固体物理§1.2空间点阵
- 格式:ppt
- 大小:2.27 MB
- 文档页数:24
第1章晶体的结构(1)固体物质是由大量的原子、分子或离子按照一定方式排列而成的,这种微观粒子的排列方式称为固体的微结构。
(2)按照微结构的有序程度,固体分为晶体、准晶体和非晶体三类。
其中,晶体的研究已经非常成熟,而非晶体和准晶体则是固体研究的新领域。
(3)晶体的结构和特性决定了它在现代科学技术上有着及其广泛的应用,因此,固体物理学以晶体作为主要的研究对象。
§1.1 晶体的基本性质一、晶体的特征1.长程有序*虽然不同的晶体具有各自不同的特性,但是,在不同的晶体之间仍存在着某些共同的特征,这主要表现在以下几个方面。
*具有一定熔点的固体,称为晶体。
*实验表明:在晶体中尺寸为微米量级的小晶粒内部,原子的排列是有序的。
在晶体内部呈现的这种原子的有序排列,称为长程有序。
*长程有序是所有晶体材料都具有的共同特征,这一特性导致晶体在熔化过程中具有一定的熔点。
*晶体分为单晶体和多晶体。
在单晶体内部,原子都是规则地排列的。
单晶体是个凸多面体,围成这个凸多面体的面是光滑的,称为晶面。
(1)单晶体( Single Crystal )由许多小单晶(晶粒)构成的晶体,称为多晶体。
多晶体仅在各晶粒内原子才有序排列,不同晶粒内的原子排列是不同的。
(2)多晶体( Multiple Crystal )由许多小单晶(晶粒)构成的晶体,称为多晶体。
多晶体仅在各晶粒内原子才有序排列,不同晶粒内的原子排列是不同的。
*晶面的大小和形状受晶体生长条件的影响,它们不是晶体品种的特征因素。
2.解理(Cleavage)(1)晶体具有沿某一个或数个晶面发生劈裂的特征,这种特征称为晶体的解理。
解理的晶面,称为解理面。
(2)有些晶体的解理性比较明显,例如,NaCl晶体等,它们的解理面常显现为晶体外观的表面。
(3)有些晶体的解理性不明显,例如,金属晶体等。
(4)晶体解理性在某些加工工艺中具有重要的意义,例如,在划分晶体管管芯时,利用半导体晶体的解理性可使管芯具有平整的边缘和防止无规则的断裂发生,以保证成品率。
固体物理学概论固体物理学是研究物质的结构和性质的一门学科,它涵盖了领域广泛且深奥的知识。
本文将为读者介绍固体物理学的基础知识和主要研究内容。
一、晶体结构晶体是物质在固态中具有长程有序的结构,其原子、离子或分子按照规则排列。
晶体结构对物质的性质和功能具有重要影响。
固体物理学研究晶体结构的方法和特性,发展了晶体学的基本理论。
1. 空间点阵空间点阵是描述晶体结构的重要工具,它由一组等距离的格点所组成。
常见的点阵有简单立方点阵、面心立方点阵和体心立方点阵等。
这些点阵可以通过平移和旋转操作来描述晶体的周期性。
2. 晶胞和晶格晶胞是晶体中基本重复单元,它由一组原子、离子或分子构成。
晶格是由晶胞组成的整体结构,它描述了晶体中原子的排列方式。
晶胞和晶格可以通过晶体学的实验方法进行确定。
二、电子结构电子结构是固体物理学中的核心内容,它研究了电子在晶体中的行为和性质。
电子结构决定了物质的导电性、磁性以及光学性质等。
1. 能带理论能带理论是描述晶体中电子分布的重要理论模型。
根据能量分布,电子在晶体中具有禁带和能带的概念。
导带和价带之间的能隙决定了物质的导电性质。
2. 费米能级费米能级是描述固体中电子填充状态的参考能量。
它决定了电子在晶体中的分布规律,以及固体的导电性质。
费米能级的位置和填充程度影响了物质的导电性。
三、磁性和磁性材料磁性是固体物理学研究的另一个重要方向。
固体材料在外加磁场下表现出不同的磁性行为,如铁磁性、顺磁性和反铁磁性等。
1. 磁化强度和磁矩磁化强度是描述材料对磁场响应的物理量,它与材料中的磁矩相关。
磁矩是材料中带有自旋的原子或离子产生的磁场。
2. 磁性材料的分类磁性材料可以根据其磁性行为进行分类。
铁磁材料在外加磁场下显示出强烈的磁化行为,顺磁材料对外加磁场表现出弱磁化行为,而反铁磁材料在一定温度下表现出特殊的磁性行为。
四、光学性质固体物理学还研究了固体材料的光学性质。
物质在光场中的相互作用导致了光的传播、吸收和散射等现象。
-空间点阵空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。
这14种空间点阵以后就被称为布拉菲点阵。
空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。
当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。
在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如图1-8所示。
一般情况下单胞的选取有以图1-8 空间点阵及晶胞的不同取法图1-9面心立方阵胞中的固体物理原胞图1-10晶体学选取晶胞的原则下两种选取方式:1.固体物理选法在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。
如面心立方点阵的固体物理单胞并不反映面心立方的特征,如图1-9所示。
2.晶体学选法由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则(如图1-10所示):①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。
根据以上原则,所选出的14种布拉菲点阵的单胞(见图1-12)可以分为两大类。
一类为简单单胞,即只在平行六面体的 8个顶点上有结点,而每个顶点处的结点又分属于 8个相邻单胞,故一个简单单胞只含有一个结点。
另一类为复合单胞(或称复杂单胞),除在平行六面体顶点位置含有结点之外,尚在体心、面心、底心等位置上存在结点,整个单胞含有一个以上的结点。
14种布拉菲点阵中包括7个简单单胞,7个复合单胞。
图1-11 单晶胞及晶格常数根据单胞所反映出的对称性,可以选定合适的坐标系,一般以单胞中某一顶点为坐标原点,相交于原点的三个棱边为X、Y、Z三个坐标轴,定义X、Y轴之间夹角为γ,Y、Z之间夹角为α,Z、X轴之间夹角为β,如图1-11所示。