七年级期中考试数学试题
- 格式:docx
- 大小:70.78 KB
- 文档页数:4
一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √2B. πC. -3/4D. 无理数2. 若a、b为实数,且a+b=0,则下列选项中正确的是()A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠03. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 0C. 4x + 2 = 2x + 4D. 2x + 1 = 2x + 34. 下列图形中,轴对称图形是()A. 长方形B. 正方形C. 三角形D. 梯形5. 若等边三角形的边长为a,则其周长为()A. 3aB. 2aC. aD. a/26. 下列函数中,为一次函数的是()A. y = 2x + 3B. y = x^2 + 2C. y = 3x + 4 + 2xD. y = 2x + 5 +x^27. 若等腰三角形的底边长为b,腰长为a,则其面积S为()A. S = (b^2 + a^2) / 2B. S = (b^2 - a^2) / 2C. S = (a^2 + b^2) / 2D. S = (a^2 - b^2) / 28. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -59. 若a、b、c为等差数列,且a+b+c=12,a+c=8,则b的值为()A. 4B. 5C. 6D. 710. 下列方程中,解为x=3的是()A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 3 = 7D. 5x - 4 = 7二、填空题(每题4分,共40分)11. -5与5的差是_________。
12. 若a=2,b=-3,则a-b的值为_________。
13. 等腰三角形的底边长为8,腰长为10,则其高为_________。
14. 若y = 2x + 3,当x=2时,y的值为_________。
15. 等边三角形的边长为6,则其面积为_________。
16. 若a、b、c为等差数列,且a+c=12,a+b+c=18,则b的值为_________。
2023~2024学年第一学期七年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的相反数是()A.B.C.5D.2.在中,负数共有()A.2个B.3个C.4个D.5个3.杭州奥体中心体育场又称“大莲花”,为杭州第19届亚运会主会场.座席数为80800个.将数据80800用科学记数法表示为()A.B.C.D.4.下列四个数中,最小的是()A.B.C.D.5.下列图形中,能够折叠成一个正方体的是()A.B.C.D.6.已知有理数在数轴上的位置如图所示,则从大到小的顺序为()第6题图A.B.C.D.7.用一平面去截下列几何体,其截面可能是长方形的有()圆柱圆锥长方体球体第7题图A.1个B.2个C.3个D.4个5-155-15-112, 2.4,,0.72,2,0, 1.834-+---48.0810⨯48.810⨯58.810⨯58.0810⨯3-7-()3--13-,a b,,,a b a b--b a a b>->>-a b b a->->>b a a b->>->b a a b>>->-8.下列运算正确的是()A .B .C .D .9.某商店出售一种商品,有以下几种方案,调价后价格最低的方案是()A .先提价,再降价B .先降价,再提价C .先提价,再降价D .先提价,再降价10.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折次,可以得到折痕的条数是()第一次对折第二次对折 第三次对折第10题图A .B .C .D .第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.朱自清的《春》中有描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种现象可以用数学知识解释为______.12.单项式的次数是______.13.杭州亚运会于2023年10月顺利落幕,中国队获金牌和奖牌榜双第一,如图是一个正方体的表面展开图,与“亚”字相对面上的汉字是______.第13题图14.若,则的值为______.15.若,则代数式的值为______.16.如图,将两张边长分别为5和4的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为______.2222m n mn mn-=-22523y y -=277a a a +=325ab ab ab+=10%10%10%10%15%15%20%20%n n 1n -21n -121n --312ab ()2230a b ++-=ba 2310x y -+=246x y -+AB AD ,m n 1S 2S 4m n -=12S S -5 4 图①图②第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)(1);(2).18.(本小题满分6分)(1);(2).19.(本小题满分6分)先化简,再求值:,其中.20.(本小题满分8分)如图是由一些相同的小正方体组成的几何体. 从正面看 从正面看 从左面看 从上面看(1)请在指定位置画出该几何体从正面、左面和上面看到的形状图;(2)在这个几何体上再添加一些相同的小正方体,如果从左面和从上面看到的形状图不变,那么最多可以再添加______个小正方体.21.(本小题满分8分)气候变暖导致全球大部分地区极端强降水事件增多,由此引发的洪涝等灾害风险已倍受各界广泛关注.为揭示气候变暖背景下极端降水的变化规律,查阅山东省气象信息中心1961——2020年降水量资料发现,夏季出现极端降水次数最多.(1)若设定100次为标准次数,试完成表1:地区济南潍坊青岛日照淄博菏泽次数100961029588()()6109-+---()2118623⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭231134624⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭()2023323137-+⨯---()()22222332x y xyxy x y ---+1,3x y ==-与标准次数的差值0表1 1961——2020年极端降水出现次数(2)极端降水出现次数最多的地区与最少的地区相差______次;(3)以上地区出现极端降水的平均次数是多少?22.(本小题满分8分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为、宽为、厚为,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含的代数式表示)(2)若封面和封底沿虚线各折进去,剪掉阴影部分后,包书纸的面积是多少?第一步 第二步23.(本小题满分10分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在处.规定以向东的方向为正方向,步行记录如下(单位:米):(1)小明离主席台最远是______米;(2)以主席台为原点,用1个单位长度表示,请在数轴上表示点;(3)在主席台东边5米处是仲裁处,小明经过仲裁处______次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(本小题满分10分)随着生活水平的日益提高,人们的健康意识逐渐增强,越来越多的人把健身作为一种时尚的生活方式,某商家2+19+5-12-26cm 18.5cm 1cm cm x x 2cm A 10,8,6,13,7,12,2,2+-+-+-+-1m A抓住机遇推出促销活动,向客户提供了两种优惠方案:方案一:买一件运动外套送一件卫衣;方案二:运动外套和卫衣均在定价的基础上打8折.运动外套每件定价300元,卫衣每件定价100元.在开展促销活动期间,某俱乐部要到该商场购买运动外套100件,卫衣件().(1)方案一需付款:______元,方案二需付款:______元;(2)当时,请计算并比较这两种方案哪种更划算;(3)当时,如果两种方案可以组合使用,你能帮助俱乐部设计一种最省钱的方案吗?请直接写出你的方案.25.(本小题满分12分)【阅读】可理解为数轴上表示所对应的点与所对应的点之间的距离;如可理解为数轴上表示6所对应的点与2所对应的点之间的距离;可以看作,可理解为数轴上表示6所对应的点与所对应的点之间的距离;【探索】回答下列问题:(1)可理解为数轴上表示所对应的点与______所对应的点之间的距离.(2)若,则数______.(3)若,则数______.(4)如图所示,在数轴上,若点表示的数记为两点的距离为8,且点在点的右侧,现有一点以每分钟2个单位长度的速度从点向右出发,点以每分钟1个单位长度的速度从点向右出发,求分钟后点与点的距离.(结果用含的代数式表示,并化到最简)26.(本小题满分12分)【概念学习】定义新运算:求若干个相同的非零有理数的商的运算叫做除方.比如,类比有理数的乘方,我们把写作,读作“2的圈3次方”;写作,读作“的圈4次方”.一般地,把记作;,读作“的圈次方”.特别地,规定:.