傅里叶分析实验报告
- 格式:doc
- 大小:17.65 MB
- 文档页数:22
一、实验目的1. 了解傅里叶变换的基本原理和方法。
2. 掌握傅里叶变换在信号处理中的应用。
3. 通过实验验证傅里叶变换在信号处理中的效果。
二、实验原理傅里叶变换是一种将信号从时域转换为频域的方法,它可以将一个复杂的信号分解为一系列不同频率的正弦波和余弦波的叠加。
傅里叶变换的基本原理是:任何周期信号都可以表示为一系列不同频率的正弦波和余弦波的叠加。
三、实验仪器与材料1. 实验箱2. 信号发生器3. 示波器4. 计算机及傅里叶变换软件四、实验步骤1. 设置信号发生器,产生一个正弦信号,频率为f1,幅度为A1。
2. 将信号发生器输出的信号输入到实验箱,通过示波器观察该信号。
3. 利用傅里叶变换软件对观察到的信号进行傅里叶变换,得到频谱图。
4. 改变信号发生器的频率,分别产生频率为f2、f3、f4的正弦信号,重复步骤2-3。
5. 分析不同频率信号的频谱图,观察傅里叶变换在信号处理中的应用。
五、实验数据与结果1. 当信号发生器频率为f1时,示波器显示的信号波形如图1所示。
图1:频率为f1的正弦信号波形2. 对频率为f1的正弦信号进行傅里叶变换,得到的频谱图如图2所示。
图2:频率为f1的正弦信号的频谱图从图2可以看出,频率为f1的正弦信号在频域中只有一个频率成分,即f1。
3. 重复步骤4,分别对频率为f2、f3、f4的正弦信号进行傅里叶变换,得到的频谱图分别如图3、图4、图5所示。
图3:频率为f2的正弦信号的频谱图图4:频率为f3的正弦信号的频谱图图5:频率为f4的正弦信号的频谱图从图3、图4、图5可以看出,不同频率的正弦信号在频域中分别只有一个频率成分,即对应的f2、f3、f4。
六、实验分析与讨论1. 傅里叶变换可以将信号从时域转换为频域,方便我们分析信号的频率成分。
2. 通过傅里叶变换,我们可以得到信号的频谱图,直观地观察信号的频率成分。
3. 实验结果表明,傅里叶变换在信号处理中具有重要作用,可以应用于信号分解、滤波、调制等领域。
信号与系统的傅立叶分析实验报告(共10篇)信号与系统实验报告周期信号的傅立叶级数分析信号与系统实验报告实验名称:姓学班时一、实验目的周期信号的傅立叶级数分析名:号:级:间:2013.4.191、掌握周期信号的频谱分析;2、学会对一般周期信号在时域上进行合成;二、实验基本原理在“信号与系统”中,任何周期信号只要满足狄利赫利条件就可以用傅立叶级数表示,即可分解成直流分量及一系列谐波分量之和。
以周期矩形脉冲信号为例,设周期矩形脉冲信号f~(t)的脉冲宽带为?,脉冲幅度为E,周期为T1,如图1.1所示。
图1.1 周期矩形脉冲信号的波形它可以展开成如下三角形式的傅立叶级数:E?2E?f(t)??T1T1~n?1?Sa()cosn?1t ?2n?1从上式可得出直流分量、基波及各次谐波分量的幅度:E?T12E?n??c?Sa()T2c0?1n1根据式(1-2)、(1-3)可以分别画出周期矩形脉冲信号三角形式表示的幅度谱和相位谱,如图1.2所示。
(a)(b)图1.2 周期矩形脉冲信号的频谱从上图中可以看出,周期矩形脉冲信号可以分解成无穷多个频率分量,也就是说,周期信号是由多个单一频率的正弦信号合成的,各正弦信号的频率n?1是周期信号频率?1的整数倍。
同样,任一周期信号也可以由一系列单一的频率分量按式(1-1)式所定的频率、幅度和相位进行合成。
理论上需要谐波个数为无限,但由于谐波幅度随着谐波次数的增加信号幅度减少,因而只需取一定数目的谐波数即可。
三、实验内容及结果1、周期方波信号的傅里叶级数分析(1)五路谐波分量的幅值1)一次谐波的波形(2)2)一、二次谐波合成的波形3)一、二、三次谐波合成的波形4)一、二、三、四次谐波合成的波形5)一、二、三、四、五次谐(3)画出周期方波信号的幅度谱波合成的波形篇二:实验一信号与系统的傅立叶分析实验一信号与系统的傅立叶分析一. 实验目的用傅立叶变换对信号和系统进行频域分析。
二.实验仪器装有matlab软件的计算机三.实验内容及步骤(1)已知系统用下面差分方程描述:y(n)?x(n)?ay(n?1)试在a?0.95和a?0.5两种情况下用傅立叶变换分析系统的频率特性。
傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。
