典型零件选材及工艺分析.
- 格式:doc
- 大小:40.50 KB
- 文档页数:10
齿轮常用材料的选择及其热处理工艺分析介绍了齿轮常用材料及典型齿轮的热处理工艺,结合常用齿轮材料的性能特点,总结了齿轮材料选用原则及热处理工艺与提高其承载能力以及延长使用寿命之间的关系,旨在通过理论来指导实践。
标签:齿轮材料;热处理;性能;承载能力引言齿轮作为传动系统中应用非常广泛的零件,在工作时,所受应力往往是非常复杂的,一是需要承受齿轮齿根部的循环往复的弯曲应力,二还要考虑接触应力以及齿面之间的相互接触所带来的不良影响,同时具有较强的摩擦齿面,齿轮啮合时,它会吸收一定量的冲击载荷。
齿轮使用过程应避免齿面磨损太多,甚至以断齿、疲劳点蚀形式失效。
合适的热处理工艺能提高齿轮的耐磨性、承载能力和使用寿命,热处理后的齿轮具有高的弯曲疲劳强度和接触疲劳强度(抗疲劳点蚀),齿面具有较高的硬度和耐磨性,齿轮心部具有足够的强度和韧性[1]。
齿轮材料的选择以及相关的热处理工艺无论是对于齿轮的质量,又或者是齿轮的使用性能都会产生很大的影响。
比较常用的热处理工艺包括:表面淬火、碳氮共渗、渗碳、渗氮、回火、正火等。
而对于齿轮材料的选择,锻钢、铸钢、铸铁、有色金属、非金属材料等都是非常理想的选择。
1 齿轮材料及热处理工艺1.1 锻钢根据齿面的软硬程度,钢制齿轮包括软齿面齿轮和硬齿面齿轮,它们之间的分界线是布氏硬度为350HBS的时候,大于350HBS为硬齿面,反之则是软齿面。
1.1.1 软齿面齿轮软尺面齿轮,工艺路线:锻造毛坯→正火→粗车→调质、精加工。
常用材料;45#、35SiMn、40Cr、40CrNi、40MnB等。
软齿面齿轮的特点:性能优良,齿面本身的硬度、强度都理想,齿心的韧性好;热处理后切齿精度可达8级;制造简单、经济、生产率高,对精度要求不高。
1.1.2 硬齿面齿轮(1)采用中碳钢时的加工工艺过程为:锻造毛坯→常化→粗切→调质→精切→高、中频淬火→低温回火→珩齿或研磨剂跑合、电火花跑合。
常用材料:45、40Cr、40CrNi。
齿轮硬度要求 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】二、典型零部件选材及工艺分析金属材料、高分子材料、陶瓷材料及复合材料是目前的主要工程材料。
高分子材料的强度、刚度较低、易老化,一般不能用于制作承受载荷较大的机械零件。
但其减振性好,耐磨性较好,适于制作受力小、减振、耐磨、密封零件,如轻载齿轮、轮胎等。
陶瓷材料硬而脆,一般也不能用于制作重要的受力零部件。
但其具有高熔点、高硬度、耐蚀性好、红硬性高等特点,可用于制作高温下工作的零部件、耐磨耐蚀零部件及切削刀具等。
复合材料克服了高分子材料和陶瓷材料的不足,具有高比强度、高减振性、高抗疲劳能力、高耐磨性等优异性能,是一种很有发展前途的工程材料。
与以上三类工程材料相比,金属材料具有优良的使用性能和工艺性能,储藏量大,生产成本比较低、广泛用于制作各种重要的机械零件和工程构件,是机械工业中最主要、应用最广泛的一类工程结构材料。
下面介绍几种钢制零部件的选材及热处理工艺分析。
㈠齿轮类零件的选材齿轮是机械工业中应用广泛的重要零件之一,主要用于传递动力、调节速度或方向。
1、齿轮的工作条件、主要失效形式及对性能的要求。
⑴齿轮的工作条件:①啮合齿表面承受较大的既有滚动又有滑动的强烈磨擦和接触疲劳压应力。
②传递动力时,轮齿类似于悬臂梁,轮齿根部承受较大的弯曲疲劳应力。
③换挡、启动、制动或啮合不均匀时,承受冲击载荷。
⑵齿轮的主要失效形式:①断齿:除因过载(主要是冲击载荷过大)产生断齿外,大多数情况下的断齿,是由于传递动力时,在齿根部产生的弯曲疲劳应力造成的。
②齿面磨损:由于齿面接触区的磨擦,使齿厚变小、齿隙加大。
③接触疲劳;在交变接触应力作用下,齿面产生微裂纹,遂渐剥落,形成麻点。
⑶对齿轮材料的性能要求:①高的弯曲疲劳强度;②高的耐磨性和接触疲劳强度;③轮齿心部要有足够的强度和韧性。
2、典型齿轮的选材⑴机床齿轮机床齿轮的选材是依其工作条件(园周速度、载荷性质与大小、精度要求等)而定的。
轴类零件选材及工艺分析在机床、汽车、拖拉机等制造工业中,轴类零件是另一类用量很大,且占有相当重要地位的结构件。
轴类零件的主要作用是支承传动零件并传递动和动力,它们在工作时受多种应力的作用,因此从选材角度看,材料应有较高的综合机械性能.局部承受摩擦的部位如车床主轴的花键、曲轴轴颈等处,要求有一定的硬度,以提高其抗磨损能力。
要求以综合机械性能为主的一类结构零件的选材,还需根据其应力状态和负荷种类考虑材料的淬透性和抗疲劳性能。
实践证明,受交变应力的轴类零件、连杆螺栓等结构件,其损环形式不少是由于疲劳裂纹引起的。
下面以车床主轴、汽车半轴、内燃机曲轴、镗杆、大型人字齿轮轴等典型零件为例进行分析。
(一)机床主轴在选选用机床主轴的材料和热处理工艺时,必须考虑以下几点:<1> 受力的大小。
不同类型的机床,工作条件有很大差别,如高速机床和精密机床主轴的工作条件与重型机床主轴的工作条件相比,无论在弯曲或扭转疲劳特性方面差别都很大。
<2> 轴承类型。
如在滑动轴承上工作时,轴颈需要有高的耐磨性。
<3> 主轴的形状及其可能引起的热处理缺陷。
结构形状复杂的主轴在热处理时易变形甚至于开裂,因此在选材上应给予重视。
主轴是机床中主要进零件之一,其质量好坏直接影响机床的精度和寿命。
因此必须根据主轴的工作条件和性能要求,选择用钢和制定合理的冷热加工工艺。
1、机床主轴的工作条件和性能要求C616-416车床主轴如图1-2所示。
该主轴的工作条件如下:①承受交变的弯曲应力与扭转应力,有时受到冲击载荷的作用;②主轴大端内锥孔和锥度外圆,经常与卡盘、顶针有相对摩擦;③花健部分经常有磕或相对滑动。
总之,该主轴是在滚动轴承中动转,承受中等负荷,转速中等,有装配精度要求,且受到一定的冲击力作用。
由此确定热处理技术条件如下:①整体调质后硬度应为HB200~230,金相组织为回火索氏体;②内锥孔和外圆锥面处硬度为HRC45~50,表面3~5㎜内金相组织为回火屈氏体和少量回火马氏体;③花键部分的硬度为HRC48~53,金相组同上。
[精选]典型零件加工工艺(一)数控车削加工典型零件工艺分析实例1.编写如图所示零件的加工工艺。
(1)零件图分析如图所示零件,由圆弧面、外圆锥面、球面构成。
其中Φ50外圆柱面直径处不加工,而Φ40外圆柱面直径处加工精度较高。
零件材料:45钢毛坯尺寸:Φ50×110(2)零件的装夹及夹具的选择采用机床三爪自动定心卡盘,零件伸出三爪卡盘外75mm左右,以外圆定位并夹紧。
(3)加工方案及加工顺序的确定以零件右端面和中心轴作为坐标原点建立工件坐标系。
根据零件尺寸精度及技术要求,零件从右向左加工,将粗、精加工分开来考虑。
加工工艺顺序为:车削右端面→复合型车削固定循环粗、精加工右端需要加工的所有轮廓(粗车Φ44、Φ40.5、Φ34.5、Φ28.5、Φ22.5、Φ16.5外圆柱面→粗车圆弧面R14.25→精车外圆柱面Φ40.5→粗车外圆锥面→粗车外圆弧面R4.75→精车圆弧面R14→精车外圆锥面→精车外圆柱面Φ40→精车外圆弧面R5)。
(4)选择刀具选择1号刀具为90°硬质合金机夹偏刀,用于粗、精车削加工。
(5)切削用量选择粗车主轴转速n=630r/min,精车主轴转速V=110m/min,进给速度粗车为f=0.2mm/r,精车为f=0.07mm/r。
2.编写如图1-26所示的轴承套的加工工艺(1)零件图分析零件表面由内圆锥面,顺圆弧,逆圆弧和外螺纹等组成。
有多个直径尺寸与轴向尺寸有较高的尺寸精度和表面粗糙度要求(如果加工质量要求较高的表面不多可列出)。
零件材料:45号钢毛坯尺寸:φ80×112(2)零件的装夹及夹具的选择内孔加工时,以外圆定位,用三爪自动定心卡盘夹紧,需掉头装夹;加工外轮廓时,以圆锥心轴定位,用三爪卡盘夹持心轴左端,右端利用中心孔顶紧。
(3)加工方案及加工顺序的确定以零件右端面中心作为坐标原点建立工件坐标系。
根据零件尺寸精度及技术要求,确定先内后外,先粗后精的原则。
八、锥齿轮轴
见图2-42
技术要求
1、渗碳淬火硬度58~63HRC ; 3、未注明倒角为2×45°
渗碳深度0.7~1.1mm 。
4、未注明圆角为R2 m=3.5 α=20° 2、两轴端中心孔为A5/10.6 5、材料20CrMnTi. Z=19 精度等级8GK
1、零件图样分析
1)齿轮轮齿外表面对轴心线的圆跳动公差为0.025mm 。
2)φ45013
.0002.0++mm 右端面对轴心线的圆跳动公差为0.010mm 。
3)渗碳淬火硬度58~63HRC ;渗碳深度过0.7~1.1mm 。
4)齿轮精度等级8GK 。
5)材料20CrMnTi 。
2、锥齿轮轴机械加工工艺过程卡(表2-33)
表2-33 锥齿轮轴机械加工工艺过程卡
3、工艺分析
1)该齿轮精度较低,所以工序安排在刨齿渗碳淬火后,不再进行磨齿,如果齿轮精度要求高于7级,应增加磨齿工序,因在渗碳淬火后,有产生齿部变形的可能。
2)末标注轴径各处R2,在磨削时加工。
φ45013
.0002.0++mm 轴径右端面,
靠磨后 (工厂俗称 “一刀下”)可保证有端面圆跳动公差。
3)齿轮轮齿外表面对轴心线的圆跳动;φ45013.0002.0++mm 右端面对轴心线的圆跳动的
检查,可采用两中心孔定位装夹在偏摆仪上进行检测。
4)锥齿轮的锥角可用游标万能角度尺或专用样板进行检查。
第六章 典型零件工艺分析机械产品中的零件虽然各式各样,但形状、结构、工作特点等在不同方面、不同程度却存在着一定的共性,生产中往往根据其形状、结构的特征,一般将零件分为轴类、盘类、轴套类、箱体类、异形类等多种类型。
各类零件在多方面虽各具特点,但其中具备更多的相同、相似之处,即每类零件均具有一定共性问题及加工特色。
本章将通过各类典型零件由简单到复杂的具体案例进行制造工艺设计,计算和分析,把握制造典型零件的制造规律,并通过其规律的把握,达到灵活运用制造技术,合理设计零件制造工艺的目的。
第一节轴类零件工艺设计一、轴类零件特点1、功用轴类零件在机器中的功用主要是支承传动零件,传递运动和扭矩。
2、结构特点轴类零件属旋转体零件,主要由圆柱面、圆锥面、螺纹及键槽等表面构成,其长度大于直径。
根据其结构形状又可分为光轴、空心轴、半轴、阶梯轴、异型轴(十字轴、偏心轴、曲轴、凸轮轴)等。
3、技术要求轴类零件上安装支承轴承和传动件的部位是主要表面,粗糙度数值要求较低,加工精度要求较高。
除直径精度要求外还有圆度、圆柱度、同轴度、垂直度等方面的要求。
二、轴类零件制造工艺案例案例1:传动轴制造工艺零件图三维图1、零件工艺性分析(1)零件材料:45钢。
切削加工性良好,无特殊加工问题,故加工中不需采取特殊工艺措施。
刀具材料选择范围较大,高速钢或YT类硬质合金均能胜任。
刀具几何参数可根据不同刀具类型通过相关表格查取。
(2)零件组成表面:两端面,外圆及其台阶面,两端三角螺纹,键槽,倒角。
(3)主要表面分析:Ф25外圆表面用于支承传动件,为零件的配合面及工作面。
(4)主要技术条件:Ф25外圆精度要求:IT7 粗糙度要求Ra1.6µm。
它是零件上主要的基准,两端螺纹应与之保持基本的同轴关系,键槽亦与之对称。
(5)零件总体特点:长径比达12,为较典型的细长轴。
2、毛坯选择按零件特点,可选棒料。
根据标准,比较接近并能满足加工余量要求,可选Ф28mm,245mm。
典型零件的加工工艺分析案例实例. 以图A-54所示的平面槽形凸轮为例分析其数控铣削加工工艺。
图A-54 平面槽型凸轮简图案例分析:平面凸轮零件是数控铣削加工中常用的零件之一,基轮廓曲线组成不外乎直线—曲线、圆弧—圆弧、圆弧—非圆曲线及非圆曲线等几种。
所用数控机床多为两轴以上联动的数控铣床,加工工艺过程也大同小异。
1. 零件图纸工艺分析图样分析要紧分析凸轮轮廓形状、尺寸和技术要求、定位基准及毛坯等。
本例零件是一种平面槽行凸轮,其轮廓由圆弧HA、BC、DE、FG和直线AB、HG以及过渡圆弧CD、EF所组成,需要两轴联动的数控机床。
材料为铸铁、切削加工性较好。
该零件在数控铣削加工前,工件是一个通过加工、含有两个基准孔直径为φ280mm、厚度为18mm的圆盘。
圆盘底面A及φ35G7和φ12H7两孔可用作定位基准,无需另作工艺孔定位。
凸轮槽组成几何元素之前关系清晰,条件充分,编辑时所需基点坐标专门容易求得。
凸轮槽内外轮廓面对A面有垂直度要求,只要提高装夹度,使A面与铣刀轴线垂直,即可保证:φ35G7对A面的垂直度要求由前面的工序保证。
2. 确定装夹方案一样大型凸轮可用等高垫块垫在工作台上,然后用压板螺栓在凸轮的孔上压紧。
外轮廓平面盘形凸轮的垫板要小于凸轮的轮廓尺寸,不与铣刀发生干涉。
对小型凸轮,一样用心轴定位,压紧即可。
依照图A-54所示凸轮的结构特点,采纳〝一面两孔〞定位,设计一〝一面两销〞专用夹具。
用一块320mm×320mm×40mm的垫块,在垫块上分别精镗φ35mm及φ12mm两个定位销孔的中心连接线与机床的x轴平行,垫块的平面要保证与工作台面平行,并用百分表检查。
图A-55为本例凸轮零件的装夹方案示意图。
采纳双螺母夹紧,提高装夹刚性,防止铣削时因螺母松动引起的振动。
图A-55凸轮装夹示意图3. 确定进给路线进给路线包括平面内进给和深度进给两部分路线。
对平面内进给,对外凸轮廓从切线方向切入,对内凹轮廓从过渡圆弧切入。
二、典型零部件选材及工艺分析金属材料、高分子材料、陶瓷材料及复合材料是目前的主要工程材料.高分子材料的强度、刚度较低、易老化,一般不能用于制作承受载荷较大的机械零件.但其减振性好,耐磨性较好,适于制作受力小、减振、耐磨、密封零件,如轻载齿轮、轮胎等.陶瓷材料硬而脆,一般也不能用于制作重要的受力零部件.但其具有高熔点、高硬度、耐蚀性好、红硬性高等特点,可用于制作高温下工作的零部件、耐磨耐蚀零部件及切削刀具等.复合材料克服了高分子材料和陶瓷材料的不足,具有高比强度、高减振性、高抗疲劳能力、高耐磨性等优异性能,是一种很有发展前途的工程材料.与以上三类工程材料相比,金属材料具有优良的使用性能和工艺性能,储藏量大,生产成本比较低、广泛用于制作各种重要的机械零件和工程构件,是机械工业中最主要、应用最广泛的一类工程结构材料.下面介绍几种钢制零部件的选材及热处理工艺分析.㈠齿轮类零件的选材齿轮是机械工业中应用广泛的重要零件之一,主要用于传递动力、调节速度或方向.1、齿轮的工作条件、主要失效形式及对性能的要求.⑴齿轮的工作条件:①啮合齿表面承受较大的既有滚动又有滑动的强烈磨擦和接触疲劳压应力.②传递动力时,轮齿类似于悬臂梁,轮齿根部承受较大的弯曲疲劳应力.③换挡、启动、制动或啮合不均匀时,承受冲击载荷.⑵齿轮的主要失效形式:①断齿:除因过载(主要是冲击载荷过大)产生断齿外,大多数情况下的断齿,是由于传递动力时,在齿根部产生的弯曲疲劳应力造成的.②齿面磨损:由于齿面接触区的磨擦,使齿厚变小、齿隙加大.③接触疲劳;在交变接触应力作用下,齿面产生微裂纹,遂渐剥落,形成麻点.⑶对齿轮材料的性能要求:①高的弯曲疲劳强度;②高的耐磨性和接触疲劳强度;③轮齿心部要有足够的强度和韧性.2、典型齿轮的选材⑴机床齿轮机床齿轮的选材是依其工作条件(园周速度、载荷性质与大小、精度要求等)而定的.表13-3列出了机床齿轮的选材及热处理.表13-3机床齿轮的选材及热处理床传动齿轮工作时受力不大,工作较平稳,没有强烈冲击,对强度和韧性的要求都不太高,一般用中碳钢(例如45钢)经正火或调质后,再经高频感应加热表面淬火强化,提高耐磨性,表面硬度可达52~58HRC.对于性能要求较高的齿轮,可选用中碳合金钢(例如40Cr等).其工艺路线为:备料→锻造→正火→粗机械加工→调质→精机械加工→高频淬火+低温回火→装配.正火工序作为预备热处理,可改善组织,消除锻造应力,调整硬度便于机械加工,并为后续的调质工序做好组织准备.正火后硬度一般为180~207HB,其切削加工性能好.经调质处理后可获得较高的综合力学性能,提高齿轮心部的强度和韧性,以承受较大的弯曲应力和冲击载荷.调质后的硬度为33~48HRC.高频淬火+低温回火可提高齿轮表面的硬度和耐磨性,提高齿轮表面接触疲劳强度.高频加热表面淬火加热速度快,淬火后脱碳倾向和淬火变形小,同时齿面硬度比普通淬火高约2HRC,表面形成压应力层,从而提高齿轮的疲劳强度.齿轮使用状态下的显微组织为:表面是回火马氏体+残余奥氏体,心部是回火索氏体.⑵汽车、拖拉机齿轮汽车、拖拉机齿轮的选材及热处理详见表13-4.表13-4汽车、拖拉机齿轮常用钢种及热处理①m n—法向模数;②m s—端面模数与机床齿轮比较,汽车、拖拉机齿轮工作时受力较大,受冲击频繁,因而对性能的要求较高.这类齿轮通常使用合金渗碳钢(例如:20CrMnTi、20MnVB)制造.其工艺路线为:备料→锻造→正火→机械加工→渗碳→淬火+低温回大→喷丸→磨削→装配.正火处理的作用与机床齿轮相同.经渗碳、淬火+低温回火后,齿面硬度可达58~62HRC,心部硬度为35~45HRC.齿轮的耐冲击能力、弯曲疲劳强度和接触疲劳强度均相应提高.喷丸处理能使齿面硬度提高约2~3HRC,并提高齿面的压应力,进一步提高接触疲劳强度.齿轮在使用状态下的显微组织为:表面是回火马氏体+残余奥氏体+碳化物颗粒,心部淬透时是低碳回火马氏体(+铁素体),未淬透时,是索氏体+铁素体.㈡轴类零部件的选材轴是机械工业中最基础的零部件之一,主要用以支承传动零部件并传递运动和动力.1、轴的工作条件,主要失效形式及对性能的要求.⑴轴的工作条件:①传递扭矩,承受交变扭转载荷作用.同时也往往承受交变弯曲载荷或拉、压载荷的作用.②轴颈承受较大的磨擦.③承受一定的过载或冲击载荷.⑵轴的主要失效形式:①疲劳断裂由于受交变的扭转载荷和弯曲疲劳载荷的长期作用,造成轴的疲劳断裂,这是最主要的失效形式.②断裂失效由于受过载或冲击载荷的作用,造成轴折断或扭断.③磨损失效轴颈或花键处的过度磨损使形状、尺寸发生变化.⑶对轴用材料的性能要求:①高的疲劳强度,以防止疲劳断裂.②良好的综合力学性能,以防止冲击或过载断裂.③良好的耐磨性,以防止轴颈磨损.2、典型轴的选材对轴类零部件进行选材时,应根据工作条件和技术要求来决定.承受中等载荷,转速又不高的轴,大多选用中碳钢(例如45钢),进行调质或正火处理.对于要求高一些的轴,可选用合金调质钢(例如40Cr)并进行调质处理.对要求耐磨的轴颈和锥孔部位,在调质处理后需进行表面淬火.当轴承受重载荷、高转速、大冲击时,应选用合金渗碳钢(例如20CrMnTi)进行渗碳淬火处理.⑴机床主轴图13-8为C620车床主轴简图.该主轴承受交变扭转和弯曲载荷.但载荷和转速不高,冲击载荷也不大.轴颈和锥孔处有磨擦.按以上分析,C620车床主轴可选用45钢,经调质处理后,硬度为220~250HB,轴颈和锥孔需进行表面淬火,硬度为46~54HRC.其工艺路图13-8 C620车床主轴简图线为:备料→锻造→正火→粗机械加工→调质→精机械加工→表面淬火+低温回火→磨削→装配.正火可改善组织、消除锻造缺陷,调整硬度便于机械加工,并为调质做好组织准备.调质可获得回火索氏体,具有较高的综合力学性能,提高疲劳强度和抗冲击能力.表面淬火+低温回火可获得高硬度和高耐磨性.表13-5给出了机床主轴的选材和热处理.表13-5根据工作条件推荐选用的机床主轴材料及其热处理工艺资料来源:合金刚手册下册第三分册,治金工业出版,1979年版.⑵汽轮机主轴汽轮机主轴尺寸大、工作负荷大,承受弯曲、扭转载荷及离心力和温度的联合作用.汽轮机主轴的主要失效方式是蠕变变形和由白点、夹杂、焊接裂纹等缺陷引起的低应力脆断、疲劳断裂或应力腐蚀开裂.因此对汽轮机主轴材料除要求其在性能上具有高的强度和足够的塑韧性外,还要求其锻件中不出现较大的夹杂、白点、焊接裂纹等缺陷.对于在500℃以上工作的主轴还要求其材料具有一定的高温强度.根据汽轮机的功率和主轴工作温度的不同,所选用的材料也不同.对于工作在450℃以下的材料,可不必考虑高温强度,如果汽轮机功率较小(<12000kW),且主轴尺寸较小,可选用45钢,如果汽轮机功率较大(>12000kW),且主轴尺寸较大,则须选用35CrMo钢,以提高淬透性.对于工作在500℃以上的主轴,由于汽轮机功率大(>125000kW),要求高温强度高,需选用珠光体耐热钢,通常高中压主轴选用25CrMoVA或27Cr2MoVA钢,低压主轴选用15CrMo或17CrMoV钢.对于工作温度更高,要求更高高温强度的主轴,可选用珠光体耐热钢20Cr3MoWV(<540℃)或铁基耐热合金Cr14Ni26MoTi(<650℃)、Cr14Ni35MoWTiAl(<680℃)制造.气轮机主轴的工艺路线为:备料→锻造→第一次正火→去氢处理→第二次正火→高温回火→机械加工→成品.第一次正火可消除锻造内应力;去氢处理的目的是使氢从锻件中扩散出去,防止产生白点;第二次正火是为了细化组织,提高高温强度;高温回火是为了消除正火产生的内应力,使合金元素分布更趋合理(V、Ti充分进入碳化物,Mo 充分溶入铁素体),从而进一步提高高温强度.⑶内燃机曲轴曲轴是内燃机的脊梁骨,工作时受交变的扭转、弯曲载荷以及振动和冲击力的作用.按内燃机的转速不同可选用不同的材料.通常低速内燃机曲轴选用正火态的45钢或球黑铸铁;中速的内燃机曲轴选用调质态的45钢、调质态的中碳合金钢(例如40Cr)或球墨铸铁.高速内燃机曲轴选用强度级别再高一些的合金钢(例如42CrMo等).