以通过以下公式计算:dy/dx = dy/du * du/dx这个公式称为连锁法则,它表示了复合函数的导数与内部函数和外部函数的导数之间的关系。
三、常用函数的导数1.幂函数:d(x^n)/dx = nx^(n-1)这个法则表示了幂函数的导数,其中n是任意实数。
2.指数函数:d(e^x)/dx = e^x这个法则说明指数函数e^x的导数是它本身。
3.对数函数:d(ln(x))/dx = 1/x这个法则说明自然对数函数ln(x)的导数是1除以x。
导数基本公式和运算法则导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
导数的基本公式和运算法则是学习微积分的基础,下面我们来详细介绍一下。
一、导数的定义设函数y=f(x),在点x0处有极限lim (x→x0) [f(x)-f(x0)]/(x-x0)如果该极限存在,则称函数f(x)在点x0处可导,其导数为f'(x0)=lim (x→x0) [f(x)-f(x0)]/(x-x0)二、导数的基本公式1. 常数函数的导数为0(d/dx) c = 02. 幂函数的导数(d/dx) x^n = nx^(n-1)3. 指数函数的导数(d/dx) e^x = e^x4. 对数函数的导数(d/dx) ln x = 1/x5. 三角函数的导数(d/dx) sin x = cos x(d/dx) cos x = -sin x(d/dx) tan x = sec^2 x(d/dx) cot x = -csc^2 x三、导数的运算法则1. 常数倍法则如果f(x)在点x0处可导,则kf(x)在点x0处也可导,且有[d/dx (kf(x))]x=x0 = k[d/dx f(x)]x=x02. 和差法则如果f(x)和g(x)在点x0处可导,则f(x)+g(x)和f(x)-g(x)在点x0处也可导,且有[d/dx (f(x)+g(x))]x=x0 = [d/dx f(x)]x=x0 + [d/dx g(x)]x=x0[d/dx (f(x)-g(x))]x=x0 = [d/dx f(x)]x=x0 - [d/dx g(x)]x=x03. 乘积法则如果f(x)和g(x)在点x0处可导,则f(x)g(x)在点x0处也可导,且有[d/dx (f(x)g(x))]x=x0 = f(x0)[d/dx g(x)]x=x0 + g(x0)[d/dx f(x)]x=x04. 商法则如果f(x)和g(x)在点x0处可导,且g(x0)≠0,则f(x)/g(x)在点x0处也可导,且有[d/dx (f(x)/g(x))]x=x0 = [g(x0)[d/dx f(x)]x=x0 - f(x0)[d/dx g(x)]x=x0]/[g(x0)]^2以上就是导数的基本公式和运算法则,它们是微积分学习的基础,掌握好这些公式和法则,可以帮助我们更好地理解和应用微积分知识。
导数的运算法则及复合函数的导数导数是微积分中非常重要的概念,它描述了一个函数在其中一点的变化率。
在实际应用中,我们常常需要对函数进行一系列运算,包括加减乘除和复合函数等,了解导数的运算法则以及复合函数的导数可以帮助我们更好地进行运算和解决实际问题。
1.导数的运算法则:(1)和差法则:设函数f(x)和g(x)在区间I上可导,则它们的和、差的函数f(x)+g(x)和f(x)-g(x)在区间I上仍然可导,并且有如下的导数公式:(f(x)±g(x))'=f'(x)±g'(x)(2)乘法法则:设函数f(x)和g(x)在区间I上可导,则它们的乘积函数f(x)g(x)在区间I上可导,并且有如下的导数公式:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(3)除法法则:设函数f(x)和g(x)在区间I上可导,并且g(x)≠0,则它们的商函数f(x)/g(x)在区间I上可导,并且有如下的导数公式:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/[g(x)]²(4)常数法则:设c为常数,函数f(x)在区间I上可导,则常数函数cf(x)在区间I 上可导,并且有如下的导数公式:(cf(x))' = cf'(x)(5)幂函数法则:设函数f(x)=x^n在区间(x>0)上可导,则幂函数f(x)=x^k在区间(x>0)上可导,并且有如下的导数公式:(x^k)' = kx^(k-1)2.复合函数的导数:复合函数是指一个函数内部存在另一个函数,即一个函数的输入是另一个函数的输出。
在实际运算中,我们还需要计算复合函数的导数,可以利用链式法则来求解。
(1)链式法则:设函数y=f(u),u=g(x)是由两个函数构成的复合函数,在函数f和g 满足一定的条件下dy/dx = dy/du * du/dx具体地,对于复合函数y=f(g(x)),先计算出f对u的导数df/du,再计算出g对x的导数dg/dx,最后将两个结果相乘即可得到复合函数对x的导数。
导数的基本公式与运算法则导数是微积分中的一个重要概念,它描述了函数在其中一点附近的变化率。
在计算导数时,有一些基本公式和运算法则可以帮助我们简化计算过程。
一、基本公式1.常数函数的导数公式对于常数函数f(x)=C,其中C是一个常数,其导数为f'(x)=0。
这是因为常数函数在任何点处的斜率都为0,所以其导数为0。
2.幂函数的导数公式对于幂函数f(x) = x^n,其中n是一个实数,其导数为f'(x) =nx^(n-1)。
这个公式可以通过使用极限定义来证明。
3.指数函数的导数公式对于指数函数f(x) = a^x,其中a是一个正实数且a≠1,其导数为f'(x) = ln(a) * a^x。
这个公式可以通过使用极限定义和指数函数的性质来证明。
4.对数函数的导数公式对于对数函数f(x) = log_a(x),其中a是一个正实数且a≠1,其导数为f'(x) = 1 / (x * ln(a))。
这个公式可以通过使用极限定义和对数函数的性质来证明。
5.三角函数的导数公式对于三角函数sin(x),cos(x),tan(x),cot(x),sec(x),csc(x)以及它们的反函数,它们的导数公式如下:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)这些公式可以通过使用极限定义和三角函数的性质来证明。
二、运算法则1.和差法则如果两个函数f(x)和g(x)都可导,那么它们的和(或差)的导数等于它们的导数之和(或差):(f(x)±g(x))'=f'(x)±g'(x)2.积法则如果两个函数f(x)和g(x)都可导,那么它们的乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)3.商法则如果两个函数f(x)和g(x)都可导,且g(x)≠0,那么它们的商的导数等于第一个函数乘以第二个函数的导数减去第二个函数乘以第一个函数的导数,再除以第二个函数的平方:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^24.复合函数的导数如果函数f(x)和g(x)都可导,那么复合函数f(g(x))的导数等于f'(g(x))乘以g'(x):(f(g(x)))'=f'(g(x))*g'(x)这些基本公式和运算法则是在计算导数时非常有用的工具,它们能够帮助我们简化计算过程并得到准确的结果。
5.2.2导数的四则运算要点 导数的运算法则法则1:函数的和(差)的导数导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形(一般化),即[u(x)±v(x)±…±w(x)]′=u ′(x)±v ′(x)±…±w ′(x). 法则2:函数的积的导数(1)(特殊化)当g(x)=c(c 为常数)时,法则2可简化为[cf(x)]′=c f ′(x)+c·[f(x)]′=0+cf ′(x)=cf ′(x),即 [cf(x)]′=cf ′(x).(2)由上述结论及法则1可得[af(x)+bg(x)]′=af ′(x)+bg ′(x),其中a ,b 为常数.(3)函数的积的导数可以推广到有限个函数的乘积的导数,即[u(x)v(x)×…×w(x)]′=u ′(x)v(x)×…×w(x)+u(x)v ′(x)×…×w(x)+…+u(x)v(x)×…×w ′(x). 法则3:函数的商的导数(1)注意[f (x )g (x )]′≠f ′(x )g ′(x ).(2)(特殊化)当f(x)=1,g(x)≠0时,f (x )g (x )=1g (x ) ,[1g (x )]′=-g ′(x )[g (x )]2.【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)已知函数y =2ln x -2x ,则y ′=2x-2x ln2.( )(2)已知函数y =3sin x +cos x ,则y ′=3cos x +sin x .( ) (3)函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( ) (4)若函数f (x )=e xx 2,则f ′(x )=e x (x +2)x 3.( )【答案】(1)√(2)×(3)√(4)×2.已知函数f (x )=cos x +ln x ,则f ′(1)的值为( ) A .1-sin 1 B .1+sin 1 C .sin 1-1 D .-sin 1 【答案】A【解析】因为f ′(x )=-sin x +1x ,所以f ′(1)=-sin 1+11=1-sin 1.