二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。
三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。
2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。
应用快速傅里叶变换对信号进行频谱分析实验报告实验报告:快速傅里叶变换在信号频谱分析中的应用【引言】傅里叶分析是一种重要的信号处理方法,可将时域信号转换为频域信号,并且可以分解信号的频谱成分。
传统的傅里叶变换算法在计算复杂度方面较高,为了降低计算的复杂度,人们提出了快速傅里叶变换(FFT)算法。
本实验旨在通过应用快速傅里叶变换对信号进行频谱分析,研究信号的频谱特性。
【实验目的】1.了解傅里叶变换的基本原理,研究其在信号处理中的应用;2.学习快速傅里叶变换算法的原理和优点;3.通过实验操作,观察信号的频谱特性,分析实验结果。
【实验原理】1. 傅里叶变换(FT):对于一个连续时间域信号x(t),其傅里叶变换可表示为X(ω) = ∫[t=−∞,∞]x(t)e^(-jωt)dt,其中X(ω)表示频域上的信号分量,ω为角频率。
2.快速傅里叶变换(FFT)算法:FFT是一种离散时间域信号的频谱分析方法,具有较低的计算复杂度。
FFT算法使用了分治法的思想,将信号分解为较小的频谱分量,并通过递归计算得到完整的频谱图。
3.FFT算法的步骤:1)若信号长度为N,则将其分为两个长度为N/2的子信号;2)对子信号进行FFT变换;3)将两个子信号拼接起来,得到完整信号的频谱分量。
【实验步骤】1.准备实验材料和装置:计算机、FFT分析软件、信号发生器等;2.设置信号发生器的输出参数,例如频率、幅度等;3.连接信号发生器和计算机,打开FFT分析软件;4.在FFT软件中选择输入信号通道,设置采样参数等;5.开始实验,观察计算机屏幕上的频谱图;6.调整信号发生器的参数,重复第5步,记录实验结果;7.结束实验,关闭设备。
【实验结果与分析】我们选择了一个简单的正弦波信号作为输入信号,信号频率设置为100Hz,幅度设置为1V。
在进行频谱分析之前,我们通过示波器观察到一个明显的正弦波信号。
接下来,我们将信号输入到计算机上的FFT分析软件中,进行频谱分析。
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
⼤学物理仿真实验傅⾥叶光学⼤学物理仿真实验——傅⾥叶光学实验实验报告姓名:班级:学号:实验名称傅⾥叶光学实验⼀、实验⽬的1.学会利⽤光学元件观察傅⽴叶光学现象。
2.掌握傅⽴叶光学变换的原理,加深对傅⽴叶光学中的⼀些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
⼆、实验所⽤仪器及使⽤⽅法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),⽔平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,⽩屏三、实验原理平⾯波Ee(x,y)⼊射到p平⾯(透过率为)在p平⾯后Z=0处的光场分布为:E(x,y)= Ee(x,y)图根据惠更斯原理(Huygens’ Principle),在p平⾯后任意⼀个平⾯p’处光场的分布可看成p平⾯上每⼀个点发出的球⾯波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这⾥:=球⾯波波长;n=p平⾯(x,y)的法线⽮量;K=(波数)是位相和振幅因⼦;cos(n,r)是倾斜因⼦;在⼀般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中r z;(1)式可⽤菲涅尔衍射积分表⽰:(菲涅尔近似 Fresnel approximation)(2)当z更⼤时,即z>>时,公式(2)进⼀步简化为夫琅和费衍射积分:(Fraunhofer Approximation)这⾥:位相弯曲因⼦。