内燃机曲轴的工艺路线为:备料→锻造→正火→粗机械加工→调质→精机械加工→轴颈表面淬火+低温回火→磨削→装配.各热处理工序的作用与机床主轴的相同.近年来常采用球墨铸铁代替45钢制作曲轴,其工艺路线为:备料→熔炼→铸造→正火→高温回火→机械加工→轴颈表面淬火+低温回火→装配.铸造质量是球墨铸铁的关键,首先要保证铸铁的球化良好、无铸造缺陷,然后再经风冷正火,以增加组织中的珠光体含量并细化珠光体,提高其强度,硬度和耐磨性,高温回火的目的是消除正火所造成的内应力.㈢汽轮机叶片的选材叶片是汽轮机的关键部件,它直接起着将蒸汽或燃气的热能转变为机械能的作用.1、叶片的工作条件、失效方式及性能要求⑴叶片的工作条件:①受蒸汽或燃气弯矩的作用;②承受中、高压过热蒸汽的冲刷或湿蒸汽的电化学腐蚀或高温燃气的氧化和腐蚀;③受湿蒸汽中的水滴或燃气中的杂质磨损;④气流作用的频率与叶片自振频率相等时产生的共振力的作用.⑵叶片的失效方式:叶片的失效方式为蠕变变形、断裂(包括振动疲劳断裂、应力腐蚀开裂、蠕变疲劳断裂及热疲劳开裂)和表面损伤(包括氧化、电化学腐蚀和磨损).⑶对叶片的性能要求:①高的室温和高温强度、塑性及韧性,以防止蠕变变形和疲劳断裂;②高的化学稳定性,以防止氧化、腐蚀及应力腐蚀开裂;③导热性好,热膨胀系数小,以防止热疲劳破坏;④耐磨性好,以防止冲刷磨损和机械磨损;⑤减振性好,以防止共振疲劳破坏;⑥良好的冷、热加工性能,以利于叶片成型、提高生产效率.2、叶片的选材及热处理叶片材料的选择主要取决于工作温度.对于中、低压汽轮机,叶片工作温度不高(<500℃),其失效的主要方式不是蠕变,而是共振疲劳和应力腐蚀开裂,因此,除在结构设计上避免共振外,应选用减振性能好的1Cr13和2Cr13马氏体不锈钢.对于工作于过热蒸汽中的前级叶片,虽温度较高(450~475℃),但腐蚀不明显,可采用低合金钢20CrMo 进行氮化、镀硬铬或堆焊硬质合金.汽轮机后级叶片的工艺路线为:备料→模锻→退火→机械加工→调质→热整形→去应力退火→机械加工叶片根→镀硬铬→抛光→磁粉探伤→成品.退火是为了消除锻造应力,细化组织,改善切削加工性能,为调质作组织准备;调质是为了使叶片获得良好的综合力学性能和高温强度;热整形可提高叶片精度,校正热处理变形;去应力退火是为了消除热整形内应力;镀硬铬是为了提高抗氧化和耐蚀性.对于高压汽轮机,叶片工作温度高于500℃,蠕变破坏是其失效的主要方式,1Cr13钢已不能满足热强性要求,应选用奥氏体耐热钢1Cr18Ni9Ti.工作温度低于600℃的高压汽轮机叶片也可选用马氏体耐热钢5Cr11MoV、15Cr12WMoV、15Cr12WMoVNbB、18Cr12WMoVNb.对于燃气轮机叶片,因工作温度更高,其主要失效方式为蠕变和热疲劳破坏.当叶片工作温度低于650℃时,可选用奥氏体耐热钢1Cr17Ni13W、1Cr14Ni18W2NbBRE.在700~750℃时,选用Cr14Ni40MoWTiAl或铁基高温合金.高于750℃,可选用镍基耐热合金Ni80Cr20或镍基高温合金.近年来,镍基高温合金的精密铸造、精密模锻、爆炸成形等新工艺已应用于燃气轮机叶片,TaC及NbC纤维增强镍基合金复合材料、SiC及Si3N4等新型陶瓷材料应用于燃气轮机叶片的研究也正在进行中.1:根据减速机齿面硬度的大小,通常人们将齿轮传动分为两类,包括硬齿面齿轮传动和软齿面齿轮传动.2:根据减速机齿面硬度的大小,通常人们将齿轮传动分为两类,包括硬齿面齿轮传动和软齿面齿轮传动.3:通常一对啮合齿轮的齿面硬度均大于350HBS,称为硬齿面齿轮,否则被称为软齿面齿轮.选择那种齿轮传动要根据设计要求,两种齿轮传动各有利弊,但有于硬齿面传动载荷大,使用寿命长,备广泛的应用.硬齿面齿轮采用的材料及热处理方法很多,例如常用的几种:.45Mn2钢,可以采用最终热处理,高频回火或者氮化处理.范围本标准规定了圆柱齿轮减速器的通用技术条件.本标准适用于低速级中心距α≤1000mm的单级、两级和三级圆柱齿轮减速器(以下简称减速器),也适用于低速级转架半径R≤300mm的单级、两级和三级行星齿轮减速器(以下简称减速器).2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文.本标准出版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性.GB191—1990 包装储运图示标志GB/T1184—1996 形状和位置公差未注公差值GB/T3480—1988 圆柱齿轮承载能力计算GB/T4879—1985 防锈包装GB/T6404—1986 齿轮装置噪声声功率级测定方法GB/T10095—1988 渐开线圆柱齿轮精度GB/T11368—1989 齿轮传动装置清洁度GB/T13306—1991 标牌GB/T13384—1992 机电产品包装通用技术条件JB/—1998重型机械通用技术条件铸铁件JB/—1998重型机械通用技术条件锻件JB/—1998重型机械通用技术条件切削加工件JB/—1998重型机械通用技术条件涂装JB/T8831—1999 工业齿轮润滑油选用方法JB/T8853—1999 圆柱齿轮减速器JB/—1999圆柱齿轮减速器加载试验方法3技术要求总技术要求3.1.1减速器允许下列范围内正常工作:a)环境温度为-40~+40℃;注:当环境温度低于0℃3.1.33.1.5质量超过20kg3.2.2注1括号内数值适用于硬齿面齿轮.2氮化齿轮齿面表面粗糙度Ra为μm.3.2.4磨齿齿轮应作齿顶修缘滚齿齿轮精滚时一般应采用修缘滚刀.3.2.5磨齿齿轮副小齿轮作齿向修形.