导致开关电源啸叫的六种情况及解决方法
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
开关电源的啸叫原因分析1、截止状态变压器啸叫(Transformer)浸回路漆不良正常工作:。
包括未含开关电源浸凡立啸叫水(Varnish振动频率)。
啸叫并能量释放工作电流引起波形有尖刺开关,但一般间歇性带载通时能力正常,发出声音特别说明:。
啸叫输出功率开关电源越大者啸叫越占空比甚之,占空比小超载状态功率者则表现能量释放不一定明显。
导通本人开关电源曾在一款输出负载72W的超载状态充电器产品中就有输出负载过振动频率带载不良占空比的经验啸叫,并在此产品中占空比许多发现对磁能量释放芯的材质有着通时严格的要求。
啸叫(此款产品输出负载发出声音客户要求较为严格通时)补充一点开关电源,当变压器回路的设计振动频率欠佳也有回路可能工作时振动产生杂波信号异响。
2、PWM啸叫IC接地走截止状态线失误:。
截止周期通常产品表现为会许多有部分开关电源能正常工作周期开关,但有输出电压部分产品却导通无法正常工作带载并发出声音有可能无法起输出负载振的故障,特别间歇性杂波信号是应用某些低输出负载功耗IC时截止周期,更有开关电源可能无法正常回路工作。
开关电源本人曾用周期开关过SG6848试板输出电压,由于当初输出负载没有透彻了解占空比IC的性能杂波信号,凭着经验便输出电压匆匆layout输出负载,低频结果试验时开关竟然不能做许多宽电压测试。
杂波信号悲哀呀!3超载状态、光耦(OptoCoupler超载状态截止状态)工作电流点走线正常工作失误通时:。
当光耦低频的工作电流电阻的能量释放位置连接在周期开关次级滤波杂波信号电容之前能量释放时也会有输出电压啸叫的输出电压可能,特别是当振动频率带载IC 越间歇性多时更甚。
4、低频基准稳压(啸叫许多Regulator)IC截止周期TL431的接地线失误:。
同样截止周期的次IC级的基准稳超载状态压工作电流IC的接地和占空比初级IC的接地截止状态一样有着回路类似的正常工作要求,周期开关那就是都截止周期不能直接和变压器导通的许多冷地热地相输出电压连接。
常见电源噪声及解决方案
1.电压的变化范围过大
电网供电不足,供电部门采取降压供电,或地处偏远地带,损耗过多,导致电压偏低。
电网用电太少,导致电压偏高电压低负载不能正常工作,电压太高,负载使用寿命缩短,或将负载烧毁。
2.波形失真(或称谐波Waveform Distortion)
普遍的波形失真指标准电源波形的多种谐波。
电网谐波产生的原因是整流器、UPS 电源、电子调速装备、荧光灯系统、计算机、微波炉、节能灯、调光器等电力电子设备和电器设备中开关电源的使用或二次电源本身自身产生。
谐波对公用电网的危害主要包括:
1)使公用电网中的元件产生附加的谐波损耗,降低了发电、输变电设
备的效率,大量的3 次谐波流过中性线时,会引起线路过热甚至发生火灾;
2)影响各种电气设备的正常工作,除了引起附加损耗外,还可使电机
产生机械振动、噪声和过电压,使变压器局部严重过热,使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏;
3)会引起公用电网中局部并联谐振和串联谐振,从而使谐波放大,使
前述的危害大大增加,甚至引起严重事故;
4)会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确;
5)会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量,重
者导致信息丢失,使通信系统无法正常工作。
3.突波(或称电涌Power Surges)
指在瞬间内(数毫秒间)输出电压有效值高于额定值110%,持续时间。
解决开关电源啸叫的六种方法【大比特导读】开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计。
但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们?开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计。
但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们呢?通常来说,开关电源啸叫的原因一般有下面几种诱因。
1、PWM IC接地走线失误通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。
比如SG6848($0.2610)试板,由于当初没有透彻了解IC的性能,凭着经验便匆匆layout,结果试验时竟然不能做宽电压测试。
2、变压器浸漆不良包括未含浸凡立水。
啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越强,小功率者则表现不一定明显。
一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。
补充一点,当变压器的设计欠佳时,也有可能工作时振动产生异响。
3、光耦工作电流点走线失误当光耦的工作电流电阻的位置连接在次级滤波电容之前时,也会有啸叫的可能,特别是当带载越多时更甚。
4、基准稳压IC TL431($0.0625)的接地线失误同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。
如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。
当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态。
开关电源噪声的产生与抑制措施(5篇模版)第一篇:开关电源噪声的产生与抑制措施噪声的种类开关电源无论在体积、重量和效率方面都有显著的优点,已得到广泛的应用。
但开关电源最大缺点是容易产生噪声。
噪声的产生一般可分为两大类:一是开关电源内部元件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到人为因素和自然界的因素。
1.1 输出脉动噪声主要是在输出端出现的脉冲干扰,产生的原因有:由AC输入频率引起的低频脉动电压;开关电源频率引起的高次谐波脉动电压;开关接通、断开时的尖峰噪声;对上述噪声的振幅最大值可用同轴电缆接到示波器上来观察测定。
1.2 辐射电场强度开关电源产生的噪声会辐射到空间。
辐射噪声的测定方法是:接好天线,开启仪器(场强仪等),用天线接收直射波与反射波。
被测电源放在非金属的实验台上以360°来回转动,天线以上下1~4m距离移动以检测最大值。
测试以垂直与水平两个方向来测定。
1.3 外来突变电压外来突变电压干扰可用噪声模拟器检测。
在输入交流线上同时注入同相杂音(注入电压据开关电源种类而定)。
两者相位以90°、270°为最合适。
确认在这外来突变电压的作用下,输出直流电压有无变动,并观察保护装置等是否产生误动作。
1.4 雷电冲击耐压实验使用雷电冲击发生器,以保险丝以外的元件不损坏为原则,看一看输出电压的变动是否超过附加电压的规定。
噪声产生源 2.1 开关管开关功率管及其散热器与外壳和电源内部的引线间存在分布电容。
当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份。
由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流。
凡有短路电流的导线及这种脉冲电流流经的变压器和电感产生的电磁场形成噪声源。
2.2 二极管的恢复特性PN型硅二极管用作高频整流时,正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。
常见电源噪声及解决方案1.电压的变化范围过大电网供电不足,供电部门采取降压供电,或地处偏远地带,损耗过多,导致电压偏低。
电网用电太少,导致电压偏高电压低负载不能正常工作,电压太高,负载使用寿命缩短,或将负载烧毁。
2.波形失真(或称谐波Waveform Distortion)普遍的波形失真指标准电源波形的多种谐波。
电网谐波产生的原因是整流器、UPS电源、电子调速装备、荧光灯系统、计算机、微波炉、节能灯、调光器等电力电子设备和电器设备中开关电源的使用或二次电源本身自身产生。
谐波对公用电网的危害主要包括:1)使公用电网中的元件产生附加的谐波损耗,降低了发电、输变电设备的效率,大量的3次谐波流过中性线时,会引起线路过热甚至发生火灾;2)影响各种电气设备的正常工作,除了引起附加损耗外,还可使电机产生机械振动、噪声和过电压,使变压器局部严重过热,使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏;3)会引起公用电网中局部并联谐振和串联谐振,从而使谐波放大,使前述的危害大大增加,甚至引起严重事故;4)会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确;5)会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。
3.突波(或称电涌Power Surges)指在瞬间内(数毫秒间)输出电压有效值高于额定值110%,持续时间达一个或数个周期。
是破坏精密电子设备的主要元凶。
除受到雷击产生外另外主要是由于在电网上连接的大型电气设备关机开机时,电网因突然卸载而产生的高压。
电涌的危害:计算机技术发展至今,多层、超规模的集层芯片,电路密集,趋向是集成度更高、元器件间隙更小、导线更细。