【初步探究】x 100x ≥150x =300x =a b -a b 62-62+()62--2-1x +x 25x -=x =219x x -++=x =A ,a A B 、B A P A Q B t P Q t 222++2③()()()()3333-+-+-+-()3-④()3-n a a a a a +++⋅⋅⋅+ 个a ⓝa n a a =①(1)直接写出计算结果:______,______;(2)若为任意正整数,下列关于除方的说法中,正确的有______;(填写正确的序号)①任何非零数的圈2次方都等于1;②任何非零数的圈3次方都等于它的倒数;③圈次方等于它本身的数是1或;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:______;(4)计算:.2023~2024学年第一学期七年级期中教学质量检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)题号12345678910答案C C A A B A B D D C二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案点动成线4真416三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤)17.(本小题共2道题,每小题3分,满分共6分)解:(1)(2)18.(本小题满分6分)解:(1)(2)2=②()3-=③n n 1-()0a a ≠()3n n ≥a =ⓝ()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②8-()()61091697-+-+-=-+=-()()()()31118686321820234⎛⎫⎛⎫-⨯-+÷-=⨯-+⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭()23112312416184234624346⎛⎫⎛⎫⎛⎫-+÷-=-+⨯-=-+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()2023323137831483415-+⨯---=-+⨯---=---=-19.(本小题满分6分)解:当时,原式20.(本小题8分)解:(1)从正面看 从左面看 从上面看(2)421.(本小题8分)解:(1) 119(2)31(3)(次)100答:以上地区出现极端降水的平均次数是100次.22.(本小题8分)解:(1)小海所用包书纸的周长:答:小海所用包书纸的周长为.(2)当时,包书纸长为:包书纸宽为:所以面积为:答:需要的包书纸的面积为.23.(本小题10分)解:(1)10(2)如图所示,点即为所求.()()22222222223326236x y xy xy x y x y xy xy x y xy ---+=-+-=1,3x y ==-()2139=⨯-=4-()()()()()100604219512600⎡⎤⨯++-+++++-+-=⎣⎦()()218.52122262x x ⨯++++()()23822262x x =+++()8128cmx =+()8128cm x +2cm x =()18.5212242cm ⨯++⨯=()262230cm +⨯=()242302242121240cm⨯-⨯⨯-⨯⨯=21240cm A(3)4(4)(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.24.(本小题10分)解:(1);(2)方案一:方案二:25.(本小题满分12分)解:(1)(2)或7(3)或5(4)因为两点的距离为8,点在点的右侧所以点表示的数为:所以分钟后,点对应的数为:,点对应的数为:所以点与点的距离为:所以当时,当时,当时,26.(本小题满分12分)【解答】解:(1),;(2)①②④;(3)或;(4).()10861370.12204.422++-+++-+++-⨯-=+++10020000x +8024000x +1001502000035000⨯+=801502400036000⨯+=1-3-4-A B 、B A B 8a +t P 2a t +Q 8a t ++P Q ()288a t a t t +-++=-80t ->80t -=80t -<2221=÷=②()()()()133333-=-÷-÷-=-③21n a -⎛⎫ ⎪⎝⎭21n a -()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②()()()()()()111120232023422222222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=-÷⨯-÷-÷-÷---÷-÷-÷-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1144416124=-⨯--÷=-+=。
人教版七年级下册数学期中考试试卷一、单选题1的值等于()A .32B .32-C .32±D .81162.在平面直角坐标系中,点P 在第二象限,点P 到x 轴的距离为4,到y 轴的距离为3,则点P 的坐标为()A .()3,4-B .()4,3-C .()3,4-D .()4,3-3.如图,三条直线相交于点O .若CO ⊥AB ,∠1=56°,则∠2等于()A .30°B .34°C .45°D .56°4.若将点(),A a b 向左平移2个单位,再向上平移3个单位得到点B ,则点B 的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b +-5.8-的立方根为()A .2-B .2±C .2D .46.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=()A .10︒B .15︒C .20︒D .25︒7.如图,CD AB ⊥于点D ,90ACB ∠=︒,则下列说法错误的是()A .点C 到AB 的距离等于CD 的长B .点A 到BC 的距离等于AC 的长C .点B 到CD 到的距离等于BD 的长D .点D 到AC 的距离等于AD 的长8.将不大于实数a 的最大整数记为[]a ,则3⎤=⎦()A .3-B .2-C .1-D .09.如图,正方形的一条边的端点恰好是数轴上0和1的对应点,以0的对应点为圆心,以正方形的对角线为半径,逆时针画弧,交数轴于点P ,则点P 对应的数是()A 1B .C .1D . 1.414-10.在数轴上,点A 对应的数是2-,点B 对应的数是1,点P 数轴上动点,则PA PB +的最小值为()A .0B .1C .2D .3二、填空题11“>”,“=”,或“<”).12.在测定跳远成绩时,从落地点拉向起跳线的皮尺应当与起跳线_______.13.如图,//AB l ,//AC l ,则A ,B ,C 三点共线,理由是:__________________________________________.14.把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是_____.15.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点A 出发,沿着A B C D A →→→→→B →…路径循环爬行,当爬行路径长为2019个单位长时,蚂蚁所在格点坐标为_______.三、解答题16.计算:(1;(2.17.求下列各式中的x 的值:(1)()2110x +-=;(2)()3291034x ++=.18.定义:两条线段所在直线相交形成四个角,我们称不大于直角的角叫做两条线段的夹角.如图,小明在一张白纸上画了两条相交线段,用一张小纸片盖住了相交部分,同桌的你如何知道这两条线段的夹角呢?只有一把直尺、一个量角器和一支铅笔供你使用,请你画出一个与夹角相等的角(不能延长),标出该角并测量度数.19.保留画图痕迹,并回答问题:如图,点P 在MON ∠的内部.(1)过点P 画//PA ON ,交OM 于点A ;.(2)过点P 画PB ON ⊥,交ON 于点B ;(3)填空:若70MON ∠=︒,则PAM ∠=_______,BPA ∠=_______.20.完成下列证明.如图,点D ,E ,F 分别在线段BC ,AB ,AC 上,12∠=∠,23180∠+∠=︒.求证:180A B C ∠+∠+∠=︒.证明: ∠l=∠2,∴//AB DF (_________________________________________________________).∴4∠=∠B (__________________________________________________________). 23180∠+∠=︒,∴//DE AC (_________________________________________________________).∴1A ∠=∠(___________________________________________________________),24180C ∠+∠+∠=︒(_____________________________________________________________),∴180A B C ∠+∠+∠=︒.21.如图,四边形ABCD 中,//AD BC ,100A ∠=︒,BD 平分ABC ∠,BD CD ⊥,求C ∠的度数.22.如图,网格的每个小正方形的边长都是1个单位长度,三角形ABC 的顶点都在网格的格点上.(1)建立适当的平面直角坐标系,写出三角形ABC 顶点的坐标;(2)在(1)的平面直角坐标系下,将三角形ABC 向右平移1个单位长度,然后再向上平移2个单位长,得到三角形A B C ''',画出平移后的图形,并指出其各点的坐标.23.