齿向修形尺寸见图1和式(1)、式(2):式中:△S——齿向修形量,μm;Fβ——齿向误差允许值,弘m;b1——小齿轮齿宽,mm;b2——大齿轮齿宽,mm;Δb——大小齿轮宽差,mm;Δb1——小齿轮的齿向修形长度,mm.3.2.60.05mm0.3mm0.05mm4试验与检验减速器的试验应符合JB/的规定.减速器生产厂应具有完善的检查记录档案.合格产品应签发合格证.5标志、包装、运输及贮存每台产品须在明显位置固定标牌,其要求应符合GB/T13306的规定,并标明:a)产品型号、名称;b)主要技术参数(如转速、功率、转矩、重量等);c)出厂日期;d)产品编号;e)制造厂名称.产品包装、运输5.2.1成套发货单及装箱清单;b)合格证书;c)产品按装及使用说明书等.6制造保证在用户遵守本标准与产品标准及有关文件规定的运输、保管、安装和使用条件下,减速器自发货之日起1年内如因制造质量不良而损坏或不能正常工作时,制造厂应无偿为用户修理或更换.附录A(标准的附录)齿轮润滑与热处理A1齿轮润滑油齿轮润滑油应按JB/T8831选用.减速器选用的润滑油有:a)抗氧防锈工业齿轮油;b)中级压工业齿轮油;c)高级压工业齿轮油.使用时环境温度不得低于-5℃.齿轮节圆线速度不大于25m/s,不符合上述情况应选用其他合适的润滑油.润滑油工作参考温度及温升见表A1.注:1当高于表中数值时,应考虑需加冷却装置或喷油润滑,更换润滑油品种.2当节圆线速度小于10m/s时,应采用浸油润滑,否则应采用喷润滑油.A2齿轮毛坯与热处理技术要求齿轮一般应采用锻钢件,直径大于或等于900mm的齿轮可采用锻造(或热滚轧)齿圈焊接齿轮,用圆柱销螺栓与轮心拼装结构.调质齿轮的技术要求:a)齿面硬度:一般调质齿轮为283HB以下;中硬齿面调质齿轮为360HB以下;注:硬度值应按布氏硬度表上数值选用.b)重要齿轮可增添材料力学性能试验及无损伤的要求.注:重要齿轮(以下均同)系指按GB/T3480方框图中疲劳极限的中限及上限,即为MQ和ME计算的齿轮.渗碳淬火齿轮的技术要求:a)齿面硬度:57HRC+4HRC;b)有效硬化层深度:(~)mn,mm;c)齿轮中心部硬度:30~46HRC;d)齿面不得有裂纹;e)重要的齿轮可增加材料力学性能试验.感应淬火齿轮的技术条件:a)齿面硬度:48~56HRC(重要齿轮可取50~56HRC);b)齿面有效硬化层深度(~)mn,mm;齿面有效硬化层深度偏差一般不作规定,重要齿轮为有效硬化层深度的15%.c)齿底硬度:>40HRC(重要齿轮>45HRC);齿底硬化层深度:(~)mn,mm;齿底硬化层深度偏差一般不作规定;d)心部调质硬度;e)齿面不得有裂纹;f)重要齿轮材料应做力学性能试验.氮化齿轮一般只适用于mn≤10mm的负荷平稳或薄壁结构、形状复杂的齿轮.a)齿面硬度调质钢齿面硬度:>450HV10(重要齿轮为650~700HV10);渗氮钢齿面硬度:>600HV10(重要齿轮为700~850HV10);b)渗氮有效硬化层深度及其偏差见表A2;c)心部硬度:按调质要求;d)重要齿轮应做力学性能试验及无损探伤.A3单件小批生产的渗碳淬火齿轮的齿厚公差单件小批生产的渗碳淬火齿轮的齿厚公差可按表A3选用.对可逆旋转的人字齿轮,在同一齿轮上左右旋齿的齿厚应力求保持一致,左右旋齿的齿厚相对极限偏差应保持在~0.06mm以内.同一组行星齿轮的齿厚极限偏差也应力求保持一致,各行星齿轮齿厚相对极限偏差应保持在~0.05mm以内.。
数控车床车削典型零件工艺分析数控车床是一种利用数控技术进行自动化车削加工的机床,广泛应用于制造业的各个领域。
下面将以数控车床车削典型零件为例进行工艺分析。
以加工一台螺杆为例,工艺分析如下:1.零件材质选择:根据螺杆的使用要求,选择适当的材料,常见的有碳钢、不锈钢等。
2.设计图纸:根据产品需求,在CAD软件中绘制螺杆的设计图纸,包括尺寸、形状等。
3.工艺规程编制:根据零件的设计要求,编制螺杆的工艺规程,包括车削工序、工艺参数、刀具选择等。
4.刀具选择:根据工艺规程选择适合的刀具,考虑切削力、刀具寿命等因素。
5.数控编程:根据工艺规程,利用CAM软件编写数控程序,确定刀具路径、切削深度、进给速度等参数。
6.夹紧装夹:将材料切割到合适的长度后,将工件固定在数控车床的主轴上,使用合适的夹具夹紧。
7.车削加工:根据数控程序进行车削加工,包括外径车削、内径车削、螺纹加工等工序。
8.检测与修正:每一道工序完成后,需要进行质量检测,确保零件尺寸、表面粗糙度等符合要求。
若发现问题,及时进行修正。
9.表面处理:根据产品要求,对螺杆表面进行处理,如抛光、镀层等。
10.质量检验:经过表面处理后,对零件进行再次质量检验,确保各项指标符合要求。
11.包装运输:将加工好的螺杆进行包装和标识,便于运输和使用。
以上是加工一台螺杆的工艺流程,数控车床的精度高、重复性好,能够高效、精确地进行复杂零件的加工。
在实际应用中,根据不同的零部件要求,工艺流程可能会有所不同,但总的来说,工艺分析包括材料选择、工艺规程编制、刀具选择、数控编程、夹紧装夹、车削加工、检测与修正、表面处理、质量检验、包装运输等环节。
