曲线运动(2)小船过河
- 格式:ppt
- 大小:216.00 KB
- 文档页数:10
曲线运动知识点与考点总结曲线运动考点梳理:一.曲线运动1.运动性质————变速运动,具有加速度2.速度方向————沿曲线一点的切线方向3.质点做曲线运动的条件(1)从动力学看,物体所受合力方向跟物体的速度不再同一直线上,合力指向轨迹的凹侧。
(2)从运动学看,物体加速度方向跟物体的速度方向不共线例题:如图5-1-5在恒力F作用下沿曲线从A运动到B,这时突然使它受的力反向,而大小不变,即由F变为-F,在此力作用下,关于物体以后的运动情况的下列说法中正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线由B返回A 2、图5-1-6簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b 是轨迹上的图ab 图两点。
若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是()A.带电粒子所带电荷的符号;B.带电粒子在a、b两点的受力方向;C.带电粒子在a、b两点的速度何处较大;D.带电粒子在a、b两点的电势能何处较大。
二.运动的合成与分解1.合运动和分运动:当物体同时参与几个运动时,其实际运动就叫做这几个运动的合运动,这几个运动叫做实际运动的分运动.2.运动的合成与分解(1)已知分运动(速度v、加速度a、位移s)求合运动(速度v、加速度a、位移s),叫做运动的合成.(2)已知合运动(速度v、加速度a、位移s)求分运动(速度v、加速度a、位移s),叫做运动的分解.(3)运动的合成与分解遵循平行四边形定则.3.合运动与分运动的关系(1)等时性:合运动和分运动进行的时间相等.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,各自产生效果.(3)等效性:整体的合运动是各分运动决定的总效果,它替代所有的分运动. 三.平抛运动1.定义:水平抛出的物体只在重力作用下的运动.2.性质:是加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.3.平抛运动的研究方法(1)平抛运动的两个分运动:水平方向是匀速直线运动,竖直方向是自由落体运动.(2)平抛运动的速度 水平方向:0v v x= ; 竖直方向:gt v y =合速度:22yx v v v +=,方向:xyv v tg =θ(3)平抛运动的位移 水平方向水平位移:s x =v 0t 竖直位移:s y =21gt 2合位移:22yx s s s +=,方向:tg φ=xy ss 0ssφyxvv 0v y θ s 图4.平抛运动的轨迹:抛物线;轨迹方程:2202x v g y =5.几个有用的结论(1)运行时间和水平射程:水平方向和竖直方向的两个分运动既有独立性,又有等时性,所以运动时间为gh t 2=,即运行时间由高度h 决定,与初速度v 0无关.水平射程gh v x 20=,即由v 0和h 共同决定.(2)相同时间内速度改变量相等,即△v =g △t,△v 的方向竖直向下.【例题】1.证明:(一个有用的推论)平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.v v vv 1yv 2y△图v 0 vv v hsα αs 图2. 一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。
曲线运动【目标】1.了解曲线运动的特点和条件,会处理基本问题2.掌握平抛运动的基本规律,会解决基本问题3.理解圆周运动的基本概念,掌握向心力的实例分析4.理解万有引力定律的内容,会分析天体和卫星问题 曲线运动1.速度方向:质点在某一点的瞬时速度的方向,沿曲线上该点的切线方向。
2. 运动性质:曲线运动一定是变速运动,即必然具有加速度。
3.曲线运动的条件(1)运动学角度:物体的加速度方向跟速度方向不在同一条直线上。
(2)动力学角度:物体所受合外力的方向跟速度方向不在同一条直线上。
【例题1】关于曲线运动,下列说法中正确的是( )A. 曲线运动的速度大小一定变化 B .曲线运动的速度方向一定变化 C .曲线运动的加速度一定变化 D .做曲线运动的物体所受的外力一定变化 【演练1】做曲线运动的物体,在运动过程中一定变化的是( ) A.速率 B .速度 C .合外力 D .加速度 运动的合成与分解 一、运动的合成与分解遵循的规律:位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则。