如图,在平面直角坐标系中,已知点(),0A a ,()0,B b ,将线段AB 沿着x 轴向右平移至CD ,使点C 与点A 对应,点D 与点B 对应,连接BD .(1)若a ,b 满足40a ++.①填空:a =_______,b =_______;②若面积关系:1:3AOB OCDB S S ∆=四边形成立,则点D 的坐标为_______;(2)BE 平分ABO ∠,DE 平分BDC ∠,BE ,DE 相交于点E ,判断BED ∠的大小,并说明理由.参考答案1.A【详解】分析:根据平方与开平方互为逆运算,可得答案.32,点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.2.A【分析】根据“点P在第二象限”可知,点P的横坐标为负,纵坐标为正,根据“点P到x轴的距离为4,到y轴的距离为3”可分别得出点P横坐标与纵坐标的绝对值,即可得出坐标【详解】解:∵点P在第二象限∴点P的横坐标小于0,纵坐标大于0∵点P到x轴的距离为4,到y轴的距离为3∴点P的坐标是(-3,4)故选:A【点睛】本题考查坐标平面内点的坐标的特点与点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.B【详解】试题分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.考点:垂线.4.A【分析】根据坐标平移的规律:横坐标左减右加,纵坐标上加下减,即可得出答案解:原来的横坐标是a ,向左平移2个单位得到点B 横坐标a -2,原来纵坐标是b ,向上平移3个单位得到点B 纵坐标b+3.故答案是A【点睛】本题考查坐标平移的规律,关键是要熟练掌握左右移动改变点的横坐标,上下移动改变点的纵坐标.5.A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵3(2)=8--∴8-的立方根是2-故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.6.B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
2024学年第一学期七年级期中测试 数学试题卷参考答案及评分建议一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 BDACCBDCBC二、填空题 11. >,< 12. 1 13. 6 14. 1832xx -⋅15. -2024 16. 1 三、解答题17.3112534042-<-<-<<<-,数轴表示略 18.(1)()157366202156912⎛⎫-⨯+-=--+=- ⎪⎝⎭;(2)()32113191099-⨯--=-⨯+=.19.设商品价格为a 元,则甲、乙、丙三个超市的价格分别为a (1-20%)(1-10%)=0.72a ;a (1-15%)2=0.7225a ;a (1-30%)=0.7a ; 所以到丙超市购买最合算 20.a =±5,b =±2,c =-2(1)∵a <b ,∴a =-5 b =±2 ∴a +b =-7或-3(2)∵a bc >0,∴ab <0 ∴a =5,b =-2或a =-5,b =2 ∴a -3b -2c =15或-7. 21.(1)2132293124--=--=- (2)()222222322233a ab a ab a ab a ab ab ⎛⎫---=--+= ⎪⎝⎭∴当2a =-,b =4时,248ab =-⨯=-.22. (1)115(2)8,3 (3)61,179,(4)设甲诞生的年份为a ,他家的人口数为b (0<b <10),则根据嬉戏规则,结果为()21051050a b a b +⨯+=++,所以当甲告知乙结果时,只要减去50,所得结果的个位数就是甲方家的人口数;结果减去50再除以10,所得的数就是甲方的诞生月份数.23.(1)图1中火柴棒的总数是()31m +根,图2中火柴棒的总数是()52n +根, (2)∵图3中有3 p 个正方形,∴火柴棒的总数是()73p +根,①当p =8时,a =59;∴m =26,575n =不是整数;∴p ≠8 ②由题意得315273a m n p =+=+=+,所以325177m n p --==.因为m ,n ,p 均是正整数,所以当m =17,n =10时,p =7, 此时a 的值最小,3171510277352a =⨯+=⨯+=⨯+==52.。
2023-2024学年度第一学期期中监测灌云高级中学七年级数学试题考试时间:100分钟;总分:150分1.答题前填写好自己的姓名、班级、考号等信息.2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题(每题3分,共计24分)1. 计算的结果为()A. 1B.C. 3D.【答案】B解析:解:,故选B.2. 在下列各数,π,0,,,,(每两个2之间依次增加一个数6)中,无理数的个数有()A4个 B. 3个 C. 2个 D. 1个【答案】C解析:是循环小数,是有理数;π是无限不循环小数,是无理数;0是有理数;是分数,是有理数;是小数,是有理数;是小数,是有理数;(每两个2之间依次增加一个数6)是无限不循环小数,是无理数,无理数的个数有2个,故选:C.3. 下列各式运用等式的性质变形,正确的是().A. 若,则B. 若,则C. 若,则D. 若,则【答案】C解析:解:A、若,则,原变形错误,不符合题意;B、若,,则,原变形错误,不符合题意;C、若,则,原变形正确,符合题意;D、若,,则,原变形错误,不符合题意,故选:C.4. 下列运算中,正确的是()A. B.C. D.【答案】D解析:A、,故A错误;B、,故B错误;C、,故C错误;D、,故D正确.故选:D.5. 2023年歌曲《罗刹海市》席卷全球,据统计截止八月中旬,播放量突破惊人的亿,数字用科学记数法表示为( )A. B. C. D.【答案】C解析:解:.故选:C.6. 若,则的值()A. 1B. 或1C. 0D. 或3【答案】D解析:解:当时,,;当时,,;当时,,;当时,,;综上所述,的值为或3.故选:D.7. 如图,将,,,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在分别表示其中的一个数,则的值为()A. B. C. 0 D. 5【答案】A解析:解:根据题意得:,,,,故选:A.8. 如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )A. 0B. 1C. 2D. 3【答案】D解析:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)-7p格,这时P是整数,且使0≤k(k+1)-7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)-7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即这枚棋子永远不能到达的角的个数是3.故选D.第Ⅱ卷(非选择题)二、填空题(每题3分,共计30分)9. 若数在数轴上所对应的点在原点的右边且到原点的距离等于5,那么这个数等于__________.【答案】5解析:解:数在数轴上所对应的点在原点的右边且到原点的距离等于5,这个数,故答案为:5.10. 若单项式和是同类项,则的值为_________.【答案】4解析:解:∵单项式和是同类项,∴,,解得:,∴.故答案为:4.11. 若是关于x的一元一次方程,则m的值是________.【答案】解析:解:∵是关于x的一元一次方程,∴,,解得:或,,∴.故答案是:.12. 已知在如图数值转换机中的输出值,则输入值________.【答案】解析:解:根据题意得,∴解得.故答案为:.13. 已知有理数a,b,c,d,e,且互为倒数,c,d互为相反数,e的绝对值为2,则式子___________.【答案】或解析:解:∵互为倒数,c,d互为相反数,e的绝对值为2,∴,,,∴当时,;当时,;故答案为:或.14. 现定义一种新运算,对于任意有理数,,,满足,若对于含未知数式子满足,则________.【答案】2解析:∵∴,去括号,可得:,移项,合并同类项,可得:,系数化为1,可得:.故答案为:.15. 如图,将直径为1个单位长度的圆形纸片上的点A放在数轴的处,纸片沿着数轴向左滚动一周,点A到达了点的位置,则此时点表示的数是________.【答案】##解析:解:由题意得,点表示的数是,故答案为:.16. 如果,为定值,关于的一次方程,无论为何值时,它的解总是1,则______.【答案】1解析:解:将代入方程,,,,,由题意可知,,,,,,故答案为:1.17. 若,则________.【答案】解析:解:当时,∵,∴,即,当时,∵,∴,∴,∴,故答案为:.18. 如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的,图形②面积是图形①面积的2倍的,图形③面积是图形②面积的2倍的,…,图形⑥面积是图形⑤面积的2倍的,图形⑦面积是图形⑥面积的2倍.计算的值为________【答案】解析:解:根据题意得:图形①的面积是,图形②的面积是,图形③的面积是,…,图形⑥的面积是,图形⑦的面积是,∴.故答案为:三、解答题19. 计算题①②③④【答案】①5,②26,③9,④4详解】①原式;②原式;③原式;④原式20. 解方程:(1);(2).