通过合理的工艺分析和流程设计,可以实现零件的高效、精确加工,提高生产效率和产品质量。
典型零件选材及工艺分析一,齿轮类机床、汽车、拖拉机中,速度的调节和功率的传递主要靠齿轮机床、汽车和拖拉机中是一种十分重要、使用量很大的零件。
齿轮工作时的一般受力情况如下:(1)齿部承受很大的交变弯曲应力;(2)换当、启动或啮合不均匀时承受击力;(3)齿面相互滚动、滑动、并承受接触压应力。
所以,齿轮的损坏形式主要是齿的折断和齿面的剥落及过度磨损。
据此,要求齿材料具有以下主要性能:(1)高的弯曲疲劳强度和接触疲劳强度;(2)齿面有高的硬度和耐磨性;(3)齿轮心部有足够高的强度和韧性。
此外,还要求有较好的热处理工艺性,如变形小,并要求变形有一定的规律等。
下面以机床和汽车、拖拉机两类齿轮为例进行分析。
(一)机床齿轮机床中的齿轮担负着传递动力、改变运动速度和运动方向的任务。
一般机床中的齿轮精度大部分是7级精度(GB179-83规定,精度分12级,用1、2、3、……12表示,数字愈大者,精度愈低)。
只是在他度传动机构中要求较高的精度。
机床齿轮的工作条件比起矿山机械、动力机械中的齿轮来说还属于运转平稳、负荷不大、条件较好的一类。
实践证明,一般机床齿轮选用中碳钢制造,并经高频感应热处理,所得到的硬度、耐磨性、强度及韧性能满足要求,而县市频淬火具有变形小、生产率高等优点。
下面以C616机床中齿轮为例加以分析。
1、高频淬火齿轮的工工艺线2、热处理工序的作用正火处理对锻造齿轮毛坯是必需的热处理工序,它可以使同批坯料具有相同的硬度,便于切削加工,并使组织均匀,消除锻造应力。
对于一般齿轮,正火处理也可作为高频淬火前的最后热处理工序。
调质处理可以使齿轮具有较高的综合机械性能,提高齿轮心部的强度和韧性,使齿轮能承受较大的弯曲应力和冲击力。
调质后的齿轮由于组织为回火索氏体,在淬火时变形更小。
高频淬火及低温回火是赋予齿轮表面性能的关键工序,通过高频淬火提高了齿轮表面硬度和耐磨性,并使齿轮表面有压应力存在而增强了抗疲劳破坏的能力。
为了消除淬火应力,高频淬火后应进行低温回火(或自行回火),这对防止研磨裂纹的产生和提高抗冲击能力极为有利。
3、齿轮高频淬火后的变形情况齿轮高频淬火后,其变形一般表现为内孔缩小,外径不变或减小。
齿轮外径与内径之比小于1.5时,内径略胀大;当齿轮有键槽时,内径向键槽方向胀大,形成椭圆形,齿间椭圆形,齿间亦稍有变形,齿形变化较小,一般表现为中间凹0.002~0.0005㎜。
这些微小的变形对生产影响不大,因为一般机床用的7级精度齿轮,淬火回火后,均要经过滚光和推孔才成为成品。
高频淬火齿轮通常用含碳量为0.40~0.50%的碳钢或低合金钢(40、45、40Cr、45Mn2、405MnB 等)制造。
批量生产时,一般要求精选含碳量以保证质量。
45钢限制在0.42~0.47%C,40Cr钢限制在0.37~0.42%C。
经高频淬火交低温回火后,淬硬层应为中碳回火马氏体,而心部则为毛坯热处理(正火或调质)后的组织。
(二)汽车、拖拉机齿轮汽车、拖拉机齿轮主要分装在变速箱和差速器中,在变速箱中,通过它来改变发动机、典轴和主轴齿轮的速比;在差速器中,通过齿轮来增加扭转力钜并调节左右两车轮的转速,通过齿轮将发动机的动力传到主动轮,驱汽车、拖拉机运行。
汽车、拖拉机齿轮的工作条件比机床齿轮要繁重得多,困此在耐磨性、疲劳强度、心部强度和冲击韧性等方面的要求均比机床齿轮为高。
实践证明,汽车、拖拉机齿轮选用渗碳钢制造并经渗碳热处理后使用是较为合合适。
下面以JN-150型载重汽车(载重量为8000㎏)变速箱中第二轴的二、三档齿轮(如图9-26所示)为例进行分析。
1、选用钢;汽车、拖拉机齿轮的生产特点是批量大、产量高,因此在选择用钢时,在满足机械性能的前提下,对工艺性必须给以足够的重视。
20CrMnTi 钢具有较高的机械性能,见第六章表6-4所示。
该钢在渗碳淬火低温回火后,表面硬度为HRC58~62,心部硬度为HRC30~45。
20CrMnTi 的工艺性能尚好。
锻造后一般以正火改善其切削加工性。
20CrMnTi 钢的热处理工艺性较好,有较好的淬透性。
由于合金元素钛的影响,对过热不敏感,故在渗碳后可直接降温淬火。
此外尚有渗碳速度较快,过渡层较均匀,渗碳淬火后变形小等优点,这对制造形状复杂、要求变形小的齿轮零件来说是十分有利的。
20CrMnTi 钢可制造截面在30㎜以下,承受高速中等载荷以及冲击、摩擦的重要零件,如齿轮、齿轮轴等各种渗碳零件。
当含碳量在上限时,也可用于制造截面在40㎜以下,模数大于10的20CrMnTi 齿轮等。
根据JN-150G 型载重汽车变速箱中第二轴的二、三档齿轮的规格和工作条件,选用20CrMnTi 钢制造是比较合适的。
2、二轴齿轮的工艺路线。
下料→锻造→正火→机械加工→渗碳、淬火及低温回火→喷丸→磨内孔及换档槽→装配3、热处理工序的作用;在第六章的“渗碳钢的热处理特点”实例中对此已有叙述,这里不再重复。
4、热处理技术条件和热处理工艺热处理技术条件:渗碳层表面含碳量:0.8~1.05%C;渗碳层厚度:0.8~1.3㎜;淬火后硬度:HRC≮59;回火后表面硬度:HRC58~64;回火后心部硬度:HRC33~48。
齿轮主要尺寸:齿数(Z)=32;模数(m)=5.5;-0.16-0.09 公法线长度(L)=74.88 +0.24 ;键宽 =10 +0.03 。
