数学:111《算法的概念》(新人教A版必修3)
- 格式:pdf
- 大小:1.59 MB
- 文档页数:15
高考数学 1.1.1算法的概念一、学习目标:1. 要求学生了解算法的含义,体会算法的思想.2. 在分析实例的基础上了解算法的基本特征.3. 能够用自然语言描述一些具体问题的算法.二、学习重点:算法的含义以及基本特征.学习难点:简单的算法设计.三、教学过程:一、问题引入:问题1:根据生活经验,请设计完成洗衣服的过程中有哪几个步骤?问题2:请写出二元一次方程组><=-><-=+112212{y x y x 的解答过程。
问题3:你们所写的解答过程和课本上的解答有什么不同?课本提供的解答有什么特点?问题4:对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a , 其中a 1b 2-a 2b 1≠0, 可以写出类似的求解步骤: 第一步,第二步,第三步,第四步,第五步,二、归纳新知:1.算法的定义:2.算法的要求:3.算法的基本特征:三、例题讲解:例1(1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.思考:1.整数89是否是质数? 2.写出“判断整数n (n >2)是否为质数”的算法?体验:电视节目中,有一种有趣的“猜数”游戏:现有一商品,价格在0到800元之间,主持人每次对观众的报价给出“高了”或“低了”的提示,釆取怎样的策略才能在较短的时间内猜出最接近的价格呢?例2.用二分法求解方程写出方程x 2-2=0(x>0)的近以解的算法思考:1.为什么算法第一步要设计“给定精确度d ”这个环节,能否省略?2.算法第三步中确定区间为[]2,1,能否换成[]100,1或[]10,2行吗?请说明理由。
四、训练反馈1.下列关于算法的说法中,正确的是:①求解某一类问题的算法是唯一的; ②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊; ④设计算法要本着简单方便的原则。
2、写出求1+2+3+4+5的一个算法.3、写出求一元二次函数)0(2≠++=a c bx ax y 最值的算法.五、课堂小结:一、正确理解算法的概念; 二、.算法的基本特征及要求六、课后作业:5页练习七、课后反思。
算法的概念(第一课时)知识与技能1.算法的概念算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
如:菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,现代意义上的“算法”通常是指按照某种机械程序步骤一定可以得到结果的解决问题的程序或步骤。
比如解方程的算法、函数求值的算法、作图的算法等等。
2.算法的特征:(5个特征)(1)有穷性:一个算法的步骤序列是有限的,它应在有限步骤之后停止,而不能是无限的。
(2)确定性:算法中的每一个步骤必须是明确定义的。
(3)顺序性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都要准确无误,才能完成该算法。
(4)不惟一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法。
(5)普遍性:很多具体问题,都可以设计合理的算法去解决,如心算,计算器计算都要经过有限的,事先设计好的步骤加以解决。
3.算法的作用:算法的作用在于记录及交流人类解决问题的思想。
由于计算机解决任何问题都要依赖于算法,因此算法也是作为编制计算机能够接受的“语言”——计算机程序的前导步骤。
对于复杂的问题,直接写出程序往往是困难的,为此人们往往先进行算法设计,然后再编程序。
所以,算法设计是程序设计的基础。
过程与方法例1:写出求1+2+3+4+5+6的一个算法。
分析:可以按逐一相加的程序进行,也可以利用公式1+2+…+n= 进行,也可以根据加法运算律简化运算过程。
解:算法1:s1:计算1+2得到3;s2:将第一步中的运算结果3与3相加得到6;s3:将第二步中的运算结果6与4相加得到10;s4:将第三步中的运算结果10与5相加得到15;s5:将第四步中的运算结果15与6相加得到21。
1.1.1算法的概念教学目标:1.通过实例体会算法思想,了解算法的含义与主要特点;2.能按步骤用自然语言写出简单问题的算法过程学;3.培养学生逻辑思维能力与表达能力.教学重点:将问题的解决过程用自然语言表示为算法过程.教学难点:用自然语言描述算法.教学过程一、导入新课计算机的问世可谓20世纪最伟大的发明,它把人类社会带进了信息技术的时代,而算法是计算机科学的重要基础,就像使用算盘一样,人们要给计算机编制“口诀”——算法,才能让它工作。
要想了解计算机的工作原理,算法的学习是一个开始。
做任何事情都有一定的步骤。
例如,你想考大学首先要填报名志愿表,拿到准考证,参加考试,得到录取通知书,到大学报名注册等。
这些步骤都是按一定顺序进行的,缺一不可。
现实生活中,我们很多事情都是这样一步一步的完成的。
可见算法并不是一个全新的概念,它融入在我们的现实生活中。
在我国古代,“算法”取得了辉煌的成就。
二、讲解新课引例1.烧水泡茶请看一下烧水泡茶的过程解:烧水泡茶可分下面4步完成。
第一步:洗好开水壶;第二步:灌上凉水,放在火上,等待水开;第三步:洗茶杯,茶杯里放好茶叶;第四步:水开后再冲水泡茶。
引例2.人鬼过河现在河的岸边有三个人和三个鬼,河上只有一条小船,船上最多能坐两个“人”,在河的任何一边,当鬼的个数比人多时,鬼就会吃掉人。
请问如何才能使人和鬼都平安的到达对岸。
解:要想使人鬼都安全过河,需要下面11步。
第一步:第二步:第三步:第四步:第五步:第六步:第七步:第八步:第九步: 第十步:第十一步:从事各种工作和活动,都要事先想好工作的步骤,然后按部就班的进行,这样就可以避免产生错误。
1、算法的定义:广义的算法是指完成某项工作的方法和步骤。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤。
比如解方程的算法、函数求值的算法、作图的算法,等等。
2015高中数学1.1.1算法的概念讲解新人教A版必修31.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确.定性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧, 竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的.具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
因此,算法其实是重要的数学对象。
算法(al.gorithm) 一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说“算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的.算法、作图的算法,等等。
要点一:算法的有限性和确定性例1任意给定一个大于1的整数n,试设计一个程序或步骤对“是否为质数做出判定。
解析:根据质数的定义判断解:算法如下:第一步:判断"是否等于2,若厂2,则“是质数;若n>2,则执行第二步。
数学知识点人教A版高中数学必修三1.1.1《算法的概念》教案-总结1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.推进新课新知探究提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例??=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤:第一步,①+②×2,得5x=1.③第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为==.53,51y x (3)用代入消元法解二元一次方程组=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤:第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④第三步,解④得y=53.⑤第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为==.53,51y x (4)对于一般的二元一次方程组=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤:第一步,①×b 2-②×b 1,得(a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③第二步,解③,得x=12212112b a b a c b c b --. 第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④第四步,解④,得y=12211221b a b a c a c a --. 第五步,得到方程组的解为--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.。