【答案】(1)(2)【小问1详解】解:去括号得:,移项合并同类项得:,解得:;【小问2详解】解:,去分母得:,去括号得:,移项合并同类项得:,解得:.21. (1)先化简再求值:,其中.(2)先化简,再求值:,其中,.【答案】(1),;(2),4解析:解:(1),当,时,原式;(2),,,当,时,原式,,.22. 出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米),,,,,,(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为升/千米,油价为元/升,这天下午共需支付多少油钱?【答案】(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费元【小问1详解】解:(千米),答:将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米.【小问2详解】解:(元),答:这天下午共需支付油费元.23. 已知,.(1)若m为最小的正整数,且,求;(2)若的结果中不含一次项和常数项,求的值.【答案】(1)(2)1【小问1详解】解:∵m为最小的正整数,且,∴,故,则;【小问2详解】解:.∵的结果中不含一次项和常数项,∴,解得:,∴.24. 列方程解应用题:某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天20元生活补助费,现有三种修理方案:、由甲单独修理;、由乙单独修理;、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【答案】(1)该中学库存960套桌椅(2)方案c省时省钱【小问1详解】解:(设该中学库存x套桌椅,则,解得.答:该中学库存960套桌椅.【小问2详解】解:设a、b、c三种修理方案的费用分别为元,则,,,综上可知,选择方案c更省时省钱.答:方案c省时省钱.25. 关于x的整式,当x取任意一组相反数m与时,若整式的值相等,则该整式叫做“偶整式”;若整式的值互为相反数,则该整式叫做“奇整式”.例如:是“偶整式”,是“奇整式”.(1)若整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,则________;(2)对于整式,可以看作一个“偶整式”与“奇整式”的和.①这个“偶整式”是________,“奇整式”是________;②当x分别取,,,0,1,2,3时,这七个整式的值之和是________.【答案】(1)0 (2)①,;②35【小问1详解】解:∵整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,∴,∴,故答案为:0;【小问2详解】解:①,∵,,∴“偶整式”,是奇整式”,故答案为:,;②由于是偶整式,是奇整式,∴当x分别取,,,0,1,2,3时,的值分别为10,5,2,1,2,5,10;当x取互为相反数的值时的值也互为相反数,即和为0,∴当x分别取,,,0,1,2,3时,的所有值的和为0,,∴这七个整式的值之和是;故答案为:35.26. 将整数1,2,3……2009按下列方式排列成数表,用斜十字框“×”框出任意的5个数,如果用a,b,c,d,m表示类似“×”形框中的5个数.其中.(1)记,若S最小,那么m=__________,若S最大,那么m=__________.(2)用等式表示a,b,c,d,m这5个数之间的关系并说明理由.(3)若.求m的值.(4)框出的五个数中,a,b,c,d的和能否等于588吗?若能,求出m的值,若不能,请说明理由.【答案】(1)17,2009(2)(3)(4)能,【小问1详解】(1)由题意可得,∴∵∴当时S最小,此时,∵,∴,∴,∵,∴当时,S最大,故答案为:17,2009;【小问2详解】解:∵,∴,,∴;【小问3详解】解:∵,∴,,∵,∴,∴∴;【小问4详解】解:若,则,解得,∵,∴是第三列的数,∴框出的五个数中,a,b,c,d的和能等于588,且.27. 已知a,b满足,a,b分别对应数轴上的A,B两点.(1)直接写出__________,__________;(2)若点P从点A出发,以每秒3个单位长度的速度向数轴正方向运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍?(3)数轴上还有一点C对应的数为30.若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动.P点到达C点后,再立刻以同样的速度返回,运动到终点A,点Q 达到点C后继续向前运动.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?【答案】(1)4,16(2)或8(3)点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4【小问1详解】解:∵,∴,,∴,,故答案为:4,16;【小问2详解】解:设运动时间为,由题意得,或,解得或8,∴运动时间为或8秒时,点P到点A的距离是点P到点B的距离的2倍;【小问3详解】解:设点P和点Q运动t秒时,P、Q两点之间的距离为4,如图,当点Q在点P右侧,,解得,如图,当点P在点Q的右侧,,解得,如图,当点P从点C返回时,且点P在Q的右侧,,解得,如图,当点P返回时,点Q在点P的右侧,,解得,即点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4,此时点Q表示的数为20、24、25、27.。
人教版数学七年级下册期中考试试题评卷人得分一、单选题1.把方程4y+3x =1+x 写成用含x 的代数式表示y 的形式,以下各式正确的是()A .y =3x +1B .y =6x +14C .y =6x +1D .y =3x +142.将一直角三角板与两边平行的硬纸条如图所示放置,下列结论(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中错误的个数是()A .0B .1C .2D .33.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A .1个B .2个C .3个D .4个4.下列运算中正确的是()A .=5B =±5C =2D .2125.如图所示,AB ∥CD ,则∠A+∠E+∠F+∠C 等于()A .180°B .360°C .540°D .720°6.若以A (﹣1,0),B (3,0),C (0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A .第一象限B .第二象限C .第三象限D .第四象限评卷人得分二、填空题7.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.8.若方程组324523x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为____.9的平方根是.10.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=_____.11.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.12.已知小数部分为m,11为小数部分为n,则m+n=____.13.已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为3,则点B的坐标是____.14.观察数表:根据数表排列的规律,第10行从左向右数第8个数是____.评卷人得分三、解答题15.解方程:25x2﹣36=0.16.计算:﹣.17.如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.证明:∵CF⊥AB,DE⊥AB(_____)∴∠BED=90°,∠BFC=90°(____)∴∠BED=∠BFC(_____)∴ED∥FC(_____)∴∠1=∠BCF(_______)∵∠1=∠2(______)∴∠2=∠BCF(______)∴FG∥BC(______)18.已知12xy=⎧⎨=-⎩是方程组71mx nymx ny+=⎧⎨-=-⎩的解,求m,n值.19.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?20.如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.21.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②,由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩,乙看错了方程②中的b,得到方程组的解为54xy=⎧⎨=⎩,试计算a2019+(﹣110b)2018.22.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.23.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.24.△ABC 与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'____;B'_____;C'_____;(2)说明△A'B'C'由△ABC 经过怎样的平移得到?_____.(3)若点P (a ,b )是△ABC 内部一点,则平移后△A'B'C'内的对应点P'的坐标为_____;(4)求△ABC 的面积.25.