故选A.3.函数y =sin x ·cos x 的导数是( )A .y ′=cos 2 x +sin 2 xB .y ′=cos 2 x -sin 2 xC .y ′=2cos x ·sin xD .y ′=cos x ·sin x 【答案】B【解析】y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.若f (x )=(2x +a )2,且f ′(2)=20,则a =________.【答案】1【解析】f (x )=4x 2+4ax +a 2,∵f ′(x )=8x +4a ,∴f ′(2)=16+4a =20,∴a =1.题型一 利用运算法则求函数的导数【例1】根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)y =x 2-2x -4ln x ; (2)y =x ·tan x ;(3)y =x ex ;(4)y =(x +1)(x +2)(x +3);(5)y =x +sin x 2cos x2.【解析】(1)y ′=2x -2-4x .(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′ =(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +xcos 2x.(3)y ′=x ′e x -x ·(e x )′(e x )2=1-xe x(4)∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3) =x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′ =3x 2+12x +11.(5)先使用三角公式进行化简,得y =x +12sin x∴y ′=⎝⎛⎭⎫x +12sin x ′=x ′+⎝⎛⎭⎫12sin x ′=1+12cos x . 观察各函数的特点,能化简的先化简,再用求导法则求解.【方法归纳】利用导数的公式及运算法则求导的思路【跟踪训练】(1)已知f (x )=e xx(x ≠0),若f ′(x 0)+f (x 0)=0,则x 0的值为________.【答案】(1)12【解析】(1)因为f ′(x )=(e x )′x -e x ·x ′x 2=e x (x -1)x 2所以由f ′(x 0)+f (x 0)=0,得e x 0(x 0-1)x 20+e x 0x 0=0,解得x 0=12.(2)求下列函数的导数.①y =x -2+x 2;②y =3x e x -2x +e ;③y =ln x x 2+1;④y =x 2-sin x 2cos x 2.【解析】(2)①y ′=2x -2x -3; ②y ′=(ln 3+1)·(3e)x -2x ln 2;③y ′=x 2+1-2x 2·ln xx (x 2+1)2;④因为y =x 2-sin x 2cos x 2=x 2-12sin x ,所以y ′=2x -12cos x .题型二 导数运算法则的综合应用【例2】已知曲线y =xx -1在(2,2)处的切线与直线ax +2y +1=0平行,求实数a 的值.【解析】因为y ′=x ′(x -1)-(x -1)′x (x -1)2=-1(x -1)2所以y ′|x =2=-1即-a2=-1所以a =2.【变式探究1】本例条件不变,求该切线到直线ax +2y +1=0的距离. 【解析】由例2知切线方程为x +y -4=0直线方程x +y +12=0所以所求距离d =12+42=924.【变式探究2】本例条件不变,求与直线y =-x 平行的过曲线的切线方程. 【解析】由例2知y ′=-1(x -1)2令-1(x -1)2=-1得x =0或2所以切点为(0,0)和(2,2), 所以切线方程为x +y -4=0. 【方法归纳】关于求导法则的综合应用(1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确. 【跟踪训练2】已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8. (1)求a ,b 的值.(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程. 【解析】(1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b , 又知f ′(x )=2x -8,所以a =1,b =-8. (2)由(1)可知g (x )=e x sin x +x 2-8x +3, 所以g ′(x )=e x sin x +e x cos x +2x -8, 所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7, 又知g (0)=3,所以g (x )在x =0处的切线方程为y -3=-7(x -0). 