(1)合运动类型⎩⎨⎧加速度或合外力⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度或合外力与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动(2)两个直线运动的合运动性质的判断根据合加速度方向与合初速度方向判定合运动是直线运动还是曲线运动,具体分以下几种情况:两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、 一个匀变速直线运动 匀变速曲线运动 两个初速度为零的 匀加速直线运动 匀加速直线运动两个初速度不为零 的匀变速直线运动如果v 合与a 合共线,为匀变速直线运动 如果v 合与a 合不共线,为匀变速曲线运动二、小船过河问题(1)过河时间最短:船头正对河岸时,渡河时间最短,t min =dv 1(d 为河宽)。
(2)过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,x min =d 。
一、曲 线 运 动1、 曲线运动中质点在某一点的速度方向 沿曲线的这一点的切线方向。
2、 曲线运动中速度的方向是时刻改变的。
曲线运动是变速运动。
加速度(合外力)不为零3、做曲线运动的条件是:合外力与速度不在一条直线上 说明:1、合外力指向曲线内侧;2、 沿切线方向分力改变速度的大小垂直切线方向的 分力改变速度的方向。
4、合外力与速度夹角为锐角时,速度增加;为钝角时,速度减少。
5、如何判断物体运动的轨迹(直线或曲线)和性质(匀变速或变加速) 力与速度的方向关系 决定轨迹是直线还是曲线力 决定加速度,进而决定性质是匀变速还是变加速合外力与速度在一直线上 直线运动-----a 恒定---匀变速直线运动 ------a 变化----变加速直线运动合外力与速度不在一直线上 曲线运动-----a 恒定---匀变速曲线运动 ----- a 变化----变加速曲线运动1. 关于曲线运动的下列说法中正确的是:(B )A 曲线运动的速度的大小一定变化B 曲线运动的速度的方向一定变化C 曲线运动的加速度一定变化D 做曲线运动的物体所受的外力一定变化 2、物体在光滑水平桌面受三个水平恒力(不共线)处于平衡状态,当把其中一个水平恒力撤去时,物体将:(CD )A.物体一定做匀加速直线运动B.物体一定做匀变速直线运动C.物体有可能做曲线运动D.物体一定做匀变速运动 3、曲线运动中,下列说法正确的是(AB )A 、曲线运动是一种变速运动B 、做曲线运动的物体合外力一定不为零C 、做曲线运动的物体所受的合外力一定是变化的D 、曲线运动不可能是一种匀变速运动 4、曲线运动中,下列说法正确的是(BD) A 、物体的位移大小与路程一般是不相等的 B 、速度方向跟轨迹的切线方向一致C 、物体的加速度方向跟速度方向在同一直线上D 、物体所受的合外力方向跟速度方向一定不一致 二、平面运动的合成与分解1、合运动:物体实际发生的运动就是合运动物体的实际运动的位移(速度、加速度)叫合位移(合速度、合加速度)。
小船渡河模型打卡:让优秀成为习惯 整理:陈庆威【知识方法——重点突出】1. 模型构建匀速运动的船在匀速流动的水中航行,该运动情景可看作“小船渡河”模型。
2.模型特点(1)一般情况下,船速和水速恒定,河岸平直且平行。
(2)船的实际运动是随水流的运动和船相对静水的运动的合运动。
(3)三种速度:船在静水中的速度v 2、水的流速v 1、船的实际速度v 。
如图1图1 图2 图33.三种情景(1)最短时间:船头正对河岸行驶时,渡河时间最短,2m in v d t =(d 为河宽),如图2。
(2)最短航程 ①若v 2>v 1:合速度垂直于河岸时,航程最短为d 。
船头指向上游与河岸夹角为θ,21cos v v =θ;如图3。
②若v 2< v 1:则无论船头指向哪个方向行驶船总要被水冲向下游。
怎样才能使过河路径最短呢? 如图4,设船头(v 2)与河岸成θ角,合速度v 与河岸成α角,可以看出,α越大,过河路径越短。
那什么条件下α角最大呢?图4 图5 如图5,以v 1的矢尖为圆心, v 2的大小为半径画圆弧,当合速度v 与圆弧相切时,可以看出,α最大。
此时 12cos sin v v ==θα , 过河的最短路径:21cos v dv d s ==θ。
【例题精选——最新最全】题型一:过河的最短时间【例题1】(2021·全国高一期末)如图所示,某人由A 点划船渡河,船头指向始终与河岸垂直,河宽120m ,水流速度为3m/s ,船在静水中的速度为4m/s ,则以下说法中正确的是( )A .小船渡河时间为40sB .小船渡河时间为30sC .小船渡河时间为24sD .小船渡河时间无法确定【变式1】(2020·扬州市江都区大桥高级中学高三月考)某人划船渡河,河宽为d ,船在静水中划行速度大小为1v ,船头方向与河岸间夹角为θ(90θ<︒),水流动速度大小为2v ,如图所示,下列说法正确的是( )A .若水流的速度增大,渡河时间变长B .若水流的速度增大,渡河时间变短C .改变θ,可使渡河的最短时间为1d v D .无论船速v 1多大,通过改变θ,可使小船到达正对岸O 点题型二:船速大于水速的情况【例题2】(2020·安徽高三月考)如图所示,一小船从河岸上的P 点过河,已知河水流速3m/s v =,第一次过河时,小船在静水中的速度为4m /s v '=,且小船以最短时间过河,刚好到达对岸的Q 点;第二次过河时,小船在静水中的速度为5m /s v ''=,且小船仍从P 点出发,第二次小船过河所用时间与第一次相同,下列说法正确的是( )A .