如果⽤空间频率做为新的坐标有:,若傅⽴叶变换为(4)(3)式的傅⽴叶变换表⽰如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射⾓的关系tg==,tg===,=可见空间频率越⾼对应的衍射⾓也越⼤,当z越⼤时,衍射频谱也展的越宽;由于感光⽚和⼈眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因⼦(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦⾯上放⼀振幅透过率为g(x,y)的图象作为物,并⽤波长为的单⾊平⾯波垂直照明图象,则在透镜后焦⾯上的复振幅分布就是g(x,y)的傅⽴叶变换,其中空间频率,与坐标,的关系为:,。
南昌大学实验报告学生姓名:肖江学号:6100210030 专业班级:电子103班实验类型:□验证□综合□设计□创新实验日期:2012/4/5 实验成绩:傅里叶变换一、实验目的1、学习傅里叶变换的符号运算与数值实现方法2、学会将连续信号得到其频谱并用得到频谱恢复原信号3、学会周期信号的傅里叶级数分析二、实验说明1、计算tu(t)和sin t的傅里叶变换2、绘制矩形脉冲f(t)=1 (-0.5<t<0.5)的波形(-1<t<1)和频谱F(w) (-8π<w<8π),利用你得到的频谱恢复时域信号f s(t),比较和原信号的差别。
3、绘制周期T1=1 幅度E=1的对称方波的前10项傅里叶级数的系数(三角形式),并用前五项恢复原信号。
三、实验步骤1、在命令窗口中输入syms tF1=fourier(t*heaviside(t)) ;F2=fourier(sin(t));2、T=2; %定义时域抽样长度N=200; %定义时域抽样点数t=linspace(-T/2,T/2-T/N,N)' ;%定义时域抽样点f=0*t ; %初始化时域信号f(t>-1/2&t<1/2)=1 ;%时域信号赋值OMG=16*pi ; %定义频域抽样长度K=100; %定义频域抽样点数omg=linspace(-OMG/2,OMG/2-OMG/K,K)';%定义频域抽样点F=0*omg ; %初始化频谱for k=1:K %使用循环计算for n=1:NF(k)=F(k)+T/N*f(n)*exp(-j*omg(k)*t(n));endendfs=0*t ; %初始化合成信号for n=1:N %循环计算每个时域抽样点的合成信号for k=1:K %使用循环计算fs(n)=fs(n)+OMG/2/pi/K*F(k)*exp(j*omg(k)*t(n)); endendsubplot(1,2,1)plot(t,f) ;hold onsubplot(1,2,1)plot(t,fs,'k:');hold offsubplot(1,2,2)plot(omg,F)3、 E=1; %定义方波幅度T1=1 ; %定义方波周期omg1=2*pi/T1 ;%定义基频N=1000 ;%定义时域抽样点数t=linspace(-T1/2,T1/2-T1/N,N)' ;%生成时域抽样点f=0*t ; %初始化时域信号f(:)=-E/2 ;f(t>-T1/4&t<T1/4)=E/2 ;k1=-10;%确定系数的起止下标k2=10 ;k=[k1:k2]' ;%生成系数下标序列F=1/N*exp(-j*kron(k*omg1,t.'))*f ;%求指数形式傅里叶级数的系数a0=F(11) ; %转换到三角函数形式的系数ak=F(12:21)+F(10:-1:1) ;fs=cos(kron(t,[0:5]*omg1))*[a0;ak(1:5)] ;%用前五个和成原波形subplot(1,2,1)plot(t,f)hold onplot(t,fs,'k:')subplot(1,2,2)stem(ak)hold off四、实验数据及处理结果1、F1 = - 1/w^2 + pi*dirac(w, 1)*iF2 = -pi*(dirac(w - 1) - dirac(w + 1))*i2、第二题输出图形如下3、第三题输出图形如下五、思考讨论题或体会或对改进实验的建议在画出离散信号的图形时,并不能用以前的plot画出,在经过尝试和寻找资料后发现应该用stem函数输出。
傅里叶红外实验报告
傅里叶红外实验是一种常见的分析化学实验,它利用傅里叶变换原理,将物质的红外光谱图像转换为频率分布图像,从而得到物质的结构信息。