即7x +y -3=0.【易错辨析】混淆曲线下的相切与导数背景下的相切致错.【例3】若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9(a ≠0)都相切,则a 等于( )A .-1或-2564 B .-1C .-74或-2564D .-74【答案】A【解析】因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30), 则在点(x 0,x 30)处的切线斜率为k =3x 20,所以切线方程y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以3x 20-2x 30=0,解得x 0=0或x 0=32. 当x 0=0时,由直线y =0与曲线y =ax 2+154x -9相切可得方程ax 2+154x -9=0有两个相等的实数根,此时Δ=(154)2-4a ×(-9)=0,解得a =-2564;当x 0=32时,由直线y =274x -274与曲线y =ax 2+154x -9相切,联立直线方程和曲线方程并消去y ,得ax 2-3x -94=0,此时Δ=9-4×a ×(-94)=0,解得a =-1.综上可得,a =-1或a =-2564.【易错警示】 出错原因有的同学认为x 0=0时,此时直线y =0与曲线y =x 3相交,就把这种情况舍去了,错选了B. 纠错心得正确理解导数背景下的相切.例如直线y =0与曲线y =x 3在x =0处是相切的.一、单选题1.若()e ln2xf x x =,则()f x '等于( )A .e e ln 22xx x x+B .e ln 2xx x -C .e e ln 2xxx x+D .12e x x⋅【答案】C 【分析】直接根据基本初等函数的导数公式及导数的运算法则计算可得; 【解析】解:()()()ee ln 2e ln 2e ln 2xxx x f x x x x x'''=⋅+⋅=+.故选:C.2.已知函数()()()21ln f f x x x x =+-',则()2f '=( )A .4B .3C .2D .1【答案】B 【分析】对函数求导,将1x =代入导函数,即可得到导函数的表达式,再代入2x =即可得到结果. 【解析】因为()()1211f x x f x ⎛⎫''=+- ⎪⎝⎭,所以得到()()()121112f f ''=+⋅-=,因此()222f x x x'=+-,所以()24123f '=+-=. 故选:B.3.已知函数()()42e 21x f x x -+=⋅+,则()0f '=( )A .2eB .1C .27eD .29e -【答案】C 【分析】由基本初等函数的导数公式,结合复合函数的导数运算法则求f x ,进而求()0f '.【解析】()22e ex x -+-+=-',43(21)8(21)x x '⎡⎤+=+⎣⎦,∴()()422e 21e x x x f x -+-+=-⋅++'()3821x ⋅+,当0x =时,()2220e 8e 7e f '=-+=.故选:C4.下列求导计算正确的是( ) A .2ln ln 122x x x x '+⎛⎫= ⎪⎝⎭B .2[ln(21)]21x x '+=+ C .()11122ln 2x x ++'=D .2sin cos cos 22x x x x '⎛⎫= ⎪⎝⎭ 【答案】B 【分析】利用导数的四则运算和复合函数的导数,即得解 【解析】2ln 1ln 22x x x x '-⎛⎫=⎪⎝⎭,A 错误;2[ln(21)]21x x '+=+,B 正确; ()1122ln 2x x ++'=,C 错误;2sin cos (sin )sin cos 22x x x x x x x x '⎛⎫'==+ ⎪⎝⎭,D 错误.故选:B .5.已知数列{}n c 为等比数列,其中11c =,20224c =,若函数()()()122022()f x x x c x c x c =--⋅⋅⋅-,()f x '为()f x 的导函数,则(0)f '=( ) A .5052 B .10112 C .20222 D .40222【答案】C 【分析】根据等比数列的性质和导数的运算法则即可求出. 【解析】11c =,20224c =,{}n c 为等比数列,12022220214c c c c ∴==⋅⋅⋅=,()()()()()()()1011202212202212202212202242c c c f x x c x c x c x x c x c x c ''⋅⋅⋅===--⋅⋅⋅-+--⋅⋅⋅-⎡⎤⎣⎦,则2022122022(0)2f c c c '=⋅⋅⋅=.故选:C.6.若函数()()()()()2019202020212022f x x x x x =----,则()2021f '=( ) A .2- B .1- C .0 D .1【答案】A 【分析】构造函数()()()()201920202022g x x x x =---,再用积的求导法则求导计算得解. 【解析】令()()()()201920202022g x x x x =---,则()()()2021f x x g x =-⋅, 求导得:()()()()12021f x g x x g x ''=⋅+-⋅, 所以()()()202120212112f g '==⨯⨯-=-. 故选:A7.设()322f x x ax x b =+-+,若()14f '=,则a 的值是( )A .94B .32C .1-D .52-【答案】B【解析】f ′(x )=3x 2+2ax -2,故f ′(1)=3+2a -2=4,解得a =32. 8.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e )+ln x ,则f ′(e )=( ) A .e -1 B .-1 C .-e -1 D .-e【答案】C 【分析】对函数求导得''1()2()f x f e x=+,再将x e =代入,解方程即可得到答案;【解析】∴f (x )=2xf ′(e )+ln x ,∴''1()2()f x f e x =+,∴''1()2()f e f e e =+,解得'1()f e e=-,故选:C.二、多选题9.(多选)下列求导运算正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭B .()sin cos cos sin x x x x +'=-C .2ln 1ln x xx x '-⎛⎫= ⎪⎝⎭D .()2cos 2sin x x x x '=-【答案】BC 【解析】A 中(1)x x+′=1-21x ,A 不正确;D 中,(x 2cos x )′=2x cos x -x 2sin x ,D 不正确;BC 正确. 答案 BC10.下列求导数运算正确的是( ) A .(2021x )′=x 2021x ﹣1B .(x 2021+log 2x )′=2021x 202012xln +C .(cosx sinx )′222sin x cos x sin x-=D .(x 23x )′=2x 3x +x 23x ln3 【答案】BD 【分析】根据题意,依次计算选项中函数的导数,即可得答案. 【解析】解:根据题意,依次分析选项:对于A ,(2021x )′=2021x ln 2021,A 错误;对于B ,(x 2021+log 2x )′=(x 2021)′+(log 2x )′=2021x 202012xln +,B 正确; 对于C ,(cosx sinx)′221sinx sinx cosx cosx sin x sin x -⋅-⋅==-,C 错误;对于D ,(x 23x )′=(x 2)′•3x +x 2×(3x )′=2x 3x +x 23x ln 3,D 正确. 故选:BD.11.设函数()cos f x x =,则下列说法正确的是( ) A .π12f=-'⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦B .()2sin cos f x x x x x x ='⎡⎤--⎢⎥⎣⎦C .()f x 在π,02⎛⎫⎪⎝⎭处的切线方程为π02x y +-=D .[()]cos sin xf x x x x =+' 【答案】BC 【分析】利用基本初等函数的导数公式和导数的四则运算法则,对四个选项一一求导,即可验证. 【解析】对于A :因为()cos f x x =,所以()cos =022f ππ=,所以π0=02f'='⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦,故A 错误;对于B :因为()cos f x x =,所以()cos f x x x x =,所以()2sin cos f x x x x x x ='⎡⎤--⎢⎥⎣⎦,故B 正确; 对于C :因为()cos f x x =,所以()sin f x x '=-,所以()sin =122f ππ'=--.而()cos =022f ππ=,所以()f x 在π,02⎛⎫⎪⎝⎭处的切线方程为π02x y +-=,故C 正确;对于D :()[()]cos cos sin xf x x x x x x '==-'.