第二次小船过河到达对岸时一定在Q 点的左侧B .第二次小船过河到达对岸时一定在Q 点的右侧C .第二次小船过河时有可能到达P 点的正对岸D .第二次小船过河时有可能到达P 点正对岸的左侧【变式2】(2020·自贡市第十四中学校)一只小船在静水中的速度为5 m/s ,它要渡过一条宽为50 m 的河,河水流速为4 m/s ,则( )A .这这这这这这这这这这50 mC.这这这这这这这这这这这这这这这这这这这这D.这这这这这这这这这这这这这这这这这这这这题型三:船速小于水速的情况【例题3】(2020·安徽高三月考)有一条两岸平直、河水流速均匀的大河,某人驾驶一艘小船渡河,已知小船在静水中的速度为v1,河水的流速为v2,且v1<v2,小船若以最短时间渡河,所用时间为T,若以最小位移渡河,则渡河的最小位移为()A.v2T BC.221vvT D.212vvT【变式3】(2020·安徽池州市·高一期末)如图所示,在某次抗洪救援演练中,一条可视为质点的救灾冲锋舟位于与对岸的最近距离为的O点处,从O点向下游30m处有一危险区,当时水流速度为,水流速度恒定,为了使冲锋舟避开危险区沿直线到达对岸,冲锋舟在静水中的速度大小至少是()A.B.C.5m/s D.9m/s题型四:水速变化的情况【例题4】(2020·安徽黄山市·屯溪一中高一期中)河水的流速随离河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则()B.船在行驶过程中,船头始终与河岸垂直C.船在河水中航行的轨迹是一条直线D.船在河水中的最大速度是7m/s【变式4】(2020·全国高三专题练习)河水由西向东流,河宽为800m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x这v水与x的关系为v水=3400x 这m/s),让小船船头垂直河岸由南向北渡河,小船在静水中的速度大小恒为v船=4m/s,下列说法正确的是()A.小船渡河的轨迹为直线B.小船在河水中的最大速度是C.小船渡河的时间是200sD.小船在距南岸200m处的速度小于距北岸200m处的速度题型五:学科素养与能力提升【例题5】(2020·全国高三月考)解放军特种兵在某次泅水训练中要求战士渡过一条如图所示的水渠。
《曲线运动》归纳总结知识要点一、曲线运动1、定义运动轨迹为曲线的运动。
2、物体做曲线运动的方向做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。
3、曲线运动的性质由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。
4、物体做曲线运动的条件物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。
总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。
5、分类(1)匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。
(2)非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。
二、运动的合成与分解1、运动的合成从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。
运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。
2、运动的分解求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。
3、合运动与分运动的关系(1)运动的等效性(合运动和分运动是等效替代关系,不能并存);(2)等时性:合运动所需时间和对应的每个分运动时间相等(3)独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。
(4)运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。
)4、运动的性质和轨迹(1)物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。
高中物理曲线运动21个典型题典型例题1——关于飞机轰炸飞机在离地面720m的高度,以70的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?(不计空气阻力取)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.解:设水平距离为子弹飞行的时间:水平距离典型例题2——关于变速运动火车上的平抛运动在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(取)分析:如图所示、第一个物体下落以的速度作平抛运动,水平位移,火车加速到下落第二个物体时,已行驶距离.第二个物体以的速度作平抛运动水平位移.两物体落地点的间隔是2.6m.解:由位置关系得:物体平抛运动的时间:由以上三式可得点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆.典型例题3——关于三维空间上的平抛运动分析光滑斜面倾角为,长为,上端一小球沿斜面水平方向以速度抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有①沿斜面向下是做初速度为零的匀加速直线运动,有②根据牛顿第二定律列方程③由①,②,③式解得说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.典型例题4——关于小船过河的一系列问题一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m/s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?【分析与解答】①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1、河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则.2、或者由三个式子一一分析.一定,又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)典型例题5——关于拉船分运动的分解判断在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?(8m/s)【分析与解答】:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动,因此可以将船的运动分为:1、船沿水平方向前进——此方向为合运动,求合速度v.2、小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.所以根据题意,船的速度大小与绳子的运行速度之间的关系是:典型例题6——关于汽车通过不同曲面的问题分析一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有:,解得桥面的支持力大小为根据牛顿第三定律,汽车对桥面最低点的压力大小是N.(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有,解得桥面的支持力大小为根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有,解得:汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.典型例题7——细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.【分析与解答】(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G 中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运。
2020年高考物理100考点最新模拟题千题精练第四部分曲线运动专题4.1小船过河问题一.选择题1. (2019陕西渭南质检)河水由西向东流,河宽为800m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x米,v水与x的关系为v水=3x/400m/s,让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4m/s,则下列说法中正确的是()A. 小船渡河的轨迹为直线B. 小船在河水中的最大速度是5 m/sC. 小船在距南岸200m处的速度小于距北岸200m处的速度D. 小船渡河的时间是200s【参考答案】BD【名师解析】小船在沿河岸方向上做匀速直线运动,在垂直于河岸方向上做变速运动,合加速度的方向与合速度方向不在同一条直线上,做曲线运动。
故A错误。
小船到达离河岸d/2处,即中央处,水流速为v水=3/400×400m/s=3m/s,则,此时速度最大。
故B正确。
小船在距南岸200m处的速度为,而距北岸200m处的速度,则船的速度,由此可知,两者速度大小相等,故C错误。
将小船的运动分解为沿船头指向和顺水流方向的两个分运动,两个分运动同时发生,互不干扰,故渡河时间与顺水流方向的分运动无关,当船头与河岸垂直时,沿船头方向的分运动的分位移最小,故渡河时间最短,最短时间为。
故D正确。
【关键点拨】将小船的运动分解为垂直于河岸方向和沿河岸方向,小船船头垂直河岸,则沿河岸方向的速度等于水流速度,根据两个方向上的运动情况判断合运动的轨迹.解决本题的关键知道当合速度的方向与合加速度的方向在同一条直线上,物体做直线运动,不在同一条直线上,物体做曲线运动以及知道合速度与分速度之间遵循平行四边形定则. 2.(2018安徽合肥三模) 如图所示,在宽为H 的河流中,甲、乙两船从相距33H 的A 、B 两个码头同时开始渡河,船头与河岸均成60°角,两船在静水中的速度大小相等,且乙船恰能沿BC 到达正对岸的C 。