如图,在平面直角坐标系中,A 、B 坐标分别为A (O ,a )、B (b ,a ),且a 、b 满足:2(3)0a -+=,现同时将点A 、B 分别向下平移3个单位,再向左平移1个单位,分别得到点A 、B 的对应点C 、D ,连接AC 、BD 、AB .(1)求点C 、D 的坐标;(2)在y 轴上是否存在点M ,连接MC 、MD ,使三角形MCD 的面积为30?若存在这样的点,求出点M 的坐标;若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PA 、PO ,当点P 在BD 上移动时(不与B 、D 重合),3N N mg '==的值是否发生变化,并说明理由.26.小张去书店购买图书,看好书店有A ,B ,C 三种不同价格的图书,分别是A 种图书每本1元,B 种图书每本2元,C 种图书每本5元.(1)若小张同时购买A ,C 两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A ,B ,C 三种不同图书10本,用去18元,请你设计他的购买方案.参考答案1.B【解析】∵413xy x +=+,∴12y+x=3+3x,12y=2x+3,1164y x ∴=+.故选B.2.A【解析】【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【详解】∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选A.【点睛】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.3.B【解析】【分析】根据对顶角的性质和平行线的判定定理,逐一判断即可.【详解】①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.4.C【解析】A 选项:5=±,故是错误的;B 选项:5=-,故是错误的;C 2=,故是正确的;D =172,故是错误的;故选C.【点睛】主要运用了对算术平方根和平方根的定义,能理解定义是解此题的关键.5.C【解析】过点E 、F 分别做AB 的平行线,两直线平行,同旁内角互补,可得∠A+∠E+∠F+∠C=540,故选C6.C【解析】【分析】首先画出平面直角坐标系,根据A 、B 、C 三点的坐标找出其位置,然后再根据两组对边分别平行的四边形是平行四边形找出D 的位置,进而可得答案.【详解】如图所示:第四个顶点不可能在第三象限.故选C .【点睛】此题主要考查了平行四边形的性质、坐标与图形性质,根据题意画出图形是解题的关键.7.130°【解析】试题分析:∵AB ∥CD ,∠B=50°,∴∠B=∠C=50°.∵BC ∥DE ,∴∠C+∠D=180°.∴∠D=180°﹣50°=130°.8.3【解析】324523x y k x y k +=-⎧⎨+=⎩①②①+②得5x+5y=5k-5,∴x +y =k -1,∴k -1=2,∴k =3.9.±2.【解析】【详解】±2.故答案为±2.10.3【解析】试题分析:先根据二元一次方程的定义得出关于m 、n 的方程,求出m 、n 的值,再代入m-n 进行计算即可.∵方程x m-3+y 2-n =6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.11.如果两条直线平行于同一条直线,那么这两条直线平行.【解析】【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.12.1【解析】【分析】由于4<7<9,则2<3,于是可得到7<<8,8<11<9,则有m=5+﹣7﹣2,n=11﹣8=3,然后代入m+n中计算即可.【详解】∵4<7<9,∴2<3,∴7<<8,8<11<9,∴m=﹣7﹣2,n=11﹣8=3∴m+n﹣2+3=1.故答案为1.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.13.(3,2)或(﹣3,2)【解析】【分析】因为A(1,2),B(x,y),AB∥x轴,根据平面直角坐标系内点的坐标特征,可知y=2,因为B到y轴距离为3,所以x=±3,于是B的坐标是(3,2)或(﹣3,2).【详解】∵A(1,2),B(x,y),AB∥x轴,∴y=2,∵B到y轴距离为3,x=±3,∴B的坐标是(3,2)或(﹣3,2),故答案为(3,2)或(﹣3,2).【点睛】本题考查了坐标与图形性质,正确掌握平面直角坐标系内点的坐标特征是解题的关键.14【解析】观察、分析表格中的数据可知,第n行第n,从它往左,被开方数依次减1,从它往右,被开方数依次加1,∴第10行第10,∴第10行第8点睛:本题的解题要点是:通过观察、分析所给数据组得到结论:,2 ,……,由此得到第n行的第n1即可解出本题了.15.x=±6 5.【解析】【分析】先求出x2,再根据平方根的定义进行解答.【详解】整理得,x2=36 25,∴x=±6 5.故答案为x=±6 5.【点睛】本题考查了利用平方根的定义求未知数的值,熟记正数的平方根有两个,互为相反数,负数没有平方根,0的平方根是0是解题的关键.16.﹣4.【解析】【分析】先把各根式化为最减二次根式,再合并同类项即可.【详解】﹣1﹣(3)=﹣1﹣=﹣4.【点睛】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.17.答案见解析【解析】【分析】由CF⊥AB、DE⊥AB知∠BED=∠BFC,利用平行线的判定知ED∥FC,由性质得∠1=∠BCF,又因为∠2=∠1,所以∠2=∠BCF,故可由内错角相等两直线平行判定FG∥BC.【详解】∵CF⊥AB,DE⊥AB(已知)∴∠BED=90°,∠BFC=90°(垂线的性质)∴∠BED=∠BFC(等量代换)∴ED∥FC(同位角相等,两直线平行)∴∠1=∠BCF(两直线平行,同位角相等)∵∠2=∠1(已知)∴∠2=∠BCF(等量代换)∴FG∥BC(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质.熟练掌握平行线的判定与性质是解答本题的关键.18.32 mn=⎧⎨=-⎩【解析】【分析】把x与y的值代入方程组计算,即可求出m与n的值.【详解】把12xy=⎧⎨=-⎩代入方程组得:2721m nm n-=⎧⎨+=-⎩,解得:32 mn=⎧⎨=-⎩故m的值为3,n的值为-2.【点睛】本题考查了二元一次方程组,掌握方程组的解满足方程组中的每个方程.19.狮子(-4,5),飞禽(3,4),两栖动物(4,1),南门(0,0)【解析】试题分析:根据马场的坐标为(-3,-3),建立直角坐标系,找到原点和x轴、y轴.再找到其他各景点的坐标.建立坐标系如图:∴南门(0,0),狮子(-4,5),飞禽(3,4)两栖动物(4,1).考点:坐标确定位置.20.证明见解析【解析】试题分析:由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD,∵∠2=∠1,∴∠1=∠CBD,∴GF∥BC,∵BC∥DM,∴MD∥GF,∴∠AMD=∠AGF.考点:平行线的判定与性质.21.0.【解析】【分析】将31xy=-⎧⎨=-⎩代入方程组的第二个方程,54xy=⎧⎨=⎩代入方程组的第一个方程,联立求出a与b的值,代入计算即可求出所求式子的值.【详解】将31xy=-⎧⎨=-⎩代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将54xy=⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2019+(﹣110b)2018=﹣1+1=0.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.22.±3【解析】【分析】先根据2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4求出ab的值,再求出a+2b的值,由平方根的定义进行解答即可.【详解】解:∵2a﹣1的平方根为±3,∴2a﹣1=9,解得,2a=10,a=5;∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16,即15+b﹣1=16,解得b=2,∴a+2b=5+4=9,∴a+2b的平方根为:±3.【点睛】本题考查的是平方根及算术平方根的定义,熟知一个数的平方根有两个,这两个数互为相反数是解答此题的关键.23.(1)见解析;(2)36°.【解析】【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD∥EF,根据平行线的性质即可求出∠2.【详解】(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.24.(1)(﹣3,1),(﹣2,﹣2),(﹣1,﹣1);(2)先向左平移4个单位,再向下平移2个单位;(3)(a﹣4,b﹣2).(4)2【解析】【分析】(1)结合图形写出点A',B',C'的坐标;(2)由点A到点A'的平移关系求解;(3)根据(2)得到的平移关系求解;(4)分别过点A,C作坐标轴的平行线,则S△ABC=一个长方形的面积减去三个三角形的面积.【详解】解:如图所示,(1)根据图形得,A'(-3,1);B'(-2,-2);C'(-1,-1);(2)三角形A'B'C'是由三角形ABC 向左平移4个单位长度,向下平移2个单位长度得到的.(3)(a -4,b -2)(4)S △ABC =2×3-12×1×3-12×1×1-12×2×2=2.【点睛】本题考查了平移及平移的性质,确定一个图形平移的方向和距离,需要确定其中一个点平移的方向的距离,将一个图形沿某一个方向平移一定的距离,即是图形上的每一个点都沿同一方向移动了相同的距离.25.(1)点C (﹣1,0),D (4,0);(2)存在,点M (0,12)或(0,﹣12);(3)3N N mg '==不变,理由见解析.【解析】【分析】(1)由偶次方及算术平方根的非负性可求出a 、b 的值,进而即可得出点A 、B 的坐标,再根据平移的性质可得出点C 、D 的坐标;(2)设存在点M (0,y ),根据三角形的面积结合S △MCD =30,即可得出关于y 的含绝对值符号的一元一次方程,解之即可得出结论;(3)过P 点作PE ∥AB 交OC 与E 点,根据平行线的性质得∠BAP+∠DOP =∠APE+∠OPE =∠APO ,故比值为1.【详解】(1)∵2(3)0a -+=,∴a =3,b =5,∴点A (0,3),B (5,3).将点A ,B 分别向下平移3个单位,再向左平移1个单位,得到点C 、D ,∴点C (﹣1,0),D (4,0).(2)设存在点M (0,y ),根据题意得:S △MCD =12×5|y|=30,∴解得:y =±12,∴存在点M (0,12)或(0,﹣12).(3)当点P 在BD 上移动时,3N N mg '===1不变,理由如下:过点P 作PE ∥AB 交OA 于E ,∵CD 由AB 平移得到,则CD ∥AB ,∴PE ∥CD ,∴∠BAP =∠APE ,∠DOP =∠OPE ,∴∠BAP+∠DOP =∠APE+∠OPE =∠APO ,∴3N N mg '===1.【点睛】本题综合考查了坐标与图形性质、三角形的面积、平行四边形的面积、平移以及非负性的运用,解题的关键是:(1)根据平移的性质找出点C 、D 的坐标;(2)根据三角形的面积结合S △MCD =30可得结论;(3)根据题意作出辅助线.26.(1)小张购买A 种图书3本,购买C 种图书3本;(2)小张共有2种购书方案:方案一:购买A 种图书2本,购买B 种图书8本;方案二:购买A 种图书8本,购买C 种图书2本;(3)小张的购书方案为:购买A 种图书5本,购买B 种图书4本,购买C 种图书1本.【解析】【分析】(1)设小张购买A 种图书x 本,则购买C 种图书(6﹣x )本,根据购买A ,C 两种不同图书一共用去18元列出方程,求解即可;(2)因为书店有A ,B ,C 三种不同价格的图书,而小张同时购买两种不同的图书,所以要将A ,B ,C 两两组合,分三种情况:A ,B ;A ,C ;B ,C ,每种情况都可以根据下面两个相等关系列出方程,两种不同价格的图书本数之和=10,购买两种不同价格的图书钱数之和=18,然后根据实际含义确定他们的解;(3)有两个等量关系:A 种图书本数+B 种图书本数+C 种图书本数=10,购买A 种图书钱数+购买B种图书钱数+购买C种图书钱数=18.设两个未知数,得出二元一次方程,根据实际含义确定解.【详解】(1)设小张购买A种图书x本,则购买C种图书(6﹣x)本.根据题意,得x+5(6﹣x)=18,解得x=3,则6﹣x=3.答:小张购买A种图书3本,购买C种图书3本;(2)分三种情况讨论:①设购买A种图书y本,则购买B种图书(10﹣y)本.根据题意,得y+2(10﹣y)=18,解得y=2,则10﹣y=8;②设购买A种图书y本,则购买C种图书(10﹣y)本.根据题意,得y+5(10﹣y)=18,解得y=8,则10﹣y=2;③设购买B种图书y本,则购买C种图书(10﹣y)本.根据题意,得2y+5(10﹣y)=18,解得y=32 3,则10﹣y=﹣23,不合题意舍去.综上所述,小张共有2种购书方案:方案一:购买A种图书2本,购买B种图书8本;方案二:购买A种图书8本,购买C种图书2本;(3)设购买A种图书m本,购买B种图书n本,则购买C种图书(10﹣m﹣n)本.根据题意,得m+2n+5(10﹣m﹣n)=18,整理,得4m+3n=32,∵m、n都是正整数,0<4m<32,∴0<m<8,将m=1,2,3,4,5,6,7分别代入,仅当m=5时,n为整数,n=4,∴m=5,n=4,10﹣m﹣n=1.答:小张的购书方案为:购买A种图书5本,购买B种图书4本,购买C种图书1本.【点睛】本题考查了一元一次方程、二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.要注意题中未知数的取值必须符合实际意义.。
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,哪个数是整数?A. 3.14B. -2.5C. 0D. 1.0012. 下列哪个图形是轴对称图形?A. 长方形B. 三角形C. 圆形D. 平行四边形3. 下列哪个方程的解是x=3?A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 1 = 11D. 5x - 2 = 134. 一个长方形的长是6厘米,宽是4厘米,它的周长是多少厘米?A. 20B. 24C. 18D. 225. 如果一个正方形的边长增加了10%,它的面积增加了多少?B. 20%C. 21%D. 30%6. 下列哪个数是质数?A. 4B. 9C. 11D. 157. 一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?A. 24B. 28C. 32D. 368. 下列哪个分数是最简分数?A. $\frac{18}{24}$B. $\frac{24}{36}$C. $\frac{30}{45}$D. $\frac{42}{60}$9. 如果一个数的倒数是$\frac{1}{5}$,这个数是多少?A. 5B. 10C. 2510. 下列哪个图形的面积是18平方厘米?A. 直径为6厘米的圆B. 边长为3厘米的正方形C. 面积为18平方厘米的矩形D. 面积为18平方厘米的三角形二、填空题(每题5分,共25分)11. 0.125的分数形式是______。
12. 4的平方根是______。
13. 下列数的倒数是$\frac{2}{3}$的是______。
14. 一个圆的半径是5厘米,它的直径是______厘米。
15. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,它的体积是______立方厘米。
三、解答题(每题15分,共60分)16. 解方程:2x - 5 = 13。
17. 一个长方形的长是12厘米,宽是8厘米,求它的周长和面积。
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
人教版七年级下册数学期中考试试卷一、单选题1.下列各组图形可以通过平移互相得到的是()A .B .C .D .2.实数4的算术平方根是()A B .2C .2±D .163.下列数据能确定物体具体位置的是()A .息州大道北侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒4.如图,90ACB ∠=︒,CD AB ⊥,垂足为D ,则点B 到直线CD 的距离是指()A .线段BC 的长度B .线段CD 的长度C .线段BE 的长度D .线段BD 的长度5.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为()A .100︒B .110︒C .120︒D .130︒6.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在下列给出的条件中,能判定//DF AB 的是()A .∠4=∠3B .∠1=∠AC .∠1=∠4D .∠4+∠2=180°8.在平面直角坐标系中,点M 在第四象限,且点M 到x 轴、y 轴的距离分别为6,4,则点M 的坐标为()A .()4,6-B .()4,6-C .()6,4-D .()6,4-9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩C . 4.5112y xy x =-⎧⎪⎨=+⎪⎩D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩10.如图,在平面直角坐标系上有点()1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为()A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题11.请写出一个大于1且小于2的无理数:___.12.请把“36的平方根是正负6”翻译成数学式子表示出来:____________________________.13.已知方程2x ﹣3y =6,用含x 的式子表示x ,则y =_____.14.如图,已知//AB DE ,75ABC ∠=︒,160CDE ∠=︒,则BCD ∠的度数为______________.15.定义“在四边形ABCD 中,若AB ∥CD ,且AD ∥BC ,则四边形ABCD 叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是__.三、解答题16.如图,直线AB 与CD 相交于点O ,EO CD ⊥于点O ,OF 平分AOD ∠,且50BOE ∠=︒,求DOF ∠的度数.17.如图,直线CD 与直线AB 相交于点C ,点P为两直线外一点.(1)根据下列要求画图:①过点P 作//PQ CD ,交AB 于点Q ;②过点P 作PR CD ⊥,垂足为R .(2)若120DCB ∠=︒,则PQC ∠是多少度?请说明理由.(3)连接PC ,比较PC 和PR 的大小,并说明理由.18.解方程组:(1)1{322x y x y =+-=;(2)()()5962{1243x y x y -=-+-=19.如果一个正数a 的两个不相同的平方根是22x -和63x -.求:(1)x 和这个正数a 的值;(2)173a +的立方根.20.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个整数的立方是59319,求这个整数.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?请按照下面的问题试一试:(1)由3101000=,31001000000=(2)由59319的个位上的数是9(3)如果划去59319后面的三位319得到数59,而3327=,3464=,的十位上的数是几吗?(4)已知19683,110592都是整数的立方,请你按照上述方法确定它们的立方根.21.如图,在每个小正方形边长均为1的方格纸中,ABC ∆的顶点都在方格纸格点上,点A 的坐标是()2,1-,点B 的坐标是()6,1-.(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)将ABC ∆向左平移2格,再向上平移3格,请在图中画出平移后的A B C ∆''';(3)在图中能使PBC ABC S S ∆∆=的格点P 有多少个(点P 异于点A ),写出符合条件的P 点坐标.22.完成下面推理过程.如图,已知://AB EF ,EQ 交CD 于点Q ,EP 交AB 于点P ,且EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD .证明:∵//AB EF ,(已知)∴APE PEF ∠=∠.(_________________________________)∵EP EQ ⊥,∴PEQ ∠=_________︒,(垂直的定义)即90QEF PEF ∠+∠=︒.∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴EQC ∠=___________,(同角的余角相等)∴//EF CD ,(______________________)又∵//AB EF ,∴//AB CD .(______________________)23.如图,在平面直角坐标系中,(),0A a ,(),3B b ,()4,0C ,满足()260a b a b ++-+=,线段AB 交y 轴于点F .(1)分别求出A ,B 两点的坐标;(2)求点F 的坐标;(3)在坐标轴上是否存在点P ,使ABP ∆的面积和ABC ∆的面积相等,若存在,求出点P 的坐标,若不存在,请说明理由.参考答案1.C 【详解】试题解析:观察图形可知图案C 通过平移后可以得到.故选C .点睛:图形的平移只改变图形的位置,而不改变图形的形状和大小,易混淆图形的平移与旋转或翻转,而误选A 、B 、D .2.B 【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.3.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:东经103o,北纬30o能确定物体的具体位置,故选:C.【点睛】此题主要考查了确定物体具体位置,要明确,一个有序数对才能确定一个点的位置.4.D【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离,根据点到直线的距离的定义解答即可.【详解】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.【点睛】本题考查了点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.5.B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.6.B 【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.7.C 【分析】可以从直线DF 、AB 的截线所组成的“三线八角”图形入手进行判断.【详解】解:A 、∵∠4=∠3,∴DE ∥AC ,不符合题意;B 、∵∠1=∠A ,∴DE ∥AC ,不符合题意;C 、∵∠1=∠3,∴DF ∥AB ,符合题意;D 、∵∠4+∠2=180°,∴DE ∥AC ,不符合题意;故选:C.【点睛】此题考查平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,6)-.故选:A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,解题的关键是点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x=+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 11 2y xy x=+⎧⎪⎨=-⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】π-等,大于1且小于2 2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.=±6【分析】根据平方根的定义即可得到答案.【详解】解:“36的平方根是正负6”用数学式子表示为:6±故答案为:6±.【点睛】本题主要考查了平方根的定义,解决本题的关键是熟记平方根的定义.13.263x-【分析】将x看做已知数求出y即可.【详解】解:2x﹣3y=6,得到y=263x-.故答案为:26 3 x-【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.55︒【分析】延长ED与BC相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【详解】解:如图,延长ED与BC相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.【点睛】本题考查了平行线的性质,邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.15.(4,3)或(-2,3)或(2,-3).【分析】根据题意画出平面直角坐标系,然后描出(0,0)、(3,0)、(1,3)的位置,再找第四个顶点坐标.【详解】解:如图所示,∴第4个顶点的坐标为(4,3)或(-2,3)或(2,-3).故答案为:(4,3)或(-2,3)或(2,-3).【点睛】此题主要考查了平行四边形的性质及坐标与图形的性质,解题关键是要分情况讨论,难易程度适中.16.70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°,【点睛】此题主要考查了垂直的性质和角平分线的性质,关键是理清图中角之间的和差关系.17.(1)见解析;(2)60PQC ∠=︒,见解析;(3)PR 小于PC ,见解析【分析】(1)①根据同位角相等两直线平行作点P 作PQ ∥CD ;②再利用直角三角板,一条直角边与CD 重合,沿CD 平移,是另一直角边过P ,再画垂线即可;(2)根据两直线平行内角互补可得答案.(3)根据垂线段最短可比较PC 和PR 的大小.【详解】(1)如图所示.(2)60PQC ∠=︒.理由如下:∵CD ∥PQ ,∴∠DCQ +∠PQC =180°,∵∠DCB =120°,∴∠PQC =60°.(3)PR 小于PC ,理由:垂线段最短.【点睛】此题主要考查了复杂作图,平行线的性质和判定以及垂线线段最短等知识,关键是掌握同位角相等两直线平行,据两直线平行内角互补.18.(1)01x y =⎧⎨=-⎩;(2)18{412x y =-=-【详解】试题分析:(1)把第二个方程代入第一个方程,利用代入消元法其解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)1322x y x y =+⎧⎨-=⎩①②;把①代入②得,3(y+1)-2y=2,解得y=−1,把y=−1代入①得,x=−1+1=0,所以,原方程组的解是01x y =⎧⎨=-⎩;(2)方程组整理得:56333428x y x y -=⎧⎨-=⎩①②,①×2−②×3得:x=−18,把x=−18代入②得:y=1236-,则方程组的解为181236x y =-⎧⎪⎨=-⎪⎩.19.(1)4x =,36a =;(2)5.【分析】(1)根据平方根的性质列出算式22630x x -+-=,解方程后求出x 的值,再代入22x -即可求出a 的值;(2)求出173a +的值,根据立方根的概念求出答案.【详解】解:(1)∵一个正数a 的两个不相同的平方根是22x -和63x -,∴22630x x -+-=.∴4x =.∴222426x -=⨯-=.∴36a =.(2)∵36a =,∴173********a +=+⨯=.∵125的立方根为5,∴173a +的立方根为5.【点睛】本题考查了平方根和立方根的概念,熟练掌握平方根的性质和立方根的概念是解题的关键.20.(1)两位数;(2)9;(3)3;(4)27,48【分析】(1)根据59319大于1000而小于1000000,即可确定59319的立方根是2位数;(2)根据一个数的立方的个位数就是这个数的个位数的立方的个位数,据此即可确定;(3)根据数的立方的计算方法即可确定;(4)根据(1)(2)(3)即可得到答案.