变形要求:齿部公法线摆动量小于0.055㎜;键宽的变形不超过0.005㎜;齿向的变形不超过0.017㎜。
热处理工艺:渗碳是在JT-75井式炉内进行。
渗碳温度为920~940℃,渗碳时间可查第五章表5-10,确定为5小,渗碳后预冷至840~860℃直接淬火(油冷),淬火后再经≤200℃低温回火。
二轴齿轮经渗碳、淬火及低温回火后得到的统计结果台下:表层含碳量不超过1.05% HRC62~63HRC40~430.02~0.04㎜0.05~0.1㎜0.05㎜表面硬度(回火后)心部硬度(回火后)公法线长度胀大内孔缩小键宽缩小根据上述变形规律,生产上进一步采用冷热加工配合的方法,使变形控制在要求的技条件范围之内。
除高频淬火齿轮与渗碳齿轮外,尚有碳氮共渗齿轮;根据受力情况和性能要求不同,齿轮还可采用中碳合金进行调质并经氮化处理后使用;以及采用铸铁、铸钢制造齿轮。
二、轴类在机床、汽车、拖拉机等制造工业中,轴类零件是另一类用量很大,且占有相当重要地位的结构件。
轴类零件的主要作用是支承传动零件并传递动和动力,它们在工作时受多种应力的作用,因此从选材角度看,材料应有较高的综合机械性能.局部承受摩擦的部位如车床主轴的花键、曲轴轴颈等处,要求有一定的硬度,以提高其抗磨损能力。
要求以综合机械性能为主的一类结构零件的选材,还需根据其应力状态和负荷种类考虑材料的淬透性和抗疲劳性能。
实践证明,受交变应力的轴类零件、连杆螺栓等结构件,其损环形式不少是由于疲劳裂纹引起的。
下面以车床主轴、汽车半轴、内燃机曲轴、镗杆、大型人字齿轮轴等典型零件为例进行分析。
(一)机床主轴在选选用机床主轴的材料和热处理工艺时,必须考虑以下几点:<1> 受力的大小。
不同类型的机床,工作条件有很大差别,如高速机床和精密机床主轴的工作条件与重型机床主轴的工作条件相比,无论在弯曲或扭转疲劳特性方面差别都很大。
<2> 轴承类型。
如在滑动轴承上工作时,轴颈需要有高的耐磨性。
<3> 主轴的形状及其可能引起的热处理缺陷。
结构形状复杂的主轴在热处理时易变形甚至于开裂,因此在选材上应给予重视。
主轴是机床中主要进零件之一,其质量好坏直接影响机床的精度和寿命。
因此必须根据主轴的工作条件和性能要求,选择用钢和制定合理的冷热加工工艺。
1、机床主轴的工作条件和性能要求C616-416车床主轴如图1-2所示。
该主轴的工作条件如下:①承受交变的弯曲应力与扭转应力,有时受到冲击载荷的作用;②主轴大端内锥孔和锥度外圆,经常与卡盘、顶针有相对摩擦;③花健部分经常有磕或相对滑动。
总之,该主轴是在滚动轴承中动转,承受中等负荷,转速中等,有装配精度要求,且受到一定的冲击力作用。
由此确定热处理技术条件如下:①整体调质后硬度应为HB200~230,金相组织为回火索氏体;②内锥孔和外圆锥面处硬度为HRC45~50,表面3~5㎜内金相组织为回火屈氏体和少量回火马氏体;③花键部分的硬度为HRC48~53,金相组同上。
2、选择用钢 C616车床属于中速、中负荷、在滚动轴承中工作的机床,因此选用45钢是可以的。
过去此主轴曾采用45钢经正火处理后使用;后来为了提高其强度和韧性,在粗车后又增加了调质工序。
而且调质状态的疲劳强度比正火为高,这对提高主轴抗疲劳性能也是很重要的。
表1-1为45钢正火和调质后的机械性能比较。
表1-1 45钢正火和调质后的机械性能热处理σb (MN/㎡σs (MN/㎡σ-1(MN/㎡调质 682 490 338正火 600 340 2603、主轴的工艺路线下料→锻造→正火→粗加工(外圆留余4~5㎜)→调质→半精车外圆(留余2.5~3.5㎜),钻中心孔,精车外圆(留余0.6~0.7㎜,锥孔留余0.6~0.7㎜,铣键槽→局部淬火(锥孔及外锥体)→车定刀槽,粗磨外圆(留余0.4~0.5㎜,滚→精磨。
4、热处理工序的作用正火处理是为了得到合适和硬度(HB170~230),以便于机械加工,同时改善锻造组织,为调质处理作准备。
调质处理是为了使主轴得到高的综合机械性能和疲劳强度。
调质后硬度后硬度为HB200~230,组织为回火索氏体。
为了更好的发挥调质效果,将调质安排在粗加工后进行。
内锥孔和外圆锥面部分经盐浴局部淬火和回火后得到所要求的硬度,以保证装配精度和不易磨损。
5、热处理工艺调质淬火时由于主轴各部分的直径不同,应注意谈天问题。
调质后的变形虽然可以通过校直来修正,但校直时的附加应力对主轴精加工后的尺寸稳定性是不利的。
为减小变形,应注意淬火操作方法。
可采取预冷淬火和控制水中冷水机却时间来减小变形。
花键部分可用高频淬火以减小变形和达到硬度要求。
经淬火后的内锥孔和外圆锥面部分需经260~300℃回火,花键部分需经240~260℃回火,以消除淬火应力并达到规定的硬度值。
也有用球墨铸铁制造机床主轴的,如某厂用球墨铸铁的主轴淬火后硬度为HRC52~58,且变形量比45钢为小.(二汽车半轴汽车半轴是驱动车轮转动的直接驱动件。
半轴材料与其工作条件有关,中型载重汽车目前选用40Cr 钢,而重型载汽车则选用性能更高的40CrMnMo 钢。
1、汽车半轴的工作条件和性能在求的半轴为例。
半轴的简图如图9-28所示。
汽车半轴是传递扭矩的一个重要部件。
汽车运行时,发动机输出的扭矩,经过多级以跃进型载重汽车(载重量为2500kg)铣花键→花键淬火变速和主动器传递给半轴,再由半轴传动车轮。