针对训练
5.如图所示,直线AB与CD相交于点O, A ∠AOC:∠AOD=2:3,求∠BOD的度数.
D O
答案:72°
C
B
课堂小结
平面 内两 条直 线的 位置 关系
两条直线相交
对顶角,相等 垂线,点到直线的距离
两条直线被第 三条直线所截
同位角、内错角、同旁内角
两直线平行
两直线平行的判定 两直线平行的性质
针对训练
3 .如图⑴,已知 AB∥CD, ∠1=30°, ∠2=90°,则∠36=0
பைடு நூலகம்
°A
B
1
2
3 C
D
图(1)
A
B
E
F
C
D
图(2)
4. 如图⑵,若AE∥CD, ∠EBF=135°,∠BFD=60°,
∠D= ( D) A.75° B.45°
C.30°
D.15°
考点四 相交线中的方程思想
例4 如图所示,l1,l2,l3交于点O, ∠1=∠2, ∠3:∠1=8:1, 求∠4的度数.
两直线 平行的判定
同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行
两直线 平行的性质
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补
平行线间的距离处处相等
课后作业
见章末练习
3.平行于同一条直线的两条直线__平__行___.
4.平行线的判定与性质:
平行线的判定 两直线平行
平行线的性质
同位角相等 内错角相等 同旁内角互补
考点讲练
考点一 利用对顶角、垂线的性质求角度
例1 如图,AB⊥CD于点O,直线EF过O点,