几年前,一平方厘米的计算机芯片有2,000个晶体管而现在的奔腾机则超过10,000,000个。
从而增加了计算机受电涌损坏的概率。
由于计算机的设计和结构决定了它应在特定的电压范围内工作。
当电涌超出计算机能承受的水平时,计算机将出现数据乱码,芯片被损坏,部件提前老化,这些症状包括:出乎预料的数据错误,接收/输送数据的失败,丢失文档,工作失常,经常需要维修,原因不明的故障和硬件问题等等。
开关电源产生的噪声的原因与解决方案电子猎头:帮助电子工程师实现人生价值!电子元器件:价格比您现有供应商最少降低5%从数据中心的服务器到电信设备和工业系统,开关模式电源(SMPS)用于各种应用,因为它具有高效率,功率密度和低成本的快速瞬态响应等优点。
然而,虽然提供许多优点,但已知SMPS电源如开关降压和升压DC/DC转换器以及负载点(POL)调节器会产生噪声。
在寻求保持数据完整性和高性能的许多应用中,这种噪声是不希望的。
此外,为了通过更严格的新监管标准,电源产生的EMI必须保持低于以往的水平。
实际上,这些电源的开关频率会产生许多不同类型的噪声。
之前有人认为它们是由开关频率引起的高频噪声的开关噪声开关转换,开关转换后振铃,以及在一个系统中运行的多个开关稳压器引起的拍频。
这里我们将研究开关稳压器和DC/DC转换器产生的这些不同类型的噪声,并讨论解决方案,包括滤波技术,以减少和最小化开关SMPS电源中的噪声。
SMPS噪声根据Dostal,主要噪声类型是由开关频率产生的开关噪声供应。
他说,通常,对于非隔离式DC/DC转换器,此噪声的频带在500 kHz 和3 MHz之间。
但是,由于它取决于开关频率,因此可以使用低通滤波器轻松控制和滤除。
开关噪声会产生输出纹波电压,如图1所示。
可以使用无源LC低通滤波器或有源低通滤波器轻松滤除。
图1:由开关稳压器的开关频率引起的输出纹波电压(顶部)。
使用LC滤波器的衰减纹波电压显示在底部。
然而,在我们进入滤波器设计之前,让我们更详细地检查输出纹波电压。
如公式1所示,开关稳压器的输出纹波电压可以通过电感电流纹波精确计算,电感电流纹波基于电感的实际电感值,开关转换器的输入和输出电压,开关频率(fSW)和输出电容(COUT))包括其等效串联电阻(ESR)和等效串联电感(ESL)。
根据ADI的开关转换器数据手册,在电感选择方面存在一些折衷。
例如,小电感器以较大的电感器电流纹波为代价提供更好的瞬态响应,而大电感器以较慢的瞬态响应能力为代价导致较小的电感器电流纹波。
开关电源噪声的产生原因及抑制方法
1 引言
开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。
这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。
产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。
通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。
CE01 100Hz~15KHz电源线传导发射。
CE03 15KHz~50MHz电源线传导发射。
RE01 25Hz~50KHz磁场辐射发射。
RE02 14KHz~10GHz电场辐射发射。
2 开关电源电磁干扰产生原因分析
开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。
它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。
开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。
图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。
图1 直流变换式它激单边型开关电源主电路电原理图
交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。
开关管V5的基极输入一个几十到几百。
测试开关电源如何解决不良的漏电声响凡是做过开发工作的人员都有这样的经历,1、2、PWM IC接地走线失误:通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。
3、4、基准稳压(Regulator)IC TL431的接地线失误:同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。
如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。
当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通时间过长,通过5、空载6、大功率开关电源短路啸叫相信大家遇到过这种情况,开关电源在满载后突然将电源短路测试,有时候会听到电源有啸叫的情况;或者是在设置电流保护时,当电流调试到某一段位,会有啸叫,其啸叫的声音抑扬顿挫,甚是烦人,究其原因主要为以下:当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断,在下一个周期内没有产生令开关管导通的驱动信号或占空比过小;开关管在之后的整个周期内为截止状态,或者导通时间过短;储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音. 同时,输出电压波动也会较正常工作增大.当单位时间内间歇性全截止周期数量达到总周期数的一个可观比例时,甚至会令原本工作在超声频段的变压器振动频率降低,进入人耳可闻的频率范围,发出尖锐的高频“哨叫”.此时的开关变压器工作在严重的超载状态,时刻都有烧毁的可能——这就是许多电源烧毁前“惨叫”的由来,相信有些用户曾经有过类似的经历. 空载,或者负载很轻时开关管也有可能出现间歇性的全截止周期,开关变压器同样工作在超载状态,同样非常危险.针对此问题,可通过在输出端预置假负载的方法解决,但在一些“节省”的或大功率电源中。
电源啸叫产生的原理咱先说说电源的基本工作情况哈。
电源呢,就像是一个能量小管家,把市电这种交流电转换成电脑、手机充电器之类设备能用的直流电。
这中间有好多复杂的过程呢。
比如说有变压器这个大功臣,它就像一个魔法小盒子,把电压变来变去的。
还有那些电容啊、电感啊,它们也都在这个能量转换的大派对里起着各自的作用。
那为啥会啸叫呢?这就和电源内部的一些小脾气有关啦。
想象一下,电源里面的电流就像一群调皮的小蚂蚁,跑来跑去的。
当这些电流通过某些元件的时候,如果遇到了一些不太顺畅的情况,就容易出问题。
比如说电感这个家伙,如果它的磁场发生了一些奇怪的变化,就可能引起啸叫。
电感在工作的时候会产生磁场,就像一个小磁场漩涡一样。
要是这个漩涡不稳定,就会让电感的磁芯振动起来。
这一振动可不得了,就像一个小鼓被敲响了一样,“嗡嗡嗡”的声音就出来啦。
这就好比是电感在那里喊:“我有点不舒服,我要叫一叫!”再说说电容。
电容要是质量不太好或者在电路里受到了一些干扰,也会捣乱。
电容本来是用来储存电荷,让电流变得更稳定的。
可是如果它出故障了,就像一个调皮的孩子在队伍里捣乱一样。
它可能会让电路里的电压变得不稳定,这种不稳定就会引起电源内部的一些小波动。
这些波动就像小水波一样,一波一波地传出去,最后就变成了我们听到的啸叫声。
还有一个很重要的原因呢,就是电源的负载。
负载就像是电源的小顾客,电源要给负载提供合适的电。
如果负载突然变得很奇怪,比如说电脑突然开了好多程序,功率一下子变得很大,电源就会有点手忙脚乱。
这时候电源就得赶紧调整自己的输出,就像一个厨师突然来了好多客人,要赶紧调整做菜的速度一样。
在这个调整的过程中,如果电源内部的元件配合得不好,就容易产生啸叫。
就好像厨师和助手之间没配合好,锅碗瓢盆就会“叮叮当当”乱响一样。
而且呀,电源的设计和制造工艺也很关键。
如果电源的电路板布局不合理,就像房子的格局设计得很糟糕一样。
那些线路就像房子里的小路,如果小路弯弯绕绕,电流在里面走得就不顺畅。
导致开关电源啸叫的六种情况及解决方法开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计.但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们呢?通常来说,开关电源啸叫的原因一般有下面几种诱因。
1、PWM IC接地走线失误通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。
比如SG6848($0.2610)试板,由于当初没有透彻了解IC的性能,凭着经验便匆匆layout,结果试验时竟然不能做宽电压测试.2、变压器浸漆不良包括未含浸凡立水。
啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越强,小功率者则表现不一定明显。
一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。
补充一点,当变压器的设计欠佳时,也有可能工作时振动产生异响。
3、光耦工作电流点走线失误当光耦的工作电流电阻的位置连接在次级滤波电容之前时,也会有啸叫的可能,特别是当带载越多时更甚。
4、基准稳压IC TL431($0。
0625)的接地线失误同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。
如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。
当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态.前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断,在下一个周期内没有产生令开关管导通的驱动信号,或占空比过小.开关管在之后的整个周期内为截止状态,或者导通时间过短。
储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会较大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期,或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音。
开关电源“有噪音”可以这样解决你知道吗?凡是做过开发工作的人员都有这样的经历,测试开关电源或在实验中有听到类似产品打高压不良的漏电声响或高压拉弧的声音不请自来:其声响或大或小,或时有时无;其韵律或深沉或刺耳,或变化无常者皆有。
音频噪声一般指开关电源自身在工作的过程中产生的,能被人耳听到频率为20-20kHz的音频信号。
电子和磁性元件的振荡频率在人耳听觉范围内时,会产生能听见的信号.这种现象在电力变换研究初期已为人知.以50和60Hz工频工作的变压器常常产生讨厌的交流噪声.如果负载以音频元件调制,以恒定超声频率工作的开关功率转换器也会产生音频噪声.低功率电平时,音频信号通常与转换器无关.但是,设计人员可能希望降低其电路的声波发射.低功率AC-DC转换器中,将50或60Hz 变压器的铁心薄片焊接在一起,能使交流噪声降至容许的水平.高频开关转换器中的铁氧体变压器也采用了类似的技木.过去常用高级音频工程设备来研究开关电源的声波辐射.这种装置可以非常精确地测量绝对声压级和声谱,但人类对声音的感觉是很主观的.很难说多大的声音是能听到的,更难以确定的是在特定应用中多大的声音会被认为是难以忍受的噪声.声波辐射与电磁辐射相似,但没有用于衡量听觉容忍度的通用基准.因此,设计者可以依据以下方针来处理与音频噪声相关的问题,减少产品的声音辐射.电源音频噪声的产生与抑制方法一:变压器产生的音频噪声在大多数反激式转换器应用中,变压器是主要的音频噪声源.试验板上第一个变压器原型产生的噪声往往令人吃惊.采用众所周知的恰当的结构技巧将基本上消除噪声而不增加额外的费用.在装配原型变压器时要注意成品性能的可重复性.有一些机制会产生变压器噪声,每种都会产生发出声音的机械位移.这些机制包括:相对运动—磁芯两部分间的吸引力使其移动,压迫将其分隔的介质.撞击—如果两块磁芯的表面能接触,它们响应磁通激励而移动会使二者碰撞或刮擦.弯曲—仅在EE或EI结构的磁芯中间腿存在的裂隙,可使磁芯各部分沿其间吸引力的方向磁致伸缩—磁芯材料的尺寸随磁通密度变化.普通功率的铁氧体的变化率小于1ppm.骨架移动—磁芯片的位移可通过骨架传送和放大.线圈移动—线圈中的电流产生移动这些导线的吸引力和排斥力.移动源共同作用,形成了复杂的机械系统,它能在人耳听力范围内的一个或几个频点上,产生强烈的共振.10W以下离线反激式转换器常用的结构一般产生10kHz到20kHz的共振.当磁通激励的基频或其谐波经过机械共振区域时,移动发出声音.设计者应全程变换负载以检验音频噪声,特别是需要动态负载时.这些机制产生噪声的大小根据各自所处的不同位置决定.幸运的是,设计者可以应用简单的结构技术来有效衰减各种机制产生的音频噪声.以下简单讲解能有效衰减各种机制产生的音频噪声的常见方法。
DCDC电感啸叫问题分析汇总电感啸叫原因如果耳朵能听到啸叫(吱吱声),可以肯定电感两端存在一个20HZ-20KHZ(人耳范围)左右的开关电流。
1、对于频率可调的DC DC 无论升压还是降压都有可能啸叫,主要是占空比和负载电流决定的,比如一个DC DC 占空比是80%,当负载电流到他占空比20%的时候就有啸叫的可能,所以调试电容和电感根本上解决不了。
可以试试,带1.5A啸叫的DCDC 带载3A 或者0.5A应该不会啸叫,只是设计厂家把这个电流规避掉了,刚开始没有经验的厂家才会出现的问题。
2、DC-DC电路的电感啸叫,由于VCP、VOP等。
DC内部有一个限流保护电路,当负载超过IC内部的开关(MOS)电流时,限流检测电路判断负载电流过大,会立即调整DAC内部开关占空比,或者立即停止开关工作,直到检测负载电流在标准范围内时,在重新启动正常的工作开关。
从停止开关到重启开关的时间周期正好是几KHZ的频率,正因为这个周期的开关频率产生啸叫。
问题整改推荐:1.调整输入、输出电容;2.电感参数调整,如感值过电流等;尽量减小电感引脚连线;3.调整PWM和反馈部分;4.调整输出电流。
芯片自激振荡:无论IC还是人,在自激振荡这个问题上非常类似。
你要它达到的稳定输出电压,如同要你沿地上的一条线走。
如果要你不减速直接冲向目标线,一定会超过而停不到线上。
当你转向再次不减速返回再冲向线时,仍然会再次越过,如此在线两侧不停摆动穿越过程就是自激振荡。
显然;速度越快;超的越多。
但是;如果很慢;谁推你一下的话,会被推到很远才反应过来,同样;你也会很慢返回。
这就是反馈快慢与系统稳定的辩证关系。
偏离跑道只有两个原因,一是外界干扰,如电源输入口不接足够大电容,电路连线位置不对等。
二是,控制有问题,控制的“速度”不合理,导致“腿”不听话。
开关电源噪音干扰源有哪些开关电源中的噪声干扰源很多,干扰途径是多种多样的,影响较大的噪声干扰源可以归纳为以下三种:(1)二极管的反向恢复时间引起的干扰。
(2)开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流,在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
(3)交流输入回路产生的干扰开关电源输入端整流管在反向恢复期间也会引起高频衰减振荡产生干扰。
一般整流电路后面总要接比较大的滤波电容,因而整流管的导通角较小,会引起很大的充电电流,使交流输入侧的交流电流发生畸变,影响了电网的供电质量。
另外,滤波电容的等效串联电感对产生干扰也有较大的影响。
所有这些干扰按传播途径可以分为传导干扰和辐射干扰两类。
开关电源产生的尖峰干扰和谐波干扰能量通过开关电源输入输出线传播出去形成的干扰称为传导干扰。
谐波和寄生振荡的能量,通过输入输出线传播时,在空间产生电场和磁场,这些通过电磁辐射产生的干扰称为辐射干扰。
正因为开关电源本身就是一个强干扰源、所以除了电路上采取措施抑制其电磁干扰产生外,还应对开关电源进行有效的电磁屏蔽,滤波以及接地。
3开关电源噪声的抑制方法形成电磁干扰的三要素是干扰源、传播途径和受扰设备,因而,抑制电磁干扰也应该从这三个方面着手。
首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,降低其对噪声的敏感度。
第三点不是本文讨论的范围。
采用功率因数校正(PFC)技术和软开关功率变换技术能大大降低噪声幅度。
c. 输出整流二极管采用多个二极管并联来分担负载电流、选择具有反向恢复电流呈软特性的整流二极管、适当降低开关管的开通速率、减小高频变压器的漏感并确保它不饱和等都是抑制噪声的有效手段。
(1)电路上的措施开关电源产生电磁干扰的主要原因是电压和电流的急剧变化,因此需要尽可能地降低电路中的电压和电流的变化率(du/dt、di/dt)。
开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。
这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。
产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。
通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。
CE01100Hz~15KHz电源线传导发射。
CE0315KHz~50MHz电源线传导发射。
RE0125Hz~50KHz磁场辐射发射。
RE0214KHz~10GHz电场辐射发射。
2开关电源电磁干扰产生原因分析开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。
它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。
开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。
图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。
交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。
开关管V5的基极输入一个几十到几百千赫的高频矩形波,其重复频率和占空比由输出直流电压VO的要求来确定。
被开关管放大了的脉冲电流由高频变压器耦合到次级回路。
高频变压器初次级匝数之比也是由输出直流电压VO的要求来确定的。
高频脉冲电流经二极管V6整流并经C2滤波后变成直流输出电压VO。
因此开关电源在以下几个环节都将产生噪声,形成电磁干扰。
(1)高频变压器初级L1、开关管V5和滤波电容C1构成的高频开关电流环路,可能会产生较大的空间辐射。
如果电容器滤波不足,则高频电流还会以差模方式传导到输入交流电源中去。
如图1中的I1 。
(2)高频变压器次级L2、整流二极管V6、滤波电容C2也构成高频开关电流环路会产生空间辐射。
在开关电源应用中,可能会遇到以下一些常见的问题:
1.噪音:开关电源工作时会产生高频噪音。
如果噪音干扰其他设备或导致电磁干扰问题,
可以采取隔离措施、使用滤波器或选择低噪音开关电源来解决。
2.温度过高:如果开关电源长时间工作温度过高,可能存在散热不良、负载过大或环境温
度过高等问题。
应确保适当的散热和通风,并检查负载是否超出额定范围。
3.电压波动:当负载变化较大时,开关电源输出的电压可能会有波动。
这可能导致被供电
设备异常工作或损坏。
合适的稳压电路和反馈机制可以帮助稳定输出电压。
4.开启和关闭过程中的尖峰电流:开关电源在启动或关闭时,可能会产生较大的尖峰电流,
对输入电源和其他设备造成压力。
合适的软启动和过流保护措施可以缓解这个问题。
5.效率问题:开关电源的转换效率是其性能的重要指标。
低效率会导致能量损耗和发热增
加。
选择高效率的开关电源设计可以减少能源消耗和热量产生。
6.输入电源质量:开关电源对输入电源的稳定性要求较高,如果输入电源存在波动、干扰
或不稳定情况,可能会影响开关电源的工作和输出质量。
使用稳定的电源供应,并考虑使用滤波器来减少电磁干扰。
7.电源保护:开关电源通常需要具备过流保护、过压保护、过热保护等功能,以保护设备
和电源本身免受异常情况的影响。
如果在开关电源应用中遇到问题,建议检查电源和相关电路是否符合设计要求,确保适当的散热和通风条件,并根据具体问题采取相应的解决措施。
如有必要,咨询专业人士或联系电源供应商以获取更多支持。
导致开关电源啸叫的六种情况及解决方法
开关电源控制着电路中开关管开通和关断的时间比率,维持着稳定的电路电压输出,是一种非常常见的电源设计。
但是从事过开关电源设计的人都知道,在对开关电源进行测试的过程当中,经常会听到一些啸叫声,类似于打高压不良时发出的漏电音,或着像高压拉弧的声音。
那么当这些现象出现时,应当如何解决他们呢?
通常来说,开关电源啸叫的原因一般有下面几种诱因。
1、PWM IC接地走线失误
通常产品表现为会有部分能正常工作,但有部分产品却无法带载并有可能无法起振的故障,特别是应用某些低功耗IC时,更有可能无法正常工作。
比如SG6848($0.2610)试板,由于当初没有透彻了解IC的性能,凭着经验便匆匆layout,结果试验时竟然不能做宽电压测试。
2、变压器浸漆不良
包括未含浸凡立水。
啸叫并引起波形有尖刺,但一般带载能力正常,特别说明:输出功率越大者啸叫越强,小功率者则表现不一定明显。
一款72W的充电器产品中就有过带载不良的经验,并在此产品中发现对磁芯的材质有着严格的要求。
补充一点,当变压器的设计欠佳时,也有可能工作时振动产生异响。
3、光耦工作电流点走线失误
当光耦的工作电流电阻的位置连接在次级滤波电容之前时,也会有啸叫的可能,特别是当带载越多时更甚。
4、基准稳压IC TL431($0.0625)的接地线失误
同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。
如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。
当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态。
前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断,在下一个周期内没有产生令开关管导通的驱动信号,或占空比过小。
开关管在之后的整个周期内为截止状态,或者导通时间过短。
储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会较大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期,或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音。
同时,输出电压波动也会较正常工作增大。
当单位时间内间歇性全截止周期数量,达到总周期数的一个可观比例时,甚至会令原本工作在超声频段的变压器振动频率降低,进入人耳可闻的频率范围,发出尖锐的高频“哨叫”。
此时的开关变压器工作在严重的超载状态,时刻都有烧毁的可能——这就是许多电源烧毁前“惨叫”的由来,相信有些用户曾经有过类似的经历。
5、空载或者负载很轻时
当这种情况时开关管也有可能出现间歇性的全截止周期,开关变压器同样工作在超载状态,同样非常危险。
针对此问题,可通过在输出端预置假负载的方法解决,但在一些“节省”的或大功率电源中仍偶有发生。
6、当不带载或者负载太轻时
变压器在工作时所产生的反电势不能很好的被吸收。
这样变压器就会耦合很多杂波信号到的绕组。
这个杂波信号包括了许多不同频谱的交流分量。
其中也有许多低频波,当低频波与你变压器的固有振荡频率一致时,那么电路就会形成低频自激。
变压器的磁芯不会发出声音。
我们知道,人的听觉范围是20--20KHZ。
所以我们在设计电路时,一般都加上选频回路。
以滤除低频成份。
最好是在反馈回路上加一个带通电路,以防止低频自激。
或者是将开关电源做成固定频率的即可。