故D 错误. 故选:BC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.函数()321y x =+在0x =处的导数是______. 【答案】6 【分析】将函数解析式展开,再求导,之后代入0x =即可得到结果. 【解析】将函数解析式展开得到:3281261y x x x =+++,求导得224246y x x '=++, 所以06x y ='=. 故答案为:6. 13.函数()1cos sin x f x x -=的图象在点π,12⎛⎫⎪⎝⎭处的切线方程为___________. 【答案】π102x y -+-= 【分析】先利用基本函数的导数公式和导数的运算法则求导,再利用导数的几何意义进行求解. 【解析】 因为()1cos sin xf x x-=, 所以'''2(1cos )sin (1cos )(sin )()sin x x x x f x x -⋅--⋅=2222sin cos cos 1cos sin sin x x x x x x-+-==,则所求切线的斜率为'2π1cosπ2()1π2sin 2k f -===, 所以所求切线方程为π12y x -=-, 即π102x y -+-=. 故答案为:π102x y -+-=. 14.下列各函数的导数:①1212x -'=;②()ln x x a a x '=;③()sin 2cos 2x x '=;④(1x x +)′=21(1)x +.其中正确的有________.【答案】①④【分析】 直接利用导数公式计算即可求解.【解析】112212x x -'⎛⎫'== ⎪⎝⎭,①正确; ()ln x x a a a '=,②错误;()()sin2cos222cos2x x x x ''==,③错误; (1x x +)′=2(1)(1)(1)x x x x x ''+-⋅++=21(1)x x x +-+=21(1)x +,④正确. 故答案为:①④.四、解答题15.求下列函数的导数;(1)32235y x x =-+(2)241y x x =++ (3)22log x y x =+(4)n x y x e =(5)31sin x y x-=(6)sin sin cos x y x x=+ 【答案】 (1)266y x x '=-(2)()22241y x x --'=--+(3)12ln 2ln 2x y x '=+ (4)1n x n x y nx e x e -'=+(5)()2323sin cos 1sin x x x x y x --'=(6)11sin 2y x '=+ 【分析】根据基本初等函数的导数公式及导数的运算法则计算可得;(1)解:因为32235y x x =-+,所以266y x x '=-;(2) 解:因为()11242411y x x x x --=+=+++,所以()22241y x x --'=--+; (3)解:因为22log x y x =+,所以12ln 2ln 2x y x '=+; (4)解:因为n x y x e =,所以()()1n x n x n x n x y x e x e nx e x e -'''=+=+;(5) 解:因为31sin x y x -=,所以()()()()()3323221sin sin 13sin cos 1sin sin x x x x x x x x y x x ''-----'== (6) 解:因为sin sin cos x y x x=+,所以()()()()()()()22sin sin cos sin cos sin cos sin cos cos sin sin 11sin 2sin cos sin cos x x x x x x x x x x x x y x x x x x ''+-++--'===+++。
导数计算公式和法则导数是微积分中的重要概念,用于描述函数在某一点处的变化率。
计算导数的公式和法则是求解导数的基础工具,掌握了这些公式和法则,可以更加方便地计算各种函数的导数。
我们来看一下导数的定义。
对于函数f(x),在x点处的导数表示为f'(x),可以用以下公式来表示:f'(x) = lim(h->0)(f(x+h)-f(x))/h其中,lim表示极限的意思,h表示自变量x的增量。
这个定义可以理解为,当自变量的增量趋近于0时,函数在该点处的变化率就是该点的导数。
接下来,我们来看一些常见函数的导数计算公式和法则。
1. 常数函数的导数计算公式:常数函数的导数始终为0。
例如,对于函数f(x) = c,其中c是一个常数,其导数表示为f'(x) = 0。
2. 幂函数的导数计算公式:幂函数的导数可以通过以下公式来计算:f(x) = x^n,则f'(x) = n*x^(n-1)。
其中n是幂函数的指数。
3. 指数函数的导数计算公式:指数函数的导数可以通过以下公式来计算:f(x) = a^x,则f'(x) = a^x * ln(a)。
其中a是指数函数的底数,ln(a)是以e为底a的对数。
4. 对数函数的导数计算公式:对数函数的导数可以通过以下公式来计算:f(x) = log_a(x),其中a为对数函数的底数,则f'(x) = 1/(x * ln(a))。
5. 三角函数的导数计算公式:三角函数的导数可以通过以下公式来计算:- 正弦函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),则f'(x) = sec^2(x)。
6. 反三角函数的导数计算公式:反三角函数的导数可以通过以下公式来计算:- 反正弦函数的导数:f(x) = arcsin(x),则f'(x) = 1/sqrt(1-x^2)。
导数公式及其运算法则导数是微积分中的重要概念,它描述了函数在特定点处的变化率。
导数的公式及其运算法则包括如下几类:基本导数公式、常数倍法则、和差法则、乘法法则、除法法则、复合函数法则、反函数法则和链式法则。
一、基本导数公式:1.常数函数:对于常数函数f(x)=c,其导数为f'(x)=0。
例如,f(x)=7的导数为f'(x)=0。
2.幂函数:对于幂函数f(x)=x^n,其中n是任意实数,其导数为f'(x)=n*x^(n-1)。
例如,f(x)=x^3的导数为f'(x)=3*x^23. 指数函数:对于指数函数 f(x) = a^x,其中 a 是任意正常数且a≠1,其导数为 f'(x) = ln(a)*a^x。
例如,f(x) = 2^x 的导数为 f'(x) = ln(2)*2^x。
4. 对数函数:对于对数函数 f(x) = log_a(x),其中 a 是任意正常数且a≠1,其导数为 f'(x) = 1/(x*ln(a))。
例如,f(x) = log_2(x)的导数为 f'(x) = 1/(x*ln(2))。
5. 三角函数:对于三角函数 f(x) = sin(x),其导数为 f'(x) =cos(x)。
同样地,cos(x) 的导数为 -sin(x),tan(x) 的导数为sec^2(x),cot(x) 的导数为 -csc^2(x)。
二、常数倍法则:若函数 f(x) 和 g(x) 都是可导函数,c 是常数,则 (cf(x))' =cf'(x)。
三、和差法则:若函数f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)和(f(x)-g(x))'=f'(x)-g'(x)。
四、乘法法则:若函数f(x)和g(x)都是可导函数,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
导数运算法则公式加减乘除
导数运算法则是微积分中的重要内容,它包括加法法则、减法法则、乘法法则和除法法则。
下面我将从多个角度全面地解释这些法则。
首先是加法法则,它表示如果一个函数是两个函数的和,那么它的导数等于这两个函数的导数之和。
具体公式表达为,(f+g)' = f' + g',其中f和g是两个可导函数。
接下来是减法法则,它表示如果一个函数是两个函数的差,那么它的导数等于这两个函数的导数之差。
具体公式表达为,(f-g)' = f' g',其中f和g是两个可导函数。
然后是乘法法则,它表示如果一个函数是两个函数的乘积,那么它的导数等于第一个函数的导数乘以第二个函数再加上第一个函数乘以第二个函数的导数。
具体公式表达为,(fg)' = f'g + fg',其中f和g是两个可导函数。
最后是除法法则,它表示如果一个函数是两个函数的商,那么它的导数等于分母函数乘以分子函数的导数减去分子函数乘以分母
函数的导数,再除以分母函数的平方。
具体公式表达为,(f/g)' = (f'g fg') / g^2,其中f和g是两个可导函数,且g不等于0。
总之,这些导数运算法则是微积分中非常重要的内容,它们帮助我们计算复杂函数的导数,从而更好地理解函数的变化规律和性质。
希望这些解释能够帮助你更好地理解导数运算法则。
导数计算公式和法则导数是微积分中的一个重要概念,表示函数在某一点处的变化率。
导数的计算公式和法则如下:1. 基本导数公式:(1) 若y=f(x),则y的导数为f(x)在x点处的导数,即f'(x)。
(2) 若y=u/v,其中u、v为两个可导函数,v(x)不为0,则y的导数为:y'=(u'v-uv')/v²2. 常见函数的导数:(1) 常函数y=C的导数为0,即y'=0。
(2) 幂函数y=xⁿ的导数为y'=nxⁿ⁻¹。
(3) 正弦函数y=sin(x)的导数为y'=cos(x)。
(4) 余弦函数y=cos(x)的导数为y'=-sin(x)。
(5) 指数函数y=aˣ的导数为y'=aˣln a。
(6) 对数函数y=logₐx的导数为y'=1/(xln a)。
3. 基本导数法则:(1) 常数因子法则:若y=Cf(x),其中C为常数,则y'等于f(x)的导数乘以常数C,即y'=Cf'(x)。
(2) 常数和法则:若y=f(x)±g(x),则y'等于f(x)的导数和g(x)的导数的和(减法同理),即y'=f'(x)±g'(x)。
(3) 乘法法则:若y=f(x)g(x),则y'等于f(x)的导数乘以g(x)加上g(x)的导数乘以f(x),即y'=f'(x)g(x)+g'(x)f(x)。
(4) 除法法则:若y=f(x)/g(x),其中g(x)不为0,则y'等于f(x)的导数乘以g(x)减去f(x)乘以g(x)的导数除以g(x)的平方,即y'=[f'(x)g(x)-g'(x)f(x)]/g²(x)。
(5) 复合函数法则:若y=f(u),u=g(x),则y'等于f(u)对u的导数乘以u对x的导数,即y'=f'(u)g'(x)。
导数的四则运算法则公式推导过程1. 一阶导数概念:一阶导数指函数上一点的变化率或斜率,它反映了函数围绕该点的变化情况。
函数在某一点处的导数反映了函数在这一点处(即你求导所用值处)的变化速度。
一阶导数如果是非零,则这个值表示函数在该点向右是可以变大或者在该点向左可以变小;如果为零,表示函数在该点是拐点。
2. 常见的四则运算法则:(1)加法法则:函数f(x)和g(x)的一阶导数之和即为:(f+g)’=f’+g’。
(2)减法法则:函数f(x)和g(x)的一阶导数之差即为:(f-g)’=f’-g’。
(3)乘法法则:函数f(x)和g(x)的一阶导数之积即为:(f*g)’=f’*g + f*g’。
(4)除法法则:函数f(x)和g(x)的一阶导数之商即为:(f/g)’=[f’*g -f*g’]/g〔2〕。
3. 对上述四则运算法则的推导过程:(1)加法法则:函数 f(x) 和 g(x) 的导数为f’(x) 和g’(x),根据定义,函数f(x)和g(x)的一阶导数之和即为:y’=f’(x)+g’(x),令y=f(x)+g(x),则y’=f’(x)+g’(x),即有:(f+g)’=f’+g’。
(2)减法法则:函数 f(x) 和 g(x) 的导数为f’(x) 和g’(x),根据定义,函数f(x)和g(x)的一阶导数之差即为:y’=f’(x)-g’(x),令y=f(x)-g(x),则y’=f’(x)-g’(x),即有:(f-g)’=f’-g’。
(3)乘法法则:函数 f(x) 和 g(x) 的导数为f’(x) 和g’(x),根据定义,函数f(x)和g(x)的一阶导数之积即为:y’=f'(x)·g'(x),令y=f(x)*g(x),令y=(f(x)·g(x))=f(x)·g(x),则y’=f'(x)·g'(x),即有:(f*g)’=f'*g+f*g'。
导数计算公式和法则导数计算公式和法则是微积分中重要的概念之一。
导数是函数的变化率,我们通过求导来计算函数的导数。
以下是导数计算公式和法则的详细说明:一、基本导数公式1、常数函数的导数为0,即f(x)=C,则f'(x)=0。
2、幂函数的导数,对于正整数n,f(x)=x^n,则f'(x)=nx^(n-1)。
3、指数函数的导数,f(x)=a^x,则f'(x)=a^xln(a)。
4、对数函数的导数,f(x)=ln(x),则f'(x)=1/x。
5、三角函数的导数:(1)sin(x)的导数为cos(x),即(sin(x))'=cos(x)。
(2)cos(x)的导数为-sin(x),即(cos(x))'=-sin(x)。
(3)tan(x)的导数为sec^2(x),即(tan(x))'=sec^2(x)。
二、导数的四则运算法则1、和差法则:(f(x)+g(x))'=f'(x)+g'(x),(f(x)-g(x))'=f'(x)-g'(x)。
2、积法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
3、商法则:(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/g(x)^2。
三、复合函数的导数1、复合函数的链式法则:如果g(x)和f(x)都是可导函数,则复合函数h(x)=g(f(x))的导数为h'(x)=g'(f(x))f'(x)。
2、反函数的导数:如果y=f(x)是单调且可导的函数,且f'(x)≠0,则其反函数x=f^-1(y)的导数为dx/dy=1/f'(f^-1(y))。
以上就是导数计算公式和法则的详细说明,掌握这些公式和法则可以帮助我们更好地理解和应用微积分中的导数概念。