【详解】解:(1)∵1000<59319<1000000,∴10100,(2)只有个位数是9的立方数的个位数依然是9,9;(3)∵27<59<64,∴34,3.(4)经过分析可得,19683的立方根是两位数,19683的立方根的个位数字是7,十位数字是2,故19683的立方根是27;同理可得,110592的立方根是48.【点睛】本题主要考查了立方根以及数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.21.(1)画图见解析,()8,3;(2)见解析;(3)4个;()3,1,()4,3,()5,5,()6,7【分析】(1)根据点A 、点B 的坐标解答;(2)找出点A 、点B 、点C 的对应点,然后用线段连接;(3)根据两平行线间的距离相等求解.【详解】(1)建直角坐标系如图,C 点坐标()8,3.(2)如图所示,A B C ''' 即为所求;(3)如图所示,有4个,坐标分别为()3,1,()4,3,()5,5,()6,7.【点睛】本题考查作图-平移变换,平面直角坐标系,坐标与图形的性质,三角形的面积,以及两平行线间的距离等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.两直线平行,内错角相等;90;QEF ∠;内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行【分析】根据平行线的性质得到∠APE =∠PEF ,根据余角的性质得到∠EQC =∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE =∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ =90°(垂直的定义)即∠QEF +∠PEF =90°∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴∠EQC =∠QEF∴EF ∥CD (内错角相等,两直线平行)又∵//AB EF ,∴AB ∥CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行),【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.23.(1)()30A -,,()3,3B ;(2)30,2⎛⎫ ⎪⎝⎭;(3)存在,()0,5或()0,2-或()10,0-或()4,0【分析】(1)根据()260a b a b ++-+=结合平方和绝对值的非负性即可计算得到答案;(2)连接OB ,设F 的坐标为(0,t )根据AOF 的面积BOF +△的面积AOB =△的面积进行计算求解即可;(3)先根据前面的已知条件求出ABC 的面积,再根据ABP △的面积APF =△的面积BPF +△的面积进行计算求解即可.【详解】(1)∵()260a b a b ++-+=,()20a b +≥,06a b -+≥∴060a b a b +=⎧⎨-+=⎩∴解得33a b =-⎧⎨=⎩.∴A 的坐标为(-3,0),B 的坐标为(3,3)(2)连接OB ,设F 的坐标为(0,t )∵AOF BOF AOBS S += S ∴1113333222t t ⋅⋅+⋅⋅=⋅⋅.解得32t =.∴点F 的坐标为(0,32).(3)存在.ABC 的面积1217322=⨯⨯=.当P 点在y 轴上时,设P 点的坐标为(0,y ),∵ABP APF BPFS S S =+△△△∴1313213322222y y ⋅-⋅+⋅-⋅=.解得5y =或2y =-.∴此时点P 的坐标为(0,5)或(0,-2)当P 点在x 轴上时,设P 点坐标为(x ,0),则1213322x ⋅+⋅=.解得10x =-或4x =.∴此时点P 的坐标为(-10,0)或(4,0).综上所述,满足条件的点P 的坐标为(0,5)或(0,-2)或(-10,0)或(4,0).【点睛】本题主要考查了坐标系与几何相结合的综合应用,解题的关键在于能够找到几个三角形面积之间的关系.。
2013-2014学年度七年级第二学期
期中考试数学试题
班级: 姓名:
一、选择题(每小题3分,共30分)
1. 下列说法错误的是( )
A 、1的平方根是1
B 、1的算术平方根是1
C 、
2 是2的平方根 D 、-4是2)16(-的平方根
2. 下列所示的四个图形中,∠1和∠2是对顶角的图形有( )
1
2
12
1
2
1
2
A 、0个
B 、1个
C 、2个
D 、3个
3. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( ) A 、()3,3 B 、()3,3- C 、()3,3-- D 、()3,3-
4. 下列各数中,10.10100142
π
--, , , )
A 、1
B 、2
C 、3
D 、4
5.如图,已知AB∥CD,∠A=70°,则∠1的度数是( )
A .70°
B .100°
C .110°
D .130°
6.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A .(5,4)
B .(4,5)
C .(3,4)
D .(4,3)
7.若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )
A. m =1,n=0
B. m =0,n=1
C. m =2,n=1
D. m =2, n=3
8.观察下面图案在A 、B 、C 、D 四幅图案中,能通过图案(1)平移得到的是( )
(1) A
B
C D
5
4D
3E
21
C B
A
9.如右图,下列不能..
判定AB ∥CD 的条件有( ) A.︒=∠+∠180BCD B B.21∠=∠ C.43∠=∠; D. 5∠=∠B .
10.在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,为求此胜几场和平几场.设这支足球队胜x 场,平y 场.根据题意,列出如下四个方程组,其中正确的是( )
A.⎩⎨⎧=+=++.223,122y x y x
B. 12,322.x y x y +=⎧⎨+=⎩
C. 20,322.x y x y ++=⎧⎨+=⎩
D. 212,312.x y x y ++=⎧⎨+=⎩
二、填空题(每小题3分,共30分) 11.
81的算术平方根是
____ ,0的平方根是 ____ ,1的平方根是________。
12.在平面直角坐标系中,点(-2012,-2013)在第___ ___象限. 13.如图,直线a 、b 被第三条直线c 所截,如果a ∥b,
∠1=50°,那么∠2=__度.
14.写出一个解为⎩⎨⎧-==2
1
y x 的二元一次方程_________________.
15.点(-3,6)到x 轴的距离是________ ,到y 轴的距离是________ 。
16.将点(1,2)先向左平移1个单位长度,再向下平移2个单位长度, 得到的对应点的坐标是__________。
17.如图,把长方形ABCD 沿EF 对折后使其两部分重合,若∠1=50°, 则∠AEF 的度数为 .
18.把命题“对顶角相等”改写成“如果…,那么…”的形式为 ____________________________ ______ 。
19.点P (-2,3)关于X 轴对称点的坐标是________。
关于原点对称点的坐标是________。
20.若点P(a ,b)在第二象限,则Q(-b ,a)在第______象限。
三、简答题(共90分)
21. 计算(共32分)
(1
(5分) (2)x 2-121
49 = 0 (7分)
a b
c
2 1
(3)x 2 = 17 (5分) (4)解方程组⎩⎨⎧=+=+426
34y x y x (7分)
(5)化简:
13- (8分)
22.作图 请在所给的数轴上作出表示5的点(保留作图痕迹,不写作法)。
(6分)
23.一个正数x 的平方根是2a -3与5-a ,则a 是多少?(7分)
24.已知长方形的长和宽的比等于3:2,长方形的面积为6002cm ,求长方形的长和宽?(8分)
25. 如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标。
(6分)
26.完成下面推理过程:(8分)
如图,已知∠1 =∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(_______________________),Array∴∠2 =∠CGD(等量代换).
∴CE∥BF(________________________________).
∴∠=∠C(_______________________________).
又∵∠B=∠C(已知),
∴∠=∠B(等量代换).
∴AB∥CD(_____________________________________).
27.如图,已知,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=400,求∠2的度数。
(8分)Array
28.如图,在平面直角坐标系中有三个点A(-3,2)、B(﹣5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).(15分)(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;(4分)
(2)若以A、B、C、D为顶点的四边形为平行四边形,直接写出D点的坐标;(5分)
(3)求四边形ACC1A1的面积.(6分)。