本次实验我们使用的是红外光谱仪,通过对样品的红外光谱进行分析,得到了样品的结构信息。
实验步骤如下:
1. 准备样品:将待测样品制成薄膜或粉末,并将其放置在红外光谱仪的样品室中。
2. 调整仪器:打开红外光谱仪,调整仪器的参数,如光源强度、光谱分辨率等,以保证实验的准确性。
3. 开始实验:启动红外光谱仪,让样品受到红外光的照射,记录下样品的红外光谱图像。
4. 分析数据:将得到的红外光谱图像进行傅里叶变换,得到频率分布图像,从中分析出样品的结构信息。
通过本次实验,我们得到了样品的红外光谱图像和频率分布图像,从中可以看出样品的结构信息。
例如,我们可以通过红外光谱图像中的吸收峰来判断样品中的化学键类型,如羰基、羟基、胺基等。
同时,我们还可以通过频率分布图像中的峰位和峰形来判断样品中的分子结构,如分子中的取代基、环状结构等。
傅里叶红外实验是一种非常重要的分析化学实验,它可以帮助我们了解样品的结构信息,从而更好地进行化学研究和应用。
fft实验分析实验报告FFT实验分析实验报告一、引言傅里叶变换(Fourier Transform)是一种重要的信号分析工具,它能够将一个信号分解成不同频率的成分。
快速傅里叶变换(Fast Fourier Transform,FFT)是一种高效的计算傅里叶变换的算法。
本实验旨在通过实际操作,探究FFT在信号分析中的应用。
二、实验设备与方法1. 实验设备:本实验使用的设备包括示波器、信号发生器和计算机。
2. 实验方法:(1)将信号发生器的输出接入示波器的输入端。
(2)调节信号发生器的参数,如频率、振幅等,产生不同的信号。
(3)通过示波器观察信号的波形,并记录相关数据。
(4)将示波器与计算机通过USB接口连接,将示波器上的数据传输到计算机上。
(5)使用计算机上的软件进行FFT分析,得到信号的频谱信息。
三、实验结果与分析1. 实验一:正弦波信号的FFT分析(1)设置信号发生器的频率为1000Hz,振幅为5V,产生一段正弦波信号。
(2)通过示波器观察信号的波形,并记录相关数据。
(3)将示波器上的数据传输到计算机上,进行FFT分析。
实验结果显示,正弦波信号的频谱图呈现出单个峰值,且峰值位于1000Hz处。
这说明FFT能够准确地分析出信号的频率成分,并将其可视化展示。
2. 实验二:方波信号的FFT分析(1)设置信号发生器的频率为500Hz,振幅为5V,产生一段方波信号。
(2)通过示波器观察信号的波形,并记录相关数据。
(3)将示波器上的数据传输到计算机上,进行FFT分析。
实验结果显示,方波信号的频谱图呈现出多个峰值,且峰值位于500Hz的倍数处。
这说明方波信号由多个频率成分叠加而成,FFT能够将其分解出来,并显示出各个频率成分的强度。
3. 实验三:复杂信号的FFT分析(1)设置信号发生器的频率为100Hz和200Hz,振幅分别为3V和5V,产生一段复杂信号。
(2)通过示波器观察信号的波形,并记录相关数据。
(3)将示波器上的数据传输到计算机上,进行FFT分析。
实验二傅里叶分析及应用一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件装用Matlab R2015a的电脑。
三、实验过程1、已知周期三角信号如下图所示[注:图中时间单位为:毫秒(ms)]:(1)试求出该信号的傅里叶级数[自己求或参见课本P112或P394],利用Matlab编程实现其各次谐波[如1、3、5、13、49]的叠加,并验证其收敛性;程序:t=-10:0.001:10;y=(sawtooth(pi*(t+1),0.5)+1)/2;plot(t,y),xlabel('t'),ylabel('三角波信号');axis([-2,2,0,1.1]);n_max=[1,3,5,11,47];N=length(n_max);for k=1:Nn=1:2:n_max(k);b=4./((pi.^2)*(n.^2));x=0.5+b*cos(pi*n'*t);figure,plot(t,x);hold on;plot(t,y);hold off;xlabel('t'),ylabel('部分和的波形');axis([-3,3,0,1]);title(['最大谐波数=',num2str(n_max(k))]);End结果:(2)用Matlab分析该周期三角信号的频谱[三角形式或指数形式均可]。