转化
(a0,a1, 取,an 极)小值
a0*,的a1*问,题,an*
由多元函数取极值的必要条件
得:
(a0,a1,,an) 0
ak
k0,1,,n
ak
m
n
i[2( ajj(xi)yi)k(xi)] 0
i0
j0
移项整理得:
mn
m
i ajj(xi)k(xi) iyik(xi)
i0 j0
i0
交换求和号顺序得:
n[ mij(xi)k(xi)a ]j miyik(xi) (k0,1, ,n) (7)
j0i0
i0
即
m
m
m
a0 i0(xi)k(xi)a1 i1(xi)k(xi) an in(xi)k(xi)
m
Байду номын сангаас
m
((jj,, kk)) ij(xi)k(xi) ik(xi)j(xi)(k,j) (8)
i0
i0
m
(f,k) iyik(xi)
(9)
i0
方程组(7)便可化为:
n
n
(j,k)aj (k,j)aj (f,k)(k0,1, ,n) (10)
一、最小二乘法的基本概念
根据上述实例图中测试点的分布情况,可以画出很多条靠 近这些点的直线,其方程都可表示为:
S(t)atb
(1)
其中: a, b 待定.要从形如(1)式的所有直线中,找出一条用某种 度量标准来衡量最靠近所有数据点 (ti , si ) (的i直0,1线,....m ,)
若 a, b 给定,计算值 S(ti